This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON COMPUTERS

DRAFT 1

Extending Magny-Cours Cache Coherence

Alberto Ros, Blas Cuesta, Ricardo Fernandez-Pascual, Maria E. Gdmez, Manuel E. Acacio,
Antonio Robles, José M. Garcia, and José Duato,

Abstract—One cost-effective way to meet the increasing demand for larger high-performance shared-memory servers is to build
clusters with off-the-shelf processors connected with low-latency point-to-point interconnections like HyperTransport. Unfortunately,
HyperTransport addressing limitations prevent building systems with more than 8 nodes. While the recent High Node Count
HyperTransport specification overcomes this limitation, recently launched twelve-core Magny-Cours processors have already inherited
it and provide only 3 bits to encode the pointers used by the directory cache which they include to increase the scalability of their
coherence protocol. In this work, we propose and develop an external device to extend the coherence domain of Magny-Cours
processors beyond the 8-node limit while maintaining the advantages provided by the directory cache. Evaluation results for systems
with up to 32 nodes show that the performance offered by our solution scales with the number of nodes, enhancing the directory cache
effectiveness by filtering additional messages. Particularly, we reduce execution time by 47% in a 32-die system with respect to the
8-die Magny-Cours configuration.

Index Terms—High-performance computing, shared memory, cache coherence, directory protocol, coherence extension, scalability,
traffic filtering.

*

1 INTRODUCTION AND MOTIVATION server field.

At the same time, scalable point-to-point interconnect
technologies are starting to be included in the server
oriented processor offerings of the leading companies.
AMD was the first to include such technologies in their
Opteron processors with Coherent HyperTransport [1],
which was followed by Intel with QuickPath [2] in their
Nehalem processors. Unlike previous high-performance
interconnects for clusters like InfiniBand [3], the network
interface for these new interconnects is included in the
same chip as the processor cores and the memory con-
trollers, enabling glueless point-to-point communication
between all the processors and memory interfaces in the
system and low latency for remote memory accesses. In
addition, these technologies provide support for mem-
ory coherency.

Recently, AMD has launched six-core versions of its
Opteron processors, codenamed Istanbul, and a twelve-
core package comprising two dies! with six cores each,
codenamed Magny-Cours [4]. Besides the increased
number of cores, the most notable difference with pre-
vious generations of Opteron processors is the inclusion
of a directory cache, called HT Assist Probe Filter (HTA)
[5], which reduces the number of off-chip messages
generated by the cache coherence protocol. The Magny-
Cours protocol, which is an adaptation of the protocol
defined by the coherent HyperTransport (cHT) specifi-
cation [1], allows to build small cache-coherent shared-
memory multiprocessors (up to eight processor dies) in

N recent years, the market for servers is expanding
Iand changing. The growing number and variety of de-
vices connected to the Internet, the proliferation of new
on-line services and the increasingly demanding user
expectations for server responsiveness and availability
require more computational power than ever. One estab-
lished trend to save power, hardware and administration
costs consists in using very powerful machines to run
several services on the same physical machine, usually
by means of virtualization. An even more recent trend
seeks to further reduce costs by outsourcing IT services
to cloud computing providers which own and manage
clusters of servers that are shared among customers by
means of virtualization too. These trends increase the de-
mand for servers with the largest possible computational
and storage capabilities.

Until recently, many service providers were able to use
clusters of relatively inexpensive PCs to fulfill their task.
This kind of clusters are popular also for scientific com-
puting. However, they usually rely on message-passing
communications for remote memory accesses. Message-
passing increases not only the communication latencies,
but also the difficulties to develop efficient applications.
The increased programming complexity is undesirable
for scientific applications and is unreasonable in the

e Alberto Ros, Blas Cuesta, Maria E. Gémez, Antonio Robles, and José Duato
are with the Department of Computer Engineering, Universitat Politecnica

de Valencia, 46021 Valencia (Spain). a single board.

E—'mml: {aros,blucuesu,megomez,arobles,]duato}@gup.upv.es Unfortunately, although the HTA reduces cache miss
e Ricardo Ferndndez-Pascual, Manuel E. Acacio, and José M. Garcia are lat d h traffic. it h inherited th d

with the Departamento de Ingenieria y Tecnologia de Computadores, a en(.:y ar} .CO .erenFe rafne, 1t has mherite o e 'a g

Universidad de Murcia, 30100 Murcia (Spain). dressing limitations imposed by the cHT specification,

E-mail: {rfernandez,meacacio,jmgarcia}@ditec.um.es

1. We indistinctly refer to die as node

Digital Object Indentifier 10.1109/TC.2011.65 0018-9340/11/$26.00 © 2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

which limits the coherence domain for Istanbul and
Magny-Cours to 8 dies at most [4]. This limitation pre-
vents the development of cluster-based HPC systems
able to offer large cache-coherent shared-memory ad-
dress spaces, such as the SGI Ultraviolet (Altix UV) [6]
machines and the 3Leaf Systems DDC-server [7].

The addressing limitation of the cHT specification is
solved in the new High Node Count (HNC) Hyper-
Transport specification [8], which extends the former
by encapsulating standard cHT messages into HNC
packets. However, current Opteron processors do not
implement this extension and have only 3 bits in the
HTA to encode the owner of a block. Thus, the coher-
ence domain remains limited to 8 dies unless additional
external hardware is used.

The main advantage of extending the number of
nodes in a coherence domain is that data center servers
supporting virtualization solutions will be able to use
system resources in a more flexible and efficient way,
allowing to define larger virtual domains which better
fit the requirements of some applications. Besides, it
will allow to support HPC applications that currently
can only be used in supercomputers and cluster-based
computing platforms.

In this work, we present a device, called bridge chip or
EMC? chip (Extended Magny-Cours Coherence), that (1)
provides a way to efficiently extend the coherence do-
main provided by the new generation of AMD Opteron
processors beyond the 8-die limit, (2) maintains the ad-
vantages provided by the HTAs, and (3) filters additional
coherence traffic to enhance the HTA effectiveness and
scalability [9].

The EMC? chip sits in a board with up to 7 additional
dies. It presents itself as another node to the rest of dies
in the same board, while it manages the communication
between dies in different boards by performing conver-
sions between cHT and HNC packets. This way, and un-
like other extensions (e.g., Horus [10], which was aimed
to extend the coherence domain for previous-generation
AMD Opteron processors), our proposal agrees with
the new HNC standard specification. Every EMC? chip
includes a directory cache (extended HTA or simply
EHTA) that extends the functionality of the local HTAs
located in the same board.

We propose three different implementations for the
EMC? chip that cover a wide set of trade-offs between
their area requirements and the amount of filtered traffic.
Additionally, we also propose a coherence mechanism
that decouples the number of entries of the EHTA from
the number of entries of the local HTAs. Finally, to
enhance the scalability of the protocol, we propose two
approaches that reduce the number of replacements in
the HTAs and increase the maximum number of simulta-
neous pending remote messages allowed in a particular
board.

Unlike other multiprocessor systems, such as the SGI
Origin [11] or the Cary T3E [12], whose cache coherence
protocol was designed from the beginning to scale up

to a large number of nodes, our proposal is based on
the extension of an existing protocol limited to 8 nodes.
Therefore, our proposal does not require any change in
the functionality of the original protocol to overcome its
limitations and widen its scalability.

Simulation results show that our proposal allows to
build large-scale shared-memory servers based on the
new-generation Opteron processors, while being able to
exploit the advantages of the HTA at the overall system
level. Particularly, the bridge chip named as EMC3-
OXSX reduces the average execution time of the evalu-
ated applications by 47% on average for a 32-die system
with respect to the 8-die system allowed by Magny-
Cours, while obtaining an excellent compromise between
area and traffic requirements. Furthermore, thanks to the
EHTA replacement mechanism proposed in the paper
that allows to decouple the EHTA size from the size of lo-
cal HTAs, the area of the EMC? chip can be significantly
reduced (down to eight times) without noticeable effect
on performance. Note that most concepts introduced in
this paper for extending cache coherence could also be
applicable to other commodity processors.

The remainder of this paper is organized as follows.
Section 2 outlines the Magny-Cours cache coherence
protocol. We present our proposals for extending AMD
Magny-Cours cache coherence capabilities in Section 3.
Section 4 discusses two approaches for improving scal-
ability. We describe the simulation environment in Sec-
tion 5. The evaluation results are presented and analyzed
in Section 6. Finally, we draw conclusions in Section 7.

2 AMD MAGNY-COURS CACHE COHERENCE
SUPPORT

AMD Opteron processors use the cache coherence pro-
tocol defined by the cHT specification [1]. This protocol
was designed to perform efficiently in a system with
a small number of processors connected with tightly-
coupled point-to-point HyperTransport links. It can be
described as a hybrid between a snoopy and a directory
protocol. It is similar to snoopy protocols in the sense
that all the nodes see all coherence transactions. How-
ever, like directory protocols, it does not rely on a shared
bus and can, in fact, be characterized as a directory-based
protocol without directory information, also known as
DirB [13]. This lack of directory information reduces the
memory overhead and avoids the latency of accessing it,
but it does not filter messages.

On a cache miss occurrence, a node initiates a load
or a store transaction by issuing a request for a memory
block. The request is sent to the home node (memory
controller), which serializes them. On a request arrival,
the home node broadcasts messages known as Broadcast
Probes (BP) in order to invalidate or to obtain the data
block from the caches of the other nodes. These nodes
reply with Probe Responses (PR), which are directed to
the requester. Once the requester receives all responses,
it sends a Source Done (SD) message to the home node,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

“ CoTeO‘ ‘Corel ‘ ‘CoreZ ‘ ‘Core3 ‘ ‘Core4‘ ‘CoreS ‘
‘512kB‘ ‘5121(13‘ ‘5121(13‘ ‘Slsz‘ ‘5121(13‘ ‘5121(13‘
L2 i
+ |
‘ System Request Interface (SRI) ‘
WWH“%$YQ
\ XBAR
Memory HTA

Controller [Probe
MCT/DCT [Filter

4 HyperTransport ™ 3 Ports

s
s

Fig. 1. Block diagram of Magny-Cours dies [4].

which finalizes the request and proceeds to process the
next request for the block (if any). The required BPs do
not entail a serious problem in small systems. However,
as the number of nodes grows, both the consumed
bandwidth and the time required to receive and process
all the PRs increases dramatically.

On a write-back of a dirty block, a node sends the
modified block in a VicBlk request to its home node. This
replies with a Target Done (TD) message to the requester
indicating that the memory has been updated. Like in
the previous case, the transaction ends by sending an
SD message to the home.

Finally, non-cached writes, used for non-coherent
transactions, are also implemented in the cHT protocol.
In this case, a WrSized request is initiated and it forces all
the memory blocks belonging to a certain memory region
to be invalidated from cache and copy-backed to main
memory. The requester keeps a clean copy of the data
in its cache. A node sends the WrSized request to the
home node, which initiates the invalidation of the cached
blocks by sending a BP to the other nodes. However,
these BPs require that the corresponding region is inval-
idated from the other nodes and also that these nodes
acknowledge the invalidations to the home node instead
of to the requester. When the home node has collected all
the PRs, it sends a TD message to the requester, which
finishes the transaction by sending an SD message back
to the home node.

Figure 1 shows the block diagram of a Magny-Cours
die. As shown, Magny-Cours processors add a small
on-chip directory cache [5] called HT Assist Probe Filter
(HTA). The HTA holds an entry for every block mapped
to this node cached in the system. Each entry has 4 bytes
which are used to store a tag, a state (EM, O, S1, or S)?,
and a pointer to the current owner of the block (3 bits).
This information is used to (1) filter unnecessary BPs
when no copy of the data is cached and (2) to replace
some BPs with unicast Directed Probe (DP) messages. In
case of a DP, only one response, called Directed Response
(DR), is generated. Upon a miss on the HTA, a new
entry must be allocated, which may require to replace
an existing one. Before performing the replacement, all
the cached copies of the block identified by the replaced

2. Blocks are stored in caches according to the MOESI states [14].

EMC? chip
x

EMC?2? chip
3

EMC2? chip

=" Switch Fabric

Fig. 2. Overview of the proposed system. Thick arrows inside
the nests represent x16 cHT links while the narrow ones are x8
cHT links.

entry must be invalidated either by a DP (if the replaced
entry is in EM or S1 state) or by a BP (if it isin O or S
state). These invalidations come as a consequence of the
lack of a backup memory directory.

As depicted in Figure 1, a portion (IMB of 6MB
available) of the L3 cache is dedicated to HTA entries to
avoid adding a large overhead in uniprocessor systems.
This provides enough space for 256K entries organized
in 64K 4-way sets, which are enough for tracking 16MB
(256K entries x 64 bytes/block) of data cached in the
system.

Even with the traffic filtering provided by the HTA, the
scalability of Magny-Cours systems is limited to 8 dies
due to implementation details. Firstly, the cHT packet
format reserves only 3 bits to identify coherent nodes;
and secondly, the pointer used in the HTA to encode
the current owner of a cached block has also 3 bits only
(which makes sense since it assumes that cHT will be
used).

The HNC HyperTransport specification partially ad-
dresses the first limitation. To this end, it defines the
concept of nest as any addressable entity (which can be
anything from a single processor up to a motherboard
containing several processors) and an extended packet
format that can encapsulate standard cHT messages
and uses a nest-based addressing scheme. However, it
does not establish how packets should be handled when
they move between nests. To fully overcome these two
problems we propose the EMC? chip, which is described
in the next section.

3 EXTENDING AMD MAGNY-COURS CACHE
COHERENCE CAPABILITIES

Although each nest in our system can contain up to
7 processor dies, in this paper, we opt for including
only 4 dies per nest, as illustrated in Figure 2. This
configuration allows the intra-nest network to be fully-
connected and a straightforward mapping of memory
blocks to home nodes by checking just a few address bits.
Our system comprises several processor boards (referred
to as nests). Each nest includes an EMC? bridge chip
which acts (1) as a network interface controller between
nests, (2) as a translator between cHT and HNC packets,
and (3) as an extension of the HTAs located inside the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

Pending
Command
Queue

Internal Ports

1]

EHTA

,,,,,,

cHT Packet Adapter
~
HNC/IBA Adapters J j l J

External Ports

,,,,,,

External Ports
IBA/HNC Adapters
=
»

,,,,,,,,,,,,,,,,,,

nest. Moreover, each nest includes a continuous region
of the physical memory.

31

To maintain coherence between nodes in different nests,
we propose the use of the EMC? chip, whose block
diagram is shown in Figure 3. From the point of view of
the other nodes, the EMC? chip is seen as just another
node inside the nest. The EMC? chip and all the nodes
within a nest are fully connected through a cHT intercon-
nect. The different nests are connected by an InfiniBand
switch fabric and they communicate using HNC packets
encapsulated into InfiniBand packets.

Transactions in cHT are identified by means of three
fields: the id of the node that initiated the transaction
(SrcNode), the unit of the node (SrcUnit), and a tag
of 5 bits generated at the node (SrcTag). Each cHT
packet conveys the information of the transaction that
it belongs to. However, this information is only enough
within a nest, where the coherence domain is limited to
eight nodes. When the coherence domain is extended to
several nests, packets must be unequivocally identified
out of their local nest (i.e., the nest where the node that
initiated the transaction resides). Two new situations can
happen: either the packet is traveling from one nest to
another one or the packet is in a remote nest.

When the packet is traveling from one nest to an-
other one, it is encapsulated into a HNC packet, which
includes an additional field for its identification. This
field is the id of the nest where the SrcNode of the
transaction is located (SrcNest), and it is included by the
EMC? chip when it transforms a local cHT packet into
a HNC packet. This way, these packets can be globally
identified.

On the other hand, packets in a remote nest use the
cHT standard, so there is no SrcNest field available for
identifying them. Therefore, if a packet is identified by
the SrcNode, SrcUnit, and SrcTag of its corresponding
transaction, a conflict with a local transaction may occur.
To avoid this, EMC? chip changes the SrcNode and the
SrcTag of the packet when it is transformed from a HNC
packet into a cHT packet in a remote nest. In particular,
the SrcNode becomes the id of the EMC? chip and a
new SrcTag is assigned by the EMC? chip itself. This
way, conflicts between packets belonging to transactions
initiated in different nests are avoided.

Extending the Coherence Domain

Another task of the EMC? chip is the recovery of the
original identifiers of the packets. When an EMC? chip
receives a cHT packet whose SrcNode corresponds to
its node id, it means that the packet is in a remote
nest. When it translates the cHT packet into a HNC
packet, it has to restore its original identifiers, including
the SrcNest. To support this operation, the EMC? chip
needs to keep a matching between the identifiers used
in remote nests and the original ones. This information
is stored in the Matching Store Table (MST) included in
each EMC? chip. Every packet that goes into a remote
nest must allocate an entry in the MST. In the MST,
there is an entry for each tag available at the EMC? chip.
Therefore, the number of entries in the MST is bounded
by the maximum number of tags that can be generated
by the cHT specification (i.e., 32 tags), which in turn
limits the number of external transactions that can be
simultaneously in progress inside a nest. Thus, when
the MST is full and new entries cannot be allocated, the
incoming packets are temporally stored in the Pending
Command Queue. Possible deadlock scenarios due to the
limited number of entries of the MST and their solutions
are discussed later in Section 3.4.

While each packet that goes into a remote nest needs
to allocate an MST entry, another structure is necessary
for storing information about the packets that leave
their source nest. This structure is the Extended Tag Table
(ETT). One of the uses of this structure is to store the
home nest of the transactions. This is needed because
requests include the block address in the message, so a
straightforward calculation can be performed to obtain
the destination nest, but other packets, like Source Done,
do not convey the block address, so the destination nest
must be obtained from the ETT. In particular, ETT entries
are allocated when a request leaves its source nest and
deallocated when its corresponding Source Done packet
is sent out of this nest. Since the maximum number of
concurrent transactions generated by a nest is limited to
512 (32 tags/node x 4 units/node x 4 nodes/nest), this
table will have 512 entries. Thus, unlike the MST, it will
be able to store all the transactions requesting an entry.

The EMC? chip also has to collect all the responses
generated as a consequence of broadcast probes. These
responses can be received both from the cHT interface
and from the HNC one. The counting of these responses
and the data block (if the responses include data), may
be temporally stored by the EMC? chip in order to be
able to generate a single response. This information is
stored either in the ETT or in the MST, depending on
whether the transaction which these packets belong to
was generated in that nest or in another one, respectively.

3.2 Extending the HTA Functionality

To maintain and extend the functionality of the HTAs be-
yond the nest domain, as well as to reduce the generated
coherence traffic, every EMC? chip includes a directory
cache called Extended HTA (EHTA), as shown in Figure 3.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT
TABLE 1
EHTA States of the EMC?-OXSX chip.
[State | Description |
EM Only the owner’s copy is cached outside the home nest.

Other copies may be cached inside the home nest.
The owner’s copy is cached outside the home nest. Other
OX | copies may be cached either in the home nest or in the

owner nest.

o The owner’s copy is cached outside the home nest. Other
copies may be cached in any nest.

S1 At most one shared copy is cached outside the home nest.

Sx Only shared copies cached outside the home nest, all of
them located in the same nest.

S Only shared copies cached outside the home nest. They

can be located in any nest.

I No valid copy of the block cached outside the home nest.

Every EHTA tracks the memory blocks whose home is
located in its nest and that may be cached in a remote
node (i.e., a node outside its nest). However, the EHTA
is not aware of the blocks that are only cached inside its
nest.

Since a HTA only knows about the existence of the
nodes inside its nest, when a block’s owner is a remote
node, the HTA will think that the block is cached by the
EMC? chip. To have precise information of the block’s
owner, the EHTA will be in charge of tracking the actual
location of the owner by storing the nest (ownerNest field)
and node (ownerNode field) identifiers.

In addition to the ownership information about the
block, each EHTA entry also includes some information
that is used to perform additional traffic filtering tasks.
Depending on the quantity of information held by each
entry, the filtered traffic and the area requirements will
vary. Thus, in order to cover different trade-offs between
area requirements and amount of filtered traffic, we pro-
pose three configurations for the EHTA entries: EMC?-
Base, EMC?-OXSX, and EMC3?-BitVector.

o The EMC?-Base chip includes an EHTA whose en-
tries encode the ownership of the block and the
same states as the HTAs: EM, O, S1, and S (2 bits).

« The EMC?-OXSX chip includes an EHTA that en-
codes two additional states: OX and SX (3 bits).
These new states are intended to be able to turn
Broadcast Probes into Directed Probes when all the
remote copies of a certain block are located in the
same nest. Notice that on the arrival to the remote
nest, these Directed Probes will be turned again into
Broadcast Probes to be able to invalidate more than
one copy.

 The EMC?-BitVector chip includes an EHTA with the
same states as the EMC?-Base chip, but its entry
also holds a bit-vector. This bit-vector includes one
bit per every remote nest in the system, indicating
which of the nests may have a cached copy of the
block. This information allows to replace the Broad-
cast Probes with Multicast Probes. Although this is
the most effective configuration in terms of filtered
traffic, it is the most area-demanding approach.

Since there are not huge implementation differences

among the three proposed configurations, from now
on we will just focus on the EMC?-OXSX chip, which
achieves a good traffic-area trade-off (as shown in Sec-
tion 6.4). Table 1 shows a detailed description of each
possible state for the EHTA entries assuming this con-
figuration. Notice that this state only considers copies of
the block cached in a remote nest.

Depending on the state in both the HTA and the
EHTA, different scenarios can come up, such as Table 2
depicts. For each combination, the table shows a short
description of how and where the block is cached and
the actions performed by the EMC? chip (if any) under
load and store transactions. The three possible reactions
to a transaction are: (1) no action (the probe is simply
forwarded), (2) turning a Broadcast Probe into a Directed
Probe, and (3) filtering a Broadcast Probe. The actions in
bold are those that entail a reduction in coherence traffic.

The information in the EHTA must be updated when
the caching of the blocks changes. This updating is only
preformed when the EMC? chip receives a packet gener-
ated as a consequence of an action performed by some
local HTA. The following four sections describe how
this information is updated depending on the packet
received. Since the EHTA is a cache indexed by the
block address and some of the received packets do
not carry such information, the MST must be also in
charge of storing the address of the block involved in
the transaction.

3.2.1 Broadcast Probes and Probe Responses

To update the EHTA while avoiding races, the EMC?
chip uses the last packet received among the Broadcast
Probe and Probe Responses generated as a result of
a store or a WrSized transaction. Upon the receipt of
this last message, the EMC? chip carries out the actions
shown in Figure 4. As depicted, if there is no valid entry
for that block in the EHTA (EHTA miss) and a copy is
going to be sent outside the home nest (the requester
is a remote node) and the message belongs to a store
transaction, a new entry is allocated, the state is set to
EM, and the block’s owner (ownerNest and ownerNode)
is set to the requester node. If there is an EHTA miss and
the message belongs to a WrSized transaction, the EHTA
is not modified since the block will not be cached after
the WrSized. If the EHTA already contains an entry for
the block and the message belongs to a store transaction,
the EMC? chip updates the existing entry accordingly.
Finally, when the requester is in the home nest or the
message belongs to a WrSized transaction, the EHTA
entry is set to invalid because all the external copies will
be invalidated.

3.2.2 Directed Probes

Figure 5 shows how the EHTA is updated on a Directed
Probe (DP) arrival. When an EMC? chip receives a DP
(from inside its nest) due to a load transaction, the owner
node must be outside the home nest and, therefore, the
EHTA state can only be EM, OX, or O. If the requester is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

TABLE 2

Scenarios depending on the HTA state (rows) and the EHTA state (columns). In/out refers to inside/outside the home nest, and
Id/st to load/store. DP* means that the BP turns into a DP, but only while the DP is transmitted between nests. However, when the
DP reaches a nest, the DP is turned into a BP (only inside that nest).

| | EM | OX | (€] | S1 SX S I |
owner out owner in
EM | no copy in/out - - - - - no copy out
Id / st:DP—DP Id / st: -
owner out owner out owner out owner in owner in owner in owner in
no copy out |copies in owner nest | copies out 1 copy out copies out (1 nest) copies out no copy out
O copies in copies in copies in copies in copies in copies in copies in
1d:DP—DP 1d:DP—DP 1d:DP—DP Id: - 1d: - 1d: - 1d: -
st:BP—DP st:BP—DP* st:BP—BP st:BP—DP st:BP—DP* st:BP—BP st:BP—Filtered
owner in memory owner in memory
s1) _) 1 copy out) _ no copy out
no copies in 1 copy in
1d: - / st:DP—DP 1d / st: -
owner in memory | owner in memory | owner in memory | owner in memory
S) _) 1 copy out copies out (1 nest) copies out no copy out
copies in copies in copies in copies in
1d: - / st:BP—DP | 1d:- / st:BP—DP#* | 1d: - / st:BP—BP |1d:- / st:BP—Filtered
owner in memory
1 - - - - - - no copy in/out
1d / st: -

Block Address*

access
to EHTA

requester requester

WrSized

command

{state} = EM

{ownerNest} = Requester's Nest*
a {ownerNode} = Requester's Node*

command

* Retrieved from either the BP or the MST

Fig. 4. Updating the EHTA by BPs or PRs for store transactions.

transaction

operation type

Home Nest Other

requester nest

Other

Owner Nest

Fig. 5. Updating the EHTA by DPs.

{ownerNest} = Requester's Nest

{state} = EM
{ownerNode} = Requester's Node

local to the home nest, the coherence information is not
modified. If the requester is located in the owner nest
and the state field is either EM or OX, all the external
copies must be in the same nest and, consequently, the
state field is set to OX. If the requester is neither in the
home nest nor in the owner nest, the state transitions to
O. When the state is O, DPs do not change it.

In case of a store transaction, the EMC? chip will
receive a DP only when a single external copy of the
block exists, which is at the owner node (EM state). In
such a case, if the requester node is not in the home nest,
the state field transitions to EM and the owner field is
set to the requester node (ownerNest and ownerNode).
Otherwise, if the requester is in the home nest, the EHTA

DR

Block Address Shared Not Shared

{ownerNest} = Requester's Nest
{ownerNode} = Requester's Node

(state} = EM ‘

S1/8X

requester nest

Owner Nest

{ownerNest} = Requester’s Nest

{state} = S1
{ownerNode} = Requester's Node

Fig. 6. Updating the EHTA by DRs.

entry is set to I state because the external copy will
be invalidated and forwarded to the requester. Finally,
when a DP is received due to a WrSized transaction, the
EHTA entry is set to invalid because all copies are going
to be invalidated.

3.2.3 Directed Responses

Figure 6 shows how the EHTA is updated on a Directed
Response (DR) receipt. In this case, the owner is located
inside the home nest while the requester is outside. If
the DR conveys an exclusive copy of a memory block
(indicated by the shared bit conveyed by DRs), the state
transitions to EM and the owner field is set to the
requester node. In case the DR carries a shared copy,
several actions can take place depending on the state in
the EHTA. If the state is I or an EHTA miss occurs, a new
entry is allocated setting the state to S1 and storing the
requester information in the ownerNest and ownerNode
fields. On an EHTA hit, if the EHTA state is S1 or SX and
the requester nest matches the ownerNest field, the state
is set to SX. If the state is S1 or SX and the requester
nest does not matches the ownerNest field, the state is
updated to S. Finally, if the state is S, it is not changed.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

Block Address*

access
to EHTA

Other

Owner

EM
EHTA state

[e]

v v

[{state} =1] [(slate):S]

Fig. 7. Updating the EHTA by local TDs.

[{state} = SX] *Retrieved from the MST

3.2.4 Target Done Messages

A Target Done (TD) packet can only cause the EHTA
to be updated when it has been generated as a result
of a cache replacement (VicBlk transaction). Notice that
only the owner node can initiate a replacement because
the shared copies are evicted silently. Upon the arrival
of a TD message, if the owner in the EHTA matches
the requester of the VicBlk transaction, the state field is
checked. If the state is EM, it transitions to I because the
single external copy has been invalidated. If the state is
OX, it transitions to SX, and if the state is O, it transitions
to S. On the contrary, if the owner in the EHTA does not
coincide with the requester, the EHTA is not modified
because this can only occur if a race condition happened
and the EHTA has already been correctly updated®.
These operations are depicted in Figure 7.

3.3 Handling EHTA Replacements

In Magny-Cours, each HTA holds 256K entries. There-
fore, a maximum of 256K blocks from the same home
memory can be cached in the system at the same time.
Given that we consider four HTAs per nest, a maximum
of 1M blocks from the same nest could be simultaneously
cached. If all those blocks were cached outside the home
nest, the EHTA would have to track all of them. To
be able to do it without needing evictions, each EHTA
would require 1M entries and an associativity equal to
the aggregate associativity of the four local HTAs (i.e.,
64K 16-way sets), assuming it has the same mapping
as the HTAs. In order to reduce the EHTA size, and
therefore, its access latency, we propose a mechanism for
handling EHTA replacements. This mechanism allows
the EMC? chip to have lower memory requirements.
The eviction of an EHTA entry will entail the invali-
dation of all the external copies of the block associated
to such an entry. However, there are two facts that
make the eviction of EHTA entries a bit complicated.
First, Magny-Cours dies are only able to process the
coherence messages defined by the cHT protocol [5]
and, consequently, new coherence messages cannot be
introduced. As the cHT protocol does not include any
specific command for performing EHTA evictions, they
should be performed by using some of the commands

3. Alternatively, the EHTA state could be updated upon the recep-
cion of the SD message, which includes information about the success
of the VicBlk transaction

already defined by the cHT protocol. Second, EHTA
evictions could introduce complex race conditions if they
are not serialized by the home node.

In order to adjust to these two facts, we employ Wr-
Sized requests to perform EHTA evictions, which are al-
ready supported by the cHT protocol. WrSized requests
force all memory blocks belonging to a certain memory
region to be evicted from cache and copy-backed to main
memory. Additionally, the requester keeps a clean copy
of the written data in its cache. In case of an EHTA
eviction, the memory region indicated by the WrSized
request is the block whose EHTA entry is going to be
replaced. Since EMC? chips send WrSized requests to the
home nodes, this mechanism resolves the serialization
problem.

In particular, EHTA replacements are handled as fol-
lows. When the EMC? chip receives a packet that re-
quires the allocation of a new EHTA entry, as described
in the previous section, and the EHTA set for that block
is full, the LRU entry of that set must be replaced. To
avoid delaying the incoming packet, the evicted EHTA
entry is temporally stored in the Miss Status Hold Register
(MSHR) structure located in the EMC? chip, where the
information regarding the ongoing transactions is stored.
This way, the EMC? chip can store the required informa-
tion in the EHTA and process the incoming packet. If the
MSHR is full the incoming packet is stalled.

Then, the EMC? chip begins a WrSized transaction.
Since this transaction requires a unique identifier, the
EMC? chip has to assign a new SrcTag to it. This tag
cannot be used by any packet in this nest belonging
to an external transaction, because in this case two
transactions would have the same identifier. Therefore,
this tag must be obtained from the free tags in the MST.
Since both external transactions and WrSized transaction
due to EHTA replacements allocate entries in the MST,
deadlock situations could occur if proper care is not
taken. We discuss this issue in more detail in Section 3.4.

WrSized transactions are sent to the home node, which
is one of the dies within the nest where the EHTA
replacement took place. When the home node receives
a WrSized request, it issues Broadcast Probes in case
the HTA entry for that block is valid. These probes are
transmitted by the EMC? chip to the remote nests and
nodes as previously described. Nodes reply to these
probes with the corresponding responses. When the
EMC? chip, first, and the home memory controller, later,
collect all the associated responses, the home node sends
a Target Done message to the requester of the WrSized
request (i.e., the local EMC? chip). At this moment, the
EMC? chip is allowed to free the MSHR entry and the
corresponding MST entries (i.e., the tag is freed). Finally,
the WrSized transaction completes by sending a Source
Done message to the home node. Now, the block is not
stored in any cache. However, the HTA state for the
evicted entry is S1, since it assumes that a clean copy
is stored in the EMC? chip. In order to avoid future
broadcast probes as a consequence of the state S1 in

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

Nest 0
EMC? Chip
I

Nest 1
EMC? Chip
|

PO’s request ‘ \
I

Pt'srequest— - = === - = - - - - ¥ Store request in MST Store request in MST
I

P1’s (Nest 0) request

Nest 2
EMC? Chip

P2's request - PO’s (Nest 0) request
i .

P3'srequest~. ..
forward request to home

Sl receive DP from home
- forward DP to owner- ~_
N |

forward request to home
receive DP from home
forward DP to owner

|
*+ > Store request in MST

P0’s (Nest 0) request
P2's (Nest 0) request

A Store request in MST

P1’s (Nest 0) request

P3's (Nest 0) request
forward request to home

receive DP from home
forward DP to owner--._

I
MSTis ful D

DP stalled .
|
MSTis ful D
DP stalled

forward request to home
N receive DP from home
*\ .+ forward DP to owner

BN I
> MST i full
DP stalled

~=-p > MST is ful
DP stalled

v

Fig. 8. Probes stalled due to requests stored in the MST. The
home node for PO’s and P2’s requests is placed within Nest 2,
whereas the home node for P1’s and P3’s requests are in Nest
1. Besides, the owner for PO’s and P2’s requests is in Nest 1,
whereas the owner for P1’s and P3’s requests is in Nest 2.

the HTA (e.g., upon a write transaction), the EMC? chip
initiates a clean VicBlk transaction once the WrSized
transaction completes. The VicBlk transaction will cause
the invalidation of the HTA entry if is found in S1 state.

WrSized transactions force the invalidation of all the
copies of the block from cache, even those copies held by
nodes within the home nest. However, the invalidation
of these internal copies is not strictly necessary, since
we only need to invalidate the external copies. The
invalidation of the internal copies is a side effect of
using transactions already defined by the cHT protocol.
Therefore, the proposed mechanism may unnecessarily
increase the cache miss rate. Fortunately, we have found
that most EHTA evictions correspond to blocks that have
no internal copies. As a result, the collateral damage
caused by the use of WrSized requests for the EHTA
evictions is negligible.

3.4 Deadlock avoidance

The MST is used for assigning an internal tag to any
external transaction received by the EMC? chip. These
transactions can be either a remote request or a remote
probe. Like them, the WrSized requests issued by the
EMC? chip upon an EHTA replacement also need an
internal tag, which is also taken from the available ones
of the EMC? chip (i.e., from the available entries in the
its MST). Due to the limited number of MST entries,
deadlock situations could arise.

Figure 8 shows a deadlock scenario where several
probes are locked waiting for a free MST entry. Each
probe that arrives to a remote nest needs a new SrcTag
and, since the MST is full, the probe is stalled. How-
ever, the requests that allocated the MST entries cannot
progress because their corresponding probes are also
stalled. As a result, each request is stalled waiting for
another request (which is also stalled) to finish.

Nest 0
EMC? Chip
External

|
request — Store request in MST
for BO & forward it to home

Request for BO

Nest 0
Home node

External
request — = — — % Store request in MST
for B & forward it to home — = ~ _

Request for BO
Request for B1

EHTA is full - Response stalled =~ — —pHome is B1’s owner
Initiate EHTA entry eviction - Send WrSized) _ - = —Send B1 to requester

Home is BO's owner
Send BO to requester

MST is full - WiSized stalled Y

|
EHTA is full - Response stalled 4- - - - -

Initiate EHTA entry eviction - Send WrSized ~ ~
MST s ful - WrSized stalled) 4 - =

¢ v

Fig. 9. EHTA replacements stalled due to requests stored at the
MST. Both BO’s and B1’s requesters are located outside Nest 0.
The home of BO and B1 is also the owner.

Figure 9 depicts another deadlock scenario where
some EHTA replacements are locked because the cor-
responding WrSized request cannot be issued due to
the lack of free MST entries. Again, no MST entry will
ever be released since they have been allocated by the
requests causing the evictions, and they cannot progress
until the eviction is performed.

To solve these deadlock scenarios, we first discuss each
type of transaction that can allocate an entry in the MST
and their mutual dependencies.

o Broadcast and Directed Probes: The MST entries al-
located by them are valid until the associated re-
sponses go back to the EMC? chip. They do not de-
pend on the assignation of any tag for a subsequent
message.

o Requests: The entries allocated by them remain in the
MST until the arrival of the corresponding Source
Done message. The requests can issue probes to
other nests, which could require the assignation of a
new SrcTag. Additionally, it can be necessary to evict
an entry from the EHTA, which always requires the
occupation of a new tag in the same MST as the
request.

o EHTA Replacements: The entries created by the Wr-
Sized requests issued as a consequence of EHTA
replacements are released when the corresponding
Target Done message is received. A WrSized request
never incurs in the replacement of another EHTA
entry. However, it may be necessary to send probes
to remote nests, which may require in turn the
occupation of a MST entry.

According to this, probes do not depend on any
other transaction, EHTA replacements only depend on
probes, and requests depend on both probes and EHTA
replacements. Therefore, by assigning higher priority to
the requests with less dependencies and by ensuring at
least one MST entry for the requests with higher priority
we can avoid the deadlock. Additionally, for a good
utilization of the limited number of MST entries, we
allow a transaction to occupy any MST entry as long
as its priority is higher or equal than the priority of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

the MST entry. In our particular implementation, we
assign four entries to probes (priority 2), four entries
to replacements (priority 1), and the remaining entries
to requests (priority 0) from the 32 entries available in
the MST. This way, replacements can occupy any entry
assigned to requests meanwhile probes can occupy any
entry.

4 IMPROVING SCALABILITY

In this section, we discuss two possible scalability bottle-
necks that could appear when the Magny-Cours coher-
ence protocol is extended to a large number of nodes.
These two bottlenecks come as a consequence of con-
straints present in Magny-Cours: (1) the limited size
of the HTA structure which affects the HTA coverage
ratio, and (2) the limited number of tags available to
identify transactions, which restricts the number of ex-
ternal transaction that can be translated into internal
transactions at the same time to only 32. Next sections
discuss these issues and propose two alternatives to
prevent them from being a bottleneck in large-scale
configurations.

41

Each HTA is comprised of 256K entries for keeping
coherence information for its local blocks, i.e., the blocks
mapped to its memory controller. On the other hand,
the cache hierarchy of each die has 128K entries (5MB
L3 and 3MB L2). This means that if all cached blocks
were uniformly distributed among the home memory
controllers, the coverage ratio of the HTAs would be x2.
This coverage ratio is named as typical in [4].

However, Magny-Cours does not assume that the
memory is interleaved among the different dies. There-
fore, some memory controllers may hold more cached
blocks than others. The worst-case scenario appears
when all the cached blocks map to the same memory
controller. Fortunately, since Magny-Cours systems are
comprised of only up to 8 dies, the coverage ratio in
this case only decreases down to x0.25, which could be
acceptable. Nevertheless, when we extend the coherence
mechanism to a larger number of dies, this worst-case
coverage ratio falls drastically (down to x0.062 for a 32-
die system), which could result in a significant number
of cache invalidations as a consequence of replacements
in the HTA. These invalidations may impact negatively
on the L3 cache miss rate, which may lead to a significant
performance degradation.

A proper interleaving of memory blocks or memory
pages would alleviate this issue. However, if we perform
a full memory interleaving (i.e., considering all the nodes
in the system), sequential applications would have to
access memory controllers belonging to remote nests
very frequently. Since the inter-nest communication is
much slower than intra-nest communication, these appli-
cations would be severely slowed down. A solution for
this problem is to perform a hybrid interleaving, where

Lessening Worst-Case HTA Coverage Ratio

memory is interleaved inside each nest (i.e., among the
dies belonging to the same nest), but it is not inter-
leaved among nests. This way, the intra-nest interleaving
lessens the impact of the worst-case coverage ratio by
homogeneously distributing blocks among HTAs within
the same nest, while the inter-nest contiguous mem-
ory addresses avoids accesses to memory controllers
in remote nests. Therefore, this approach offers a very
good trade-off between coverage ratio and access latency.
Note that currently the address mapping functionality of
Magny-Cours is not sufficiently flexible to support the
proposed hybrid mapping scheme, so it would require
an extension of the mapping functionality.

4.2 Increasing the number of MST Tags

Magny-Cours uses a 5-bit field in order to assign ids (Src-
Tag) to transactions, so there are only 32 tags available
per die. Therefore, our Matching Store Table (MST) only
has 32 entries, i.e.,, each EMC? chip can support only
32 internal transactions at the same time. When all the
entries of the MST are occupied, the EMC? chip cannot
issue another message into its nest. Again, as either the
system size grows or the EHTA becomes smaller more
MST entries are needed because of the larger number
of required internal transactions. Therefore, its limited
number may become a bottleneck, and consequently,
may degrade applications’ performance.

We propose to increase the number of available tags
by employing the unused die identifiers in the nest. Note
that our system configuration has four dies per nest
plus one bridge chip, and therefore, there are three die
identifiers that are not used in each nest. The utilization
of these identifiers would allow us to assign up to
96 additional tags to the MST (128 tag in total). This
way, the number of internal coherence transactions that
can be generated by the EMC? chip at the same time
also increases, thus alleviating this possible bottleneck.
Obviously, the reduction of this bottleneck comes as
consequence of an increase in the size of the MST.
However, we will see in Section 6.4 that the area required
by the MST is marginal compared to the area required
by the EHTA.

5 SIMULATION ENVIRONMENT

We evaluate the proposed extended cache coherence pro-
tocol with full-system simulation using Virtutech Simics
[15] along with the Wisconsin GEMS toolset [16], which
enables detailed simulation of multiprocessor systems.
The interconnection network has been modelled using
GARNET [17], a detailed network simulator included in
the GEMS toolset. Additionally, we have also employed
the CACTI 5.3 tool [18], assuming a 45nm process tech-
nology, to measure the area requirements of the different
configurations of our proposal.

In order to carry out the evaluation of our proposal,
we have first implemented the Magny-Cours cache co-
herence protocol, which represents the base protocol

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

TABLE 3
System parameters.

Memory Parameters

Processor frequency 3.2 GHz
Cache block size 64 bytes
Aggregate L1+L2 caches 3MB, 4-way
L3 cache 5MB, 16-way
Average cache access latency (L1+L2+L3) 2ns

HT assist (probe filter) 1MB, 4-way
HT assist access latency 4ns

EMC? chip processing latency 16ns
Memory access latency (local bank) 100ns

Network Parameters

Intra-nest topology Fully-connected

Inter-nest topology Hypercube
Data message size 68 or 72 bytes
Control message size 4 or 8 bytes
HyperTransport bandwidth (16 bits, 6.4GT/s) | 12.8GB/s

Inter-die link latency 2ns

Inter-socket link latency 20ns
InfiniBand bandwidth (12x, 10Gb/s) 12GB/s
Inter-nest communication (one way) 150ns

Flit size 4 bytes
Link bandwidth 1 flit/cycle

against which we compare our proposal. Then we have
implemented the three different EMC? chips explained
in Section 3. We have also provided the simulator with
the functionality of having several cores per die sharing
the same L3 cache. The intra-die coherence (L1 and L2)
has not been modeled since (1) it is out of the scope
of our work and (2) the simulation time would increase
considerably. We have run simulations from 8 to 32 dies
and with 1 and 2 cores per die. For the Magny-Cours
(MC) system we only simulate one nest with 8 dies,
which corresponds to the base case. For the EMC? sys-
tems we simulate 4 dies per nest (plus the EMC? chip).
The parameters assumed for the systems evaluated in
this work are shown in Table 3. Since we do not model
the intra die protocol or the cache hierarchy, we assume
a fixed access latency (representing the average access
time) for the whole hierarchy (L1, L2, and L3 caches).

We have evaluated our proposal by using six sci-
entific workloads from the SPLASH-2 benchmark suite
[19]: Barnes (16K particles), Cholesky (tk16), FMM (16K
particles), Ocean (514x514 ocean) Raytrace (teapot) and
Water-Sp (512 molecules). All the experimental results
reported in this work correspond to the parallel phase
of these benchmarks. We account for the variability in
multithreaded workloads [20] by doing multiple simu-
lation runs for each benchmark in each configuration and
injecting small random perturbations in the timing of the
memory system for each run.

6 EVALUATION RESULTS

In this section, we show how our proposals are able
to support more than 8 dies while scaling in terms
of execution time. To this end, we compare the three
bridge chips proposed in this paper (i.e., EMC?-Base,

10
Read: 63.7% Write: 36.3%
EMOX O S1 SX S I EMOX O S1 SX S I

EM [5.9% . ‘ . ‘1.4% 0.9% 0.2%

§ O 10.3%0.2%2.0% 0.5% 2.6%0.0%|0.2%|1.9%|0.2%0.5% | 1.2%

f S1 0.0% ‘o.o% 0.0% 0.0%

g S . 0.3% 0.0%10.0%10.0%0.0%

[T 2o

) EMM X X 5.6%| |3.5% 0.8%
e

0 [0.8%|1.2% 0.7%|0.5%|2.3%0.2%)| |2.4%(2.7%|7.2%] 2.4%0.3%|0.1%0.0%

E’ S1 0.0% 0.0% 0.0% 0.0%

% S < 10.0%0.0% [1.9%0.0% 0.0%)0.0%]0.0%0.0%

= 1 5.9% 6.7%

Fig. 10. Characterization of cache misses according to the
HTA (vertical) and EHTA (horizontal) states, read/write misses,
and local/remote misses. Results show the average of all
the evaluated benchmarks. Crossed cells represent impossible
combinations of states. The darker the color of a cell is, the
higher the miss percentage is. Multiple cells represent the case
where the EHTA has not been reached, and therefore, the EHTA
state can be any one of those covered by the cell.

EMC?-OXSX, and EMC?-BitVector) for systems from 8
to 32 dies with a base Magny-Cours system comprised
of 8 dies. Particularly, we evaluate them in terms of
network traffic, cache miss latency, execution time, and
area requirements.

Additionally, we study the impact that the hybrid
interleaving scheme has on the HTA coverage ratio. We
also perform a sensitivity study of the size of the EHTA,
demonstrating how it can be significantly reduced with-
out affecting the execution time seriously. Finally, we
evaluate the advantages of employing the unused die
identifiers in the nest to increase the number of available
MST tags.

6.1 Cache Miss Characterization

First of all, it is important to characterize the applications
in order to know the fraction of cache misses that
can take advantage of the EHTA filtering capabilities.
Figure 10 shows this characterization for a 32-die system
that includes the EMC?-OXSX chip, as a representative
example. In this characterization we show the percentage
of misses that fall into each one of the possible combi-
nations of states for the EMC?-OXSX chip (see Table 2).

The EMC? chip can reduce network traffic only when
a write miss takes place for a block in O or S states
in the HTA (i.e., when a Broadcast Probe is received).
This happens for 21.7% of cache misses (on average) for
the considered applications and a 32-die configuration.
Depending on the state in the EHTA, the EMC? chip can
either completely filter the Broadcast Probe or convert it
into a single Directed Probe. Note that for the remaining
misses, the HTA already filters the unnecessary probes.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

Avg. probes received per BP

9 SN

Barnes Cholesky FMM Radiosity Water-Sp Average

Fig. 11. Number of probes received for each broadcast probe
sent by the home die.

2N
N
?
%

A |
7\

Ocean

Normalized miss latency
OO==2NNWW ARG
cuocuouououno

Barnes Cholesky FMM Radiosity Water-Sp Average

Fig. 12. Normalized miss latency.

6.2 Impact on Network Traffic

In Figure 11, we show the average number of Broad-
cast/Directed Probes that arrive to the dies for each
Broadcast Probe issued by the home memory controller.
This number is plotted for the three EMC? chips pro-
posed (for systems with 8, 16, and 32 dies) and the
base Magny-Cours system comprised of 8 dies. Note that
without any filtering this number should be 8, 16, and
32 for 8-, 16-, and 32-die systems, respectively.

Since we only consider Broadcast Probes, the average
number of probes arriving to a die in Magny-Cours
is always 8. However, for the same system size our
protocols reduce this number by filtering some probes.
Obviously, when we consider 8 dies (i.e., 2 nests), there
is only one remote nest, so all EMC? chips behave in the
same way. For larger systems, we can see that the more
coherence information the HTA stores, the more traffic
it filters. Particularly, for a 32-die system we can see that
the average number of received probes is reduced by
23.6% (24.4/32),49.7% (16.1/32), and 61.6% (12.3/32) for
EMC?-Base, EMC?-OXSX, and EMC?Z-BitVector, respec-
tively.

This reduction in the number of probes received by the
dies has two consequences: (1) the number of generated
probe responses is also reduced, and (2) the network
congestion and the coherence controller utilization de-
creases. They lead to less time waiting for Probe Re-
sponses, and therefore, shorter cache miss latency, which
will finally translate into improvements in execution
time.

6.3

As we can see in Figure 12, average miss latency of EMC?
increases with respect to MC for an 8-die system. This is
because the latency for transmitting messages between
nests is higher than between dies. Remember that in MC
we have the 8 dies in the same nest while in EMC? there
are only four dies per nest.

Impact on Execution Time

11

Barnes Cholesky F Ocean Radiosity Water-Sp Average

Fig. 13. Normalized execution time.

On the other hand, when we consider a larger system,
the cache miss latency increases due to the growth in the
inter-nest communication. Nevertheless, we reduce the
final execution time because the applications can be dis-
tributed among more dies, which considerably lessens
the workload of each die. Finally, we can appreciate a
reduction in average miss latency for some EMC? chips
and the 32-die configuration. Compared to EMC?-Base,
EMC?-OXSX reduces the average miss latency by 3.7%,
and EMC?-BitVector by 5.0%. The obtained reductions
are expected to increase for larger configurations. These
reductions in cache miss latency in turn lead to improve-
ments in execution time.

Figure 13 shows the normalized execution time when
we scale up the size of the system. We can see that,
although for the 8-die configuration our proposals be-
have worse than MC_8 (due to the larger inter-nest
latency), when we extend the coherence domain through
the bridge chip and allow a higher number of nodes
in the system, the execution time of the applications
is significantly reduced. Particularly, EMC?-OXSX 32
and EMC?-BitVector_32 improve the base Magny-Cours
system (MC) by 47% on average. Finally, comparing
our three proposals for a 32-die system, EMC?-OXSX
and EMC?-BitVector obtain similar execution time and
slightly improve EMC?-Base (~4%).

6.4 Area Requirements

The different EMC? chips cover a wide trade-off between
memory requirements and filtered traffic. This section
studies these trade-offs for a 32-die configuration.

The three chips differ only in the size of the EHTA
entries. Their sizes and those of the ETT and MST are
shown in Table 4. The EHTA of the EMC?-Base is the one
that less bits needs per entry (the tag plus 8 bits that
include the state, the id of the owner die, and the id of
the owner nest). The EHTA of the EMC?-OXSX needs an
extra bit for codifying the two additional states. Finally,
the EHTA of the EMC?-BitVector needs seven extra bits
for storing the presence vector for the remote nests.

Figure 14 plots the trade-off of these three chips in
terms of network traffic and area requirements. The total
area of each chip has been calculated by adding the areas
(in mm?) of the three main data structures presented in
the chip. The normalized network traffic corresponds to
the average number of flits transmitted by each switch
in the whole system for the six benchmarks evaluated

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT
TABLE 4
Size of the different EMC? chips for 32-die systems (8 nests).
Structure | Entries | Assoc En(ttr)yift:)lze (:7:1:;)
ETT 128 1 540 0.64
MST 32 1 607 023
[EMC2-Base	EHTA	IM	16	tag+8 [2572
[EMC2-0XSX [EHTA	IM [16	tag+9 [2597		
EMC2-BitVector [EHTA	IM [16	tag+15 [3338		
1.0 .
EMC
0.95
EMC-OXSX

0.85

0.877 T T f I I |
25 26 27 28 29 30 31 32 33 34 35

Area required (mm2)

®
EMC-BitVector

Normalized network traffic
o
©

Fig. 14. Traffic-area trade-off for a 32-die system.

in this work, and normalized to EMC2-Base. We can
observe that, EMC?-OXSX reduces the traffic by 10.6%
compared to EMC?-Base, while EMC?-BitVector reduces
the traffic by 15%. Moreover, the area of EMC?-0OXSX is
very close to the area of EMC?-Base. Therefore, we can
conclude that EMC?-OXSX achieves a good compromise
between network traffic and area requirements. Note
that reductions in network traffic will lead to reductions
in power consumption.

6.5 HTA Coverage Ratio

As discussed in Section 4, the coverage ratio of the
HTA structure can become an scalability issue for large
systems when the worst-case scenario appears, i.e., when
cached blocks are not uniformly distributed among
memory controllers. In order to emphasize the negative
effect of the worst-case coverage ratio, we use different
simulation parameters for this study. Particularly, we
consider system comprised of two cores per die instead
of just one (to stress the caches more), four dies per
nest, and two nests (due to simulation time constraints).
Additionally, since the working set of the SPLASH-2
benchmarks is very small compared to the cache sizes,
we have halved the size of the caches (both data and
HTA). Since both caches are halved, both the typical and
the worst-case coverage ratio remain constant.

In order to achieve a better understanding of the
impact that the interleaving policy has on the cover-
age ratio, we have split the misses suffered by data
caches into a new 5C classification: the traditional 3C
classification (Cold misses, Capacity misses and Conflict
misses), Coherence misses, and Coverage misses. While
coherence misses are caused by previous invalidations or
loss of write permission due to requests issued by other
nodes, coverage misses are caused by prior invalidations
performed as a consequence of replacements in the HTA.

12

H3C
O Coherence
4 Coverage

1. NolInterleaving
2. HybridInterleaving

Normalized L3 cache misses
CO00000000=
O=_2NWARUOONOOO

=

N BN ©
o ?N\\l\ o ?@c\’@%\iﬂ,‘)\e" Ne@g

S
&
6’3“ 0‘\0

Fig. 15. Classification of cache misses for the no-interleaving
policy and the hybrid interleaving policy.

[l Nolnterleaving
O HybridInterleaving

o o N ® © o

Normalized execution time
© o © 0o o =

=

S
N\ &
2 R

W} W AN |
o N (e ?@6\05\

po

Fig. 16. Normalized execution time for the no-interleaving
policy and the hybrid interleaving policy.

As we can see in Figure 15, when no interleaving is
performed, the replacements in the HTA can cause up
to 50% of cache misses, as happens in Ocean, and 25%
on average. However, by using the hybrid interleaving
policy described in Section 4, a more uniform distri-
bution of memory blocks is achieved, thereby reducing
the percentage of coverage misses significantly (it only
represents a 3% of cache misses). We also can observe
that the total number of cache misses is reduced by 20%,
on average, which will impact positively on execution
time.

Figure 16 plots the reduction in execution time when
both the base interleaving policy and the hybrid inter-
leaving policy are employed. We can observe that the
execution time can be reduced up to 30% (as happens
for Ocean) and by 7.8% on average with the hybrid
interleaving policy.

6.6 EHTA Size Analysis

In this section, we analyze the size and associativity of
EHTA structure and its impact in execution time and
area requirements. The smaller the size of the EHTA is,
the more EHTA replacements take place. According to
our implementation, these replacements imply the inval-
idation of all the cached copies in the system of the block
whose EHTA entry is being evicted. These invalidations
can increase the cache miss rate, and consequently the
applications” execution time.

For this study, we employ the hybrid interleaving
scheme, which spreads the directory entries among the
HTAs within a nest, thus preventing them from being
the bottleneck in the simulations. Moreover, we employ
the simulation parameters described in Section 5. Again,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT
1.1024K = 3.256K 5.64K m3C 2 CoverageHTA

. 2512k 4128k 6.3k 16-ways DCoherencelCoverageEHTA
812

€ 10

(0]

S 8

8

S6

8 o4

©

E 2 ;—rrr! m—r-v—!'H

o

20

Barnes Cholesky FMM Ocean Radlosny Water Sp Average

Fig. 17. Normalized number of cache misses when the EHTA
size is reduced from 1024K entries to 32K entries.

3.4 ¥ 267
gor [XEme f2¢] | Tardn
£, i'g’\é'xn o 22_27 216 ways
S5 | Sfadony
%227 * 818
310 8 16
e %ol
2 1.3 2121
1.0 ¥ o] e
0.7 T

T T T T T T
1024K 512K 256K 128K 64K 32K
Number of EHTA entries

(b) Average

T T T T T
1024K 512K 256K 128K 64K 32K
Number of EHTA entries

(a) 16 ways

Fig. 18. Execution time when the EHTA size is reduced
from 1024K entries to 32K entries.

we focus on the EMC?-OXSX chip and on a 32-die
configuration.

First, in Figure 17 we plot the increase in the amount
of cache misses when the number of entries of the EHTA
is reduced from 1024K (representing the case where
there are no replacements) to 32K, and the associativity
does not vary (16 ways). For this study we split again
the cache misses according to a new 6C classification.
This classification is the same as the one described in
the previous section, but it divides the coverage misses
into CoverageHTA misses or CoverageEHTA misses, which
represent the misses that arise as a consequence of re-
placements in the HTA or in the EHTA, respectively. We
can observe that the number of EHTA misses increases
as the number of entries of the EHTA becomes smaller.
However, for all the applications except for Ocean, the
size of the EHTA can be reduced up to eight times
without significantly increasing the data cache miss rate.

Figure 18 shows impact on the execution time of
reducing the EHTA. In Figure 18(a) we do not modify
the associativity of the EHTA and therefore shows the
consequences in execution time of Figure 17. We can
see that Ocean is the most affected by the reduction
of the EHTA size while the other applications are not
affected up to reductions about eight times. Particularly,
Cholesky slightly improves its execution time when we
move from a 256K-entry configuration to a 128K-entry
configuration. This effect is due to premature invali-
dations, i.e., the probes generated as a consequence of
EHTA replacements invalidate cache blocks that are not
going to be used which lessens the load of the caches.

On the other hand, Figure 18(b) shows the average

13

TABLE 5
Size of the different EMC? chips with different EHTA
configurations for 32-die systems (8 nests).

EHTA | EHTA Total area requirements (mm?)
entries | assoc | EMC2-Base | EMC2?-OXSX | EMC?-BitVector
1024K 16 26.58 26.83 34.25
512K 16 13.76 13.88 17.61
256K 16 7.35 8.12 9.67
128K 16 4.64 4.68 5.28
64K 16 2.79 2.80 3.46
32K 16 1.88 1.89 2.25
512K 8 13.59 13.72 17.40
256K 8 7.27 7.33 9.54
128K 8 4.22 4.63 5.22
64K 8 2.74 2.76 3.20
32K 8 1.86 1.87 222
16K 8 1.40 141 1.54
256K 4 7.19 7.26 9.08
128K 4 4.18 421 5.17
64K 4 2.53 2.73 3.18
32K 4 1.86 1.86 2.02
16K 4 1.39 1.40 1.54
8K 4 1.10 1.10 1.16
2 397% 04-way
"é’ 3.07 $ +8-way
2.57 i{r! X 16-way
5207 Oz % X
S5 H- & 5 Z
. L X
N 0.5
g 0.0 I I I I I \

S 0 5 10 15 20 25 30
Area required (mmz2)

Fig. 19. Execution time-area trade-off varying the EHTA size.

execution time for the six applications considered in this
work, varying both the number of entries of the EHTA
and its associativity (from 16 to 4 ways). We can see
that a 4-way or a 8-way configuration behave similarly
to a 16-way configuration down to 64K entries. For
smaller sizes the impact on execution time of reducing
the associativity is not admissible.

Finally, we show in Table 5 the area requirements of
each EMC? chip variant containing each EHTA configu-
ration and assuming 32 dies. To summarize the results
we plot a trade-off between execution time and area
requirements for the EMC?-OXSX chip and considering
32 dies in Figure 19. We can see that an EHTA structure
comprised by 128K entries and 4 ways obtains a good
trade-off between execution time and area requirements.

6.7

Finally, we study the impact of increasing the number of
tags in the MST by employing the identifiers of the three
unused dies in the nest. In particular, Figure 20 presents
the improvements in terms of execution time when the
number of tags in the MST is multiplied by four (i.e., the
EMC? chip uses a 128-tag MST instead of a 32-tag MST).

Impact of Providing More MST Tags

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

1.047

2
N

o
o
\
\
R
Vo
L b

Normalized execution time

098 x”
0.967]
=z —| | »Barnes %Ocean _| | ¢4 ways
0.88 T Cholesky <>Radiosity 0.94 18 ways
0.86 | &FMM V' Water-Sp 7+16 ways

0.9; T T T T T T
1024K 512K 256K 128K 64K 32K

Number of EHTA entries

(b) Average

T T T T T T
1024K 512K 256K 128K 64K 32K
Number of EHTA entries

(a) 16 ways

Fig. 20. Improvements in execution time by increasing
the number of tags available in the MST up to 128 tags.
Results are normalized with respect to 32 tags.

Again, we assume a system with 32 dies, 8 nests, and 8
EMC? chips. Since the occupation of tags depends on
the number of EHTA replacements, several EHTA sizes
have been considered in this study.

Figure 20(a) shows the variations for the six bench-
marks evaluated and a 16-way EHTA. For some appli-
cations the execution time is improved by up to 9% de-
pending on the configuration. Additionally, in Ocean the
higher improvements are obtained for smaller EHTAs.
This partially compensates the slow downs shown in the
previous section for this application.

On the other hand, Figure 20(b) shows the average of
the six applications varying the associativity. As we can
observe, the trend is to obtain better improvements for
smaller EHTA configurations, because they will suffer
more evictions. These improvements can reach up to 7%
for an EHTA with 32K entries.

7 CONCLUSIONS

In this paper, we have extended, by means of an external
logic (the EMC? chip), the coherence domain of the
AMD Magny-Cours processors beyond the 8-die limit
imposed by both the cHT specification and the size of
the owner field of the HTA. The proposed chip not
only maintains the HTA capability to filter the coherence
traffic over the entire system, but also filters additional
traffic, providing the scalability required to build large-
scale servers. Evaluation results for a 32-node system
show how the runtime of the applications scales with
the number of nodes, reducing the application runtime
by 47% on average when compared to the 8-die Magny-
Cours system.

We have analyzed three EMC? chip variants which
provide different tradeoffs between filtered network traf-
fic and required silicon area. Particularly in a 32-die sys-
tem, EMC?-OXSX achieves a good compromise between
network traffic (10.6% of traffic reduction compared to
EMC?-Base) and reducing area requirements (22.2% of
area reduction compared to EMC?-BitVector).

In addition, we have also addressed two potential
scalability problems that could degrade the performance

14

of large systems. Firstly, the HTA coverage ratio problem
can be palliated by using a hybrid interleaving policy,
reducing execution time by 7.8%. Secondly, taking ad-
vantage of the unused die identifiers to allow the EMC?
chip to manage more external transactions simultane-
ously can reduce the execution time by 7% on average.

REFERENCES

[1] J. M. Owen, M. D. Hummel, D. R. Meyer, and J. B. Keller,
“System and method of maintaining coherency in a distributed
communication system,” U.S. Patent 7069361, Jun. 2006.

[2] Intel, “An introduction to the Intel QuickPath interconnect,”
whitepaper, Jan. 2009. [Online]. Available: http://www.intel.
com/technology/quickpath/introduction.pdf

[38] InfiniBand Architecture specification release 1.2, InfiniBand Trade
Association™, Oct. 2004. [Online]. Available: http://www.
InfiniBandta.com

[4] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes, “Cache hierarchy and memory subsystem of the AMD
opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16-29, Apr. 2010.

[5] P. Conway, “Computer system with integrated directory and
processor cache,” U.S. Patent 6868485, Mar. 2005.

[6] SGI, “Technical advances in the SGI Altix UV architecture,”
whitepaper, 2009. [Online]. Available: http://www.sgi.com/

pdfs/4192.pdf
[7] 3Leaf Systems, “Next generation hybrid sys-
tems for HPC,” whitepaper, 2009. [Online]. Avail-

able: http://www.3leafsystems.com/download/3leaf_wt_paper_
Next_Gen_Hybrid_Sys%tems_for_HPC.pdf

[8] J. Duato, E Silla, S. Yalamanchili, B. Holden, P. Miranda, J. Un-
derhill, M. Cavalli, and U. Briining, “Extending HyperTransport
protocol for improved scalability,” in 1st Int'l Workshop on Hyper-
Transport Research and Applications (WHTRA), Feb. 2009, pp. 46-53.

[9] A. Ros, B. Cuesta, R. Ferndndez-Pascual, M. E. Goémez, M. E.
Acacio, A. Robles, J. M. Garcia, and J. Duato, “EMC2: Extend-
ing magny-cours coherence for large-scale servers,” in 17th Int’l
Conference on High Performance Computing (HiPC), Dec. 2010, pp.
1-11.

[10] R. Kota and R. Oehler, “Horus: Large-scale symmetric multipro-
cessing for opteron systems,” IEEE Micro, vol. 25, no. 2, pp. 30-40,
Mar. 2005.

[11] J. Laudon and D. Lenoski, “The SGI Origin: A cc-NUMA highly
scalable server,” in 24th Int'l Symp. on Computer Architecture
(ISCA), Jun. 1997, pp. 241-251.

[12] J. Brooks, C. Grassl, and S. Scott, “Performance of the CRAY T3E
multiprocessor,” in 1997 ACM/IEEE Conference on Supercomputing
(5C), Nov. 1997, pp. 1-17.

[13] A. Agarwal, R. Simoni, J. L. Hennessy, and M. A. Horowitz, “An
evaluation of directory schemes for cache coherence,” in 15th Int’l
Symp. on Computer Architecture (ISCA), May 1988, pp. 280-289.

[14] P. Sweazey and A. J. Smith, “A class of compatible cache consis-
tency protocols and their support by the IEEE futurebus,” in 13th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1986, pp. 414-423.

[15] P. S. Magnusson, M. Christensson, and J. Eskilson, et al, “Simics:
A full system simulation platform,” IEEE Computer, vol. 35, no. 2,
pp- 50-58, Feb. 2002.

[16] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al, “Multi-
facet’s general execution-driven multiprocessor simulator (GEMS)
toolset,” Computer Architecture News, vol. 33, no. 4, pp. 92-99, Sep.
2005.

[17] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,”
in IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2009, pp. 33-42.

[18] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“Cacti 5.1,” HP Labs, Tech. Rep. HPL-2008-20, Apr. 2008.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in 22nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 1995, pp. 24-36.

[20] A. R. Alameldeen and D. A. Wood, “Variability in architectural
simulations of multi-threaded workloads,” in 9th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2003, pp. 7-
18.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS

DRAFT

Alberto Ros received the MS and PhD degree
in computer science from the Universidad de
Murcia, Spain, in 2004 and 2009, respectively.
In 2005, he joined the Computer Engineering
Department at the same university as a PhD
student with a fellowship from the Spanish gov-
ernment. Since 2009, he has been working as
a researcher at the Parallel Architecture Group
(GAP) of the Universitat Politecnica de Valéncia.
He is working on designing and evaluating
scalable cache coherence protocols for shared-
memory multiprocessors. His research interests include cache coher-
ence protocols, memory hierarchy designs, and scalable multiprocessor
architectures.

Blas Cuesta received the MS degree in Com-
puter Science from the Universitat Politecnica
de Valéncia, Spain, in 2002. In 2005, he joined
the Parallel Architecture Group (GAP) in the De-
partment of Computer Engineering at the same
university as a PhD student with a fellowship
from the Spanish government, receiving the PhD
degree in computer science in 2009. He is
working on designing and evaluating scalable
coherence protocols for shared-memory multi-
processors. His research interests include cache
coherence protocols, memory hierarchy designs, scalable cc-NUMA and
chip multiprocessor architectures, and interconnection networks.

Ricardo Fernandez-Pascual received his MS
and PhD degrees in computer science from the
Universidad de Murcia, Spain, in 2004 and 2009,
respectively. In 2004, he joined the Computer
Engineering Department as a PhD student with
a fellowship from the regional government. Since
2006, he is an assistant professor in the Univer-
sidad de Murcia. His research interests include
general computer architecture, fault tolerance,
chip multiprocessors and performance simula-
tion.

Maria E. Gémez obtained her MS and PhD
degrees in Computer Science from the Univer-
sitat Politecnica de Valéncia, Spain, in 1996 and
2000, respectively. She joined the Department
of Computer Engineering (DISCA) at Universitat
Politécnica de Valéncia in 1996 where she is
currently an Associate Professor of Computer
Architecture and Technology. Her research inter-
ests are in the field of interconnection networks,
networks-on-chips and cache coherence proto-
cols.

15

Manuel E. Acacio is an Associate Professor
of computer architecture and technology at the
University of Murcia, Spain. He joined the Com-
puter Engineering Department (DITEC) in 1998,
after he received the MS degree in computer
science. Dr. Acacio started as a Teaching As-
sistant, at the time he began his work on his
PhD thesis, which he successfully defended in
March 2003. Before, in the summer of 2002, Dr.
Acacio worked as a summer intern at IBM TJ
Watson, Yorktown Heights (NY). After that, he
became an Assistant Professor in 2004, and subsequently, an Associate
Professorin 2008. Currently, Dr. Acacio leads the Computer Architecture
& Parallel Systems (CAPS) research group at the University of Murcia,
which is part of the ACCA group. He has published several papers
in top conferences such as HPCA, IPDPS, ICS, DSN, PACT or SC,
and renown journals such as IEEE TPDS and IEEE TC. As well, he
has served as a committee member of important conferences, ICPP
and IPDPS among others. His research interests are focused on the
architecture of multiprocessor systems. More specifically, Dr. Acacio is
actively working on prediction and speculation in multiprocessor mem-
ory systems, synchronization in CMPs, power-aware cache-coherence
protocols for CMPs, fault tolerance, and hardware transactional memory
systems. He is a member of the IEEE.

Antonio Robles received the MS degree in
physics (electricity and electronics) from the
Universitat de Valéncia, Spain, in 1984 and
the PhD degree in computer engineering from
the Universitat Politécnica de Valéncia in 1995.
He is currently a full professor in the Depart-
ment of Computer Engineering at the Universitat
Politecnica de Valéncia, Spain. He has taught
several courses on computer organization and
architecture. His research interests include high-
performance interconnection networks for mul-
tiprocessor systems and clusters and scalable cache coherence pro-
tocols for SMP and CMP. He has published more than 70 refereed
conference and journal papers. He has served on program committees
for several major conferences. He is a member of the IEEE Computer
Society.

José M. Garcia received a MS degree in Electri-
cal Engineering and a PhD degree in Computer
Engineering both from the Technical University
of Valencia in 1987 and 1991 respectively. He
is professor of Computer Architecture at the
Department of Computer Engineering, and also
Head of the Parallel Computer Architecture Re-

r search Group. Prof. Garca is currently serving
as Dean of the School of Computer Science at
the University of Murcia (Spain).

He has developed several courses on Com-
puter Structure, Peripheral Devices, Computer Architecture, Parallel
Computer Architecture and Multicomputer Design. He specializes in
computer architecture, parallel processing and interconnection net-
works. His current research interests lie in high-performance power-
efficiency coherence protocols for Chip Multiprocessors (CMPs) and
shared-memory multiprocessor systems, high-speed interconnection
networks, and the use of GPUs for general-purpose applications such
as bioinformatics and biomedical apps. He has published more than 150
refereed papers in different journals and conferences in these fields.

Prof. Garca is member of HIPEAC, the European Network of Excel-
lence on High Performance and Embedded Architecture and Compila-
tion. He is also member of several international associations such as the
IEEE and ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON COMPUTERS

DRAFT 16

José Duato received the MS and PhD degrees
/ in electrical engineering from the Universitat
\ Politécnica de Valéncia, Spain, in 1981 and

f 1985, respectively. He is currently a professor
.’ in the Department of Computer Engineering

b)' at the Universitat Politécnica de Valéncia. He
e i was an adjunct professor in the Department

) of Computer and Information Science at The
Ohio State University, Columbus. His research

i interests include interconnection networks and

multiprocessor architectures. He has published
more than 380 refereed papers. He proposed a powerful theory of
deadlock-free adaptive routing for wormhole networks. Versions of this
theory have been used in the design of the routing algorithms for
the MIT Reliable Router, the Cray T3E supercomputer, the internal
router of the Alpha 21364 microprocessor, and the IBM BlueGene/L
supercomputer. He is the first author of the Interconnection Networks:
An Engineering Approach (Morgan Kaufmann, 2002). He was a mem-
ber of the editorial boards of the IEEE Transactions on Parallel and
Distributed Systems, the IEEE Transactions on Computers, and the
IEEE Computer Architecture Letters. He was a cochair, member of the
steering committee, vice chair, or member of the program committee in
more than 55 conferences, including the most prestigious conferences
in his area of interest: HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS,
EuroPar, and HiPC. He has been awarded with the National Research
Prize Julio Rey Pastor 2009, in the area of Mathematics and Information
and Communications Technology and the Rei Jaume I Award on New
Technologies 2006.

