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Abstract

Recently, virtualization has become a hot topic in com-
puter architecture research. The cost reduction and man-
agement simplification brought by server consolidation are
good reasons why virtualization has become so popular. But
there is a lack of tools for researchers to seek new propos-
als of architectures that improve the performance of virtu-
alized systems. To fill this niche we have developed Virtual-
GEMS, a multiprocessor simulator that allows us to simu-
late the behavior of a virtualized system and research new
architectures suitable for virtualization. For testing Virtual-
GEMS, we describe and evaluate some configurations for
the shared L2 cache of a 16-core CMP running 4 virtual
machines.

Our main contribution is the ease of configuration of sim-
ulations of virtualized workloads. Virtual-GEMS uses ordi-
nary system checkpoints as virtual machines. This way, it
avoids the need to create complex checkpoints including the
hypervisor and the images of the virtual machines to simu-
late.

1 Introduction

Nowadays, full system virtualization is receiving renewed
interest after years of relatively little activity. One of
the main reasons is its application to server consolidation,
which is the most important use of virtualization today.

If only one application is being run in a big server, then
it is probably underutilized because most applications usu-
ally do not have enough parallelism to use all the processors
or do not require all the available resources. Additionally,
without server consolidation, a typical data center is made
up of several small servers for executing different services,
making the management more complex and expensive.

The solution to this is server consolidation, achieved
through virtualization. In short, consolidation brings several
servers into a single big server (Figure 1). This cuts man-
agement costs, as the number of machines to manage and
maintain gets reduced. In contrast to executing every appli-
cation on the same operating system instance, using a VM

Figure 1: Server Consolidation.With Server consolidation
several servers are brought inside a single (more powerful)
server, reducing costs and simplifying management.

(Virtual Machine) for each service provides more flexibility
(for example, the ability to use different operating systems
for different applications) and more security, isolating each
application from the others.

Simulation is used in computer architecture research to
validate and evaluate new proposals. For example, simula-
tion can be used to determine which is the best branch pre-
diction scheme or to test new coherence protocols. It would
be logical to use simulators for also determining which ar-
chitectures or architecture parameters are best for a virtual-
ized system. However, the simulators available do not pro-
vide adequate mechanisms for researching in this field in an
easy way.

In this paper we present Virtual-GEMS, a simulation in-
frastructure that actually provides the ability to simulate vir-
tual machines. Virtual-GEMS is based on Simics [10] and
GEMS [11] simulators, and it provides full-system virtu-
alization, i.e., each virtual machine runs its own operating
system instance.

The rest of the paper is organized as follows. In the next
section we give some background about virtualization and



simulation. Section 3 explains the process of developing
Virtual-GEMS and the structure of the simulator. In section
4 we describe the tests performed to show the use of the
simulator and its usefulness for researching architectures
targeted to the use of virtualization. Section 5 briefly de-
scribes the features of Virtual-GEMS. Finally, in sections6,
7 and 8 we present some related work, proposals of future
work and our conclusions, respectively.

2 Background

2.1 Virtualization

Virtualization was first introduced by IBM [5] in the 1960s
in the experimental M44/44X. The IBM M44/44X simu-
lated multiple IBM 7044 machines. Later, the IBM CP-40
operating system extended virtualization bringing the full
virtualization concept, being able to create up to fourteen
virtual S/360 environments in a unique and modified IBM
S/360-40 machine.

Virtualization is a commonly used technology that pro-
vides the following advantages:

• Executing several operating system instances on the
same physical machine. The different instances can be
of the same or different OSes.

• Giving users or user groups the impression that they
have a different machine each, although in fact there is
only one real machine.

• Executing several applications in different virtual ma-
chines so they do not interfere with each other.

• Executing in a target architecture some software com-
piled for another architecture.

Virtualization provides flexibility for using the available
resources thanks to removing barriers imposed by incom-
patible interfaces (such as different OSes or ISAs).

2.2 Simulation

Simulation in the computer architecture research field con-
sists of reproducing the behavior of one machine by means
of a computer program that imitates the characteristics of
the machine under study. This simulation can include as-
pects from the simulated machine like functionality, energy
consumption or timing, depending on what we are inter-
ested in measuring.

In computer architecture research, simulation provides a
number of very interesting advantages. It allows the evalu-
ation of the effect of various architectural parameters with-
out needing to actually build the real machine but by setting
these parameters in the simulation software. This makes
possible to perform an extensive exploration of the design

space. Simulation can also provide more diverse statistics
than those that can be obtained from the real hardware, and
these statistics can be extracted in an easier way than using
real machines for measuring.

Additionally, simulation enables a very high degree of au-
tomatization, allowing the execution of many parallel simu-
lations.

Unfortunately, simulation has some problems. The main
problem is the need to trade between speed and accuracy.

Speed: A typical simulator can be several orders of magni-
tude slower than a real machine, hence the applications
and number of simulations that can be run in it are lim-
ited. If we want to boost speed of simulations, we need
a more simple and less detailed simulator, and the re-
sults become less faithful to the real machine.

Accuracy: It is difficult to faithfully recreate the behav-
ior of a real machine. Additionally, as the simulator
becomes more accurate and complex, it also becomes
slower.

There are lots of different simulators, with different ap-
proaches and scopes. For example, SimpleScalar [2] is a
superscalar single-processor simulator, whereas RSIM [8]
simulates a multiprocessor machine. While these simula-
tors measure the performance of the processor, other sim-
ulators, like Wattch [3], focus on the energy consumption.
All these simulators directly execute the workloads (e.g. the
SPLASH-2 benchmark suite) on the simulated machine.

On the other hand, GEMS [11] is a multiprocessor simu-
lator developed by the Multifacet Project from the Univer-
sity of Wisconsin-Madison. It is based upon Simics, a full
system simulator released in 2002 and developed by Vir-
tutech.

Simics [10] is a simulator accurate enough to execute
unmodified operating systems and even device drivers. It
focuses on functional simulation, and can be expanded in
many ways by building modules that give it new features.

GEMS extends Simics so that it can, among other things,
simulate the timing of a detailed and configurable memory
system. For that purpose, GEMS implements several Simics
modules. One of them, Ruby, is the responsible for simulat-
ing the memory system.

This modular simulation infrastructure decouples func-
tional simulation (driven in Simics) and timing simulation
(driven in GEMS).

Another important feature when simulating with GEMS
and Simics is that checkpoints are used. A checkpoint is
a snapshot of the system state taken right at the moment in
which performance measures start to be taken, so the check-
point can be used as many times as necessary to perform
simulations.



Figure 2: Evolution from simulating a single real machine
to simulating a virtualized system.

3 Virtual-GEMS

Virtual-GEMS intends to simulate several virtual machines.
It is based on Simics and GEMS simulators as its basic con-
structing blocks. Virtual-GEMS simulates each virtual ma-
chine by means of a Simics instance (only functional simu-
lation), each one with its own OS and workload. But in or-
der to get a single view of the whole server, a single GEMS
instance is used to simulate the timing of all virtual ma-
chines. To do that, we first decouple Simics and GEMS,
and then we develop a mechanism to connect several Sim-
ics instances (i.e. virtual machines) to the same GEMS tim-
ing simulation (see Figure 2). This way, we approximate
the behavior of a virtualized system. We do not simulate
any software virtualization layer, instead, in the currentim-
plementation, we assume that every virtualization issue is
managed in hardware. The design of Virtual-GEMS allows
us to implement the functionality of the hypervisor as part
of the simulator.

The first decision is to choose the more adequate virtu-
alization scheme. Virtualization software could be executed
directly inside the simulation. If in-simulation virtualization
software were used, to create a checkpoint we would have
to include the virtual machine images inside the new check-
point. And these virtual machine images are in turn check-
points of the workloads to be simulated. Modifying any
workload or any virtualization software parameter would re-
quire to build a new checkpoint, and creating such a com-
plex checkpoint is a time demanding task.

The other approach is to implement virtualization in the
simulator itself, allowing the direct use of the workload
checkpoints already used for simulations that do not involve
virtualization. This way, changing the workloads to use in
each virtual machine or changing the virtualization parame-
ters (which would be set in the simulator) would not require
the creation of new checkpoints. The differences between
both approaches can be seen in Figure 3. We have followed
the later approach in our case.

Figure 3: Virtualization Schemes.With in-simulation virtu-
alization software very complex checkpoints must be used
(a), while with virtualization inside the simulator the al-
ready available checkpoints of the workloads can be used
as VMs (b).

This is the main contribution of our simulation infrastruc-
ture. We avoid the need to create a large number of com-
plex checkpoints to perform simulations. We also provide a
simple hypervisor inside our infrastructure. In order to in-
clude new virtualization features, this in-simulator hypervi-
sor is easier to expand than in-simulation virtualization soft-
ware. The latter would also require to create new complex
checkpoints everytime the virtualization software is modi-
fied, whereas our hypervisor can be freely modified and the
original checkpoints can still be used.

3.1 Modifying the Simics-GEMS communication

The Simics simulator provides interfaces to be extended.
Users can use these interfaces to extend some missing func-
tionality in the simulator. For example, the memory access
timing can be developed in a timing-model interface.

Processors modelled by Simics are simple in-order non-
pipelined processors which block at every memory access.
GEMS provides a more detailed out-of-order processor sim-
ulator in a module called Opal. Due to the core simplifica-
tion that seems to be the trend nowadays in many-core CMP
designs (mainly due to power consumption and heat con-
straints), we use the Simics simple model in our infrastruc-
ture instead of the out-of-order model simulated by Opal.

The most important element in GEMS is the Ruby mod-
ule, which is responsible for simulating the memory system.

The interface between Simics and Ruby is another mod-
ule that we call SimicsRuby, which passes and preprocesses
the memory requests from Simics to Ruby and returns to
Simics the information about completed requests.

The structure of a simulation with Simics and GEMS can
be seen in Figure 4.



Figure 4: Simics/GEMS structure.Simics performs the
functional simulation, while GEMS performs the timing
simulation.

The module implementing the timing-module interface
(SimicsRuby) receives all the information of each memory
request as these are performed by the processors simulated
by Simics. This module returns the number of cycles that
the requesting processor will stall until the access is com-
pleted. The information concerning the memory access that
is passed through the timing-module interface includes the
memory address, the kind of access (read, write), and other
necessary information.

The synchronization between Simics and Ruby is an im-
portant aspect. Memory requests do not carry any infor-
mation about the cycle in which they are performed. Thus,
some additional mechanism is needed to carry out this syn-
chronization.

To do that, a Simics API function is used for registering a
callback in Simics. This function is called each time a fixed
number of cycles passes. When the callback is executed, the
events in Ruby corresponding to that cycle are executed too.

Unfortunately, when a memory request is issued, we can-
not predict how many cycles it will take to complete. In-
stead, the actual implementation blocks the requesting pro-
cessor for a huge number of cycles, such as to be sure that
the request will be completed before that processor wakes
up. As the simulation advances, the events in Ruby keep ex-
ecuting each cycle, and eventually the memory access that
blocked the processor will be completed. Then, Ruby will
unblock the requesting processor (through SimicsRuby) so
it can continue its execution. This way, the requesting Sim-
ics processor stays blocked from the moment it sends the
request until the time the request is satisfied. This mech-
anism feeds back the timing information to the functional
simulator.

As an intermediate step in the construction of Virtual-
GEMS we have divided the SimicsRuby module to decou-
ple Simics and Ruby. Two new modules have been de-
veloped. The first one is the module called mi-device,
which implements the timing-model interface and receives
the Simics memory requests. All the Simics dependent code
has been put into this module (e.g. all the calls needed to
perform the synchronization).

Figure 5: Decoupled Simics-GEMS structure.The previ-
ous SimicsRuby module gets divided into mi-device and Re-
moteRuby modules.

The second module is referred to as RemoteRuby, and
contains all the calls to Ruby elements. It communicates
through a pipe with mi-device using a new and very simple
interface which is used to send all the information concern-
ing memory accesses and synchronization.

This way, we move from a single process executing Sim-
ics and GEMS to two different processes: one for Simics
and other for GEMS, communicating through FIFO pipes.
The resulting structure can be seen in Figure 5.

3.2 Virtualization in Virtual-GEMS

First of all, we need to remind that our focus is on full-
system virtualization. Each virtual machine runs its own
operating system instance.

The virtualization process has to handle three main el-
ements: processors, memory, and I/O devices. In our
scheme, processors are physically partitioned so each vir-
tual machine runs in a subset of the processors of the real
machine. I/O buses are also physically partitioned, so each
VM has its own set of disks and other devices. Memory
is logically partitioned. The information of different VMs
is interleaved in memory with a memory page granularity.
This scheme is depicted in Figure 6.

Virtual memory is a key point to be properly handled in
the virtualization context. Broadly speaking, virtual mem-
ory is supported by a page table for each process that maps
the virtual memory addresseshandled by each process to
real memory addresseswhich can be found in memory or in
swap space in the disk. This page table is usually handled
by the OS.

In the virtualization environment, an extra level of page
tables is needed. This extra level of page tables is managed
by the hypervisor, and contains a page table for each VM.
This page table maps thereal memory addressesaccessed
by a VM to physical memory addressesin the physical ma-
chine. This is an approach similar to the one taken in Cellu-
lar Disco [6].

To build this virtualization scheme, Virtual-GEMS uses
different Simics instances as VMs (see Figure 2). Each
Simics instance is a different process, simulating a complete



Figure 6: Virtualization Scheme.Physically partitioned
processors. Page level memory virtualization. Physically
partitioned I/O.

virtual machine in a functional manner, with its own proces-
sors and I/O devices. On the other hand, a specific subset
of the processors simulated by Ruby corresponds to each
VM. Therefore, we need to do a mapping between Simics
processors and Ruby processors. We also need to map real
memory pages from each VM to physical pages in the real
machine using the new page table level mentioned before.
All these virtualization issues (which would be handled by
the hypervisor in a real system) are implemented in the Re-
moteRuby module which also controls all the concurrency
and synchronization issues between VMs. Figure 7 shows
the final structure of Virtual-GEMS.

3.3 Synchronization and parallelism

We force the execution of all the Simics instances to ad-
vance steadily. To do that, every mi-device module attached
to a Simics process sends a trigger-event message to Re-
moteRuby every fixed number of Simics cycles, and then
stops and waits for confirmation from RemoteRuby. Once
RemoteRuby has received the trigger-event messages from
every mi-device module, the virtual machines are synchro-
nized. Then, RemoteRuby executes the events correspond-
ing to that cycle and then sends the confirmation messages
to the mi-device modules. The Simics instances can now
continue the functional simulation of the virtual machines.
With this process, the execution of every virtual machine
advances one Ruby cycle. The equivalence between Sim-
ics cycles and Ruby cycles is customizable and it is used
to poorly approximate an N-way superscalar processor by
using the Simics simple processors, where N is the value of
the cycle multiplier. Therefore, all the memory requests per-
formed by the Simics instances between two RemoteRuby

Figure 7: Structure of Virtual-GEMS.Each VM is sup-
ported by a Simics instance. The timing simulation of the
whole system is performed in GEMS. RemoteRuby manages
all the virtualization issues.

confirmation messages are considered to be issued in the
same Ruby cycle. This process is the same as the one per-
formed in the original GEMS, but it now involves several
Simics instances instead of a single one. Thanks to the
trigger-event and confirmation messages, the synchroniza-
tion and advance of all virtual machines does not introduce
any loss of accuracy into the simulation.

In contrast to the original GEMS, where the whole sim-
ulation was performed in a single thread, Virtual-GEMS
shows some level of parallelism. The functional simulation
of each VM is performed in a separate Simics process, al-
lowing each VM simulation to execute in a different core of
our simulation servers. Unfortunately, the heaviest part of
the simulation corresponds with the timing simulation per-
formed by Ruby, which is single threaded.

Therefore, Virtual-GEMS can speed up the simulation
when executed in a multicore server, i.e., allowing several
parallel simulations of few-core VMs instead of one single
simulation of a many-core full system. On the other hand,
the communication between processes introduces an impor-
tant overhead, reducing the benefits of the parallelization.

4 Testing the simulator

Once the structure of the simulator has been shown, in this
section Virtual-GEMS is used to evaluate the best L2 config-
uration for a multicore architecture in which virtualization
is used. The main purpose of this evaluation is to test the
simulator and check the sanity of the results.



4.1 Simulated Architectures

Virtual-GEMS allows the simulation of a wide range of ma-
chine configurations. Almost all parameters that it models
can be specified, such as the interconnection network or the
memory coherence protocol (and even new protocols can be
developed with the SLICC language provided with GEMS).

Our base architecture is a tiled-CMP [16] with 16 tiles.
Each tile has a processor, a private L1 cache, and a bank of
the shared L2 cache. Since the L2 is shared, cache coher-
ence must also be kept at L1 level.

On top of this base architecture, we set up four virtual ma-
chines, with four tiles each. We evaluate two different con-
figurations that we derive from our base architecture, and
we call themFully Shared L2andPartially Shared L2. In
theFully Shared L2, all the L2 banks are shared among all
the cores in the chip, regardless of which virtual machine
they belong to. In thePartially Shared L2, the L2 banks are
only shared by the tiles of a specific virtual machine. There-
fore, L2 banks are not shared among VMs but they are pri-
vate to each VM. The simulated architectures are shown in
Figure 8.

The placement of data lines in L2 cache banks is deter-
mined by a subset of the bits of the physical address. In the
case ofTotally Shared L2these bits choose the specific bank
among all the banks of the chip. On the other hand, forPar-
tially Shared L2, the bits choose the specific bank among
those private to the VM. In both cases, these bits are out of
the page offset part of the address, hence the hypervisor has
control over them when it performs the mapping from real
address on the VM to physical address.

We take advantage of this fact to try to place data as close
as possible to the cores that will use them. To do this, the hy-
pervisor chooses the physical address that will correspond
to each real address of each VM so that the memory lines of
that page will map to the desired L2 bank.

We have used three different real-to-physical address
mappings based on the proposals of Cho et al. [4]. The first
mapping is a simple arrival order assignment, which maps a
new real memory page from a VM to the next free physical
page. This approach, calledsimple mapping, does not con-
trol where the data is located in the chip (i.e. in which L2
cache bank), so we consider it as an almost random assign-
ment. The second one, called VMCBM (Virtual Machine
Cache Bank Mapping), maps all the real pages from one
VM to the L2 banks belonging to that VM, using a round-
robin order to choose the L2 bank inside the VM. The third
mapping is referred to as TCBM (Tile Cache Bank Map-
ping) or first-touch policy. It brings the data to the L2 bank
of the tile whose core first accessed the page. Hence, when
a memory page is first accessed, it is mapped to the L2 of
the core that accessed it.

For theFully Shared L2configuration we only use the
simple mapping policy, while for thePartially Shared L2

Figure 8: Simulated Architectures.The tiled CMP with
Fully Shared L2 (above) and the Virtual Machines place-
ment on it. The Partially Shared L2 configuration (below)
and VMs placement.

Name Architecture Real-to-Physical Address Mapping
config1 Fully Shared L2 simple mapping
config2 Partially Shared L2 simple mapping
config3 Partially Shared L2 VMCBM
config4 Partially Shared L2 TCBM

Table 1: Machine Configurations Tested.

configuration we use the three real-to-physical address map-
ping policies described before.

From now on, we refer to the four configurations used as
config1/2/3/4, as they can be seen in Table 1. The common
characteristics of the architecture can be seen in Table 2.

Finally, for the configurations tested, we use two differ-
ent memory coherence protocols, both based on a MOESI
state scheme. The first one is a two level directory based
protocol [12]. Upon an L1 miss, the directory located on
L2 is accessed to look for the information about the block
state, so the miss can be satisfied. This process is repeated
if the data is not found in L2 and the next level of the co-
herence protocol is used to find the block in memory. The
directory introduces one or even two levels of indirection on
a cache miss since it needs to access the directory in L2 and
maybe also the directory in memory. The second protocol is
a token-based one [13]. It uses a set of simple token count-
ing rules that ensure cache coherence. Each memory block
has a set of tokens associated to it. For reading a block, a
tile needs to hold at least one token associated to that block.
For writting, all tokens associated to that block are needed.
When an L1 miss occurs, the core looks for tokens by send-
ing a broadcast to all the cores so that the nearest one who
possesses tokens can send some tokens back. This removes



Processors 16 UltraSPARC-III+ 4-ways, in-order. 2
GHz

L1 Cache Split I&D. Size: 128KB. Associativity: 4-
ways. 64 bytes/block. Access latency: 2 cy-
cles.

L2 Cache Size: 1MB eachslice. 16MB total. Associa-
tivity: 4-ways. 64 bytes/block. Data array
access latency 15 cycles.

TLB 64 entries, totally associative
RAM 4 GB DRAM. 1 memory controller for each

chip. Memory latency 160 cycles + on-chip
latency

Interconnection Bidimensional mesh 4x4. 64 bytes links. 8
latency cycles by link.

Table 2: Common target architecture characteristics.

Workload Description Size Simulation

apache4x4p Web server with
static contents.
Surge as workload
generator

3000 transac-
tions per VM

Four 4-processor
Apache VMs

jbb4x4p Java server 5000 transac-
tions per VM

Four 4-processor
JBB VMs

unstructured4x4p Fluid dynamics ap-
plication

Mesh.2K, 5
time steps

Four 4-processor
Unstructured
VMs

barnes4x4p Simulation of grav-
itational forces

8192 particles Four 4-processor
Barnes VMs

commercial Mix of commercial
workloads

See Apache &
JBB sizes

Two 4-processor
Apache VMs,
Two 4-processor
JBB VMs

scientific Mix of scientific
workloads

See Un-
structured &
Barnes sizes

Two 4-processor
Unstructured
VMs, Two 4-
processor Barnes
VMs

Table 3: Workload configurations tested.

the level of indirection imposed by the directory but requires
more interconnection network bandwidth.

4.2 Workloads

We use a mix of commercial and scientific workloads for
testing Virtual-GEMS. We use two commercial workloads:
the Apache web server with static contents, and the JBB
Java server workload. For the scientific workloads we use
one of the SPLASH-2 suite benchmarks [17] called Barnes,
which simulates gravitational forces, and another scientific
benchmark called Unstructured, which is a computational
fluid dynamics application that uses an unstructured mesh to
model a physical structure, such an airplane wing or body.
The details of these workloads can be found in Table 3.

4.3 Methodology

In the virtual machine environment, with a chip running four
different VMs, we need to define a metric for measuring the
performance of the full system. One alternative is to run the
simulation for a fixed amount of time, and then count the
transactions (i.e. units of work) completed by the workload

in each VM to measure the performance. But this approach
has several problems, as the execution of scientific work-
loads (Barnes and Unstructured) cannot be easily split in
transactions. Moreover, since a transaction is a unit of work
which depends on the particular benchmark, counting trans-
actions for a workload made of a mix of different bench-
marks is not straightforward. At least, we would need to
weight transactions from different benchmarks differently
(for example, a transaction of Unstructured would be equiv-
alent to several hundreds of transactions of Apache).

Hence, we have decided to fix the amount of work that
each workload performs for the different evaluated configu-
rations. In this way, however, each VM of a simulation can
finish its execution at a different time than the others, and
this poses the problem that the simulation becomes less sig-
nificant as the number of running VMs decreases because
the interactions between VMs disappear. Hence, we have
balanced the size of the different workloads so that every
workload take approximately the same time to complete.
Despite this adjustment, the finishing times of the simu-
lated VMs do not exactly match, and as the parameters of
the simulated machines change and the performance of each
workload executed in the VMs improves (or worsen) this ef-
fect gets more noticeable. To account for this issue, we use
the average number of cycles elapsed by all the VMs in the
simulation to complete their workloads as the performance
metric regarding the whole system.

4.4 Results

We use config1 as the base configuration to compare the
rest of the configurations that have been proposed in this
work. Config1 is the base situation of a CMP architec-
ture with no special adaptation to virtualization or multipro-
gramming, while the rest of configurations try to improve
the performance of this one by using the real-to-physical
address mapping policies explained before. The results of
these evaluations are shown in Figures 9 and 10. These re-
sults may differ slightly from the actual performance of the
modeled systems because we do not account for the perfor-
mance overhead introduced by the hypervisor in the current
version of Virtual-GEMS.

As we can see in the graphs, config2 obtains a very good
performance, with an average speedup of 5.76% using the
directory-based protocol and 7.06% using the token-based
protocol. Config3 comes close with average speedups of
5.47% and 6.86% using directory and token based protocols
respectively. As we noted before, the difference between
these two configurations is that config2 physically divides
the L2 in four private caches, one for each VM, whereas
config3 makes this same division logically. The conse-
quence of this difference is that the physical division of con-
fig2 makes the memory blocks accessed by the VM map to
one of the four L2 banks of the VM’s private cache based
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Figure 9: Test results using the directory-based protocol.
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Figure 10: Test results using the token-based protocol.

on the block address, while the logical division of config3
allows us to map each new block accessed by the VM to the
next cache bank using a round robin policy among the L2
banks belonging to the VM, balancing better the amount of
data that each cache bank of the VM’s private L2 must hold.

Config4 also presents a good performance, with an av-
erage speedup of 5.41% using the directory-based protocol
and 7.3% using the token-based protocol. Config4 shows
the highest speedup in a single workload: Apache using to-
ken protocol, with a speedup of 12.86%. Config4 maps a
memory block to the L2 cache of the first core that accesses
it. This can cut the memory latency as the data gets closer
to the core that uses it. We are assuming that the core that
first touches a block will use it at least as much as any other
cores, but if it is not the case, or if the distribution of the data
is not balanced among all cores, then we can be overloading

some L2 banks and underusing the space in the rest of L2
banks.

The smallest performance improvement achieved by a
Partially Shared L2configuration, respecting theFully
Shared L2configuration, is 5.47% (config3 using the di-
rectory protocol), and the smallest improvement in a sin-
gle benchmark is 2.6% (config3 in Barnes using directory),
with the rest of the results showing better improvements. It
seems clear thatPartially Shared L2is a better choice for
these workloads thanFully Shared L2. Nevertheless, we are
not able to point out which one of the three mappings (sim-
ple, VMCBM or TCBM) used in combination withPartially
Shared L2performs best.

5 Simulator Features

Since it is built from Simics and GEMS, Virtual-GEMS al-
lows us to set up most of the characteristics from the simu-
lated machine in the same way than GEMS. It also provides
deterministic execution of consolidated workloads. Nev-
ertheless, different executions can be achieved feeding the
simulator with different random seeds in order to account
for the inherent non-determinism of parallel programs.

The assignment of cores to the VMs can be set up in the
configuration of Virtual-GEMS (with a single string), mak-
ing it possible to bound the virtual machine processors to
physical processors as desired.

The hypervisor, which is implemented in the Re-
moteRuby module (see Figure 7) can perform many tasks.
For example, we have previously shown that it carries on
the management of the second level of page tables allowing
different kinds of memory page mappings.

The hypervisor functions are easily expandable. Imple-
menting a mechanism for page sharing among virtual ma-
chines is pretty straightforward. Mechanisms for dynam-
ically reallocating the cores used by the virtual machines
can be easily implemented in the hypervisor too.

The checkpoints used in the simulations in Virtual-GEMS
are the same as in a normal Simics/GEMS simulation. We
can pick and mix these checkpoints as needed, regardless of
the specific configuration of each single workload (e.g. the
number of processors of each workload used in a simula-
tion).

In addition to the ability to bound virtual machines to
physical cores, Virtual-GEMS also provides the possibility
of bounding the L2 banks to virtual machines. Hence, if
we are using the VMCBM mapping described before, we
can set up the simulation to provide more L2 banks to the
virtual machines with larger working sets.

Mechanisms for measuring approximately the differ-
ent hypervisor overheads depending on the functions that
the hypervisor performs (e.g. shared pages detection-
mechanism overhead) can also be implemented in our in-
frastructure.



It is also possible to use a different functional simulator,
instead of Simics, along with GEMS, just implementing the
equivalent mi-device module (see Figure 5) for the simula-
tor that we want to use.

Virtual-GEMS is publicly available at
http://skywalker.inf.um.es/~toni/Virtual-GEMS/

6 Related Work

Research in the implications of server consolidation for
computer architecture has grown over the last years. Enright
et al. [9] showed that server consolidation raise interactions
across the consolidated workloads, which open new paths to
research. They demonstrated that workloads cannot be eval-
uated just in isolation when researching consolidated envi-
ronments. They also used a similar approach to ours to sim-
ulate virtual machines in a consolidated server. However,
our approach allows flexibility in the use of common work-
loads, in hypervisor-functionality development and also in
the configuration of the computer architecture and the hy-
pervisor, as shown in section 5.

Marty et al. [14] propose two new two-level coherence
protocols. These protocols actually provide a virtual cache
hierarchy adaptable to the virtual machines executing in the
consolidated server, achieving considerable performance
improvements in relation to traditional protocols. One im-
portant topic in that paper is that their protocols are well
suited for inter-VM page sharing. However, their tests do
not simulate this feature. In section 7 we consider the use of
Virtual-GEMS to check whether the use of inter-VM page
sharing can make the performance improvements achieved
by their protocols even higher than the ones achieved in the
memory-isolated VM environment.

In the work of Apparao et al. [1], an analytical perfor-
mance model for consolidated workloads is developed, in-
stead of using simulation. It takes into account three com-
ponents: core interference, cache interference and virtual-
ization overheads.

Finally, Hsu et al. [7] explore the cache design space
for CMPs by using traces instead of full system simulation.
Unfortunately, traces do not make it possible to consider the
timing interactions between the execution of the different
cores in the CMP.

7 Future Work

Among the future paths of research that are open, we con-
sider that some of the most interesting are the following:

• Implementing page sharing among virtual machines. It
will provide benefits in the cache usage, specially if the
virtual machines run the same OS. On the other hand,
the hypervisor introduces overhead since it has to run
a mechanism to detect shared pages (like calculating

some kind of hash function for each page and compar-
ing them, and in case the hashes are the same, then
comparing the full pages to check whether they are ac-
tually the same). This performance overhead can also
be approximated with Virtual-GEMS.

• Reproducing virtual hierarchies [14] actually using
page sharing among virtual machines. Also, it will be
interesting to test the use of mechanisms like provid-
ing more space in L2 to the virtual machines with the
largest working sets, by giving more L2 cache banks to
those virtual machines that need it. We can also test the
impact in performance of virtual machine reassigna-
tion to different cores (easily implementable in Virtual-
GEMS), or, with a little more work, even killing some
virtual machines and/or starting new ones in the middle
of the simulation.

• Developing profiling mechanisms in the hypervisor.
With live statistics about the execution we can dynam-
ically reassign the resources of the physical machine
to fit the needs of the virtual machines. This can pro-
vide support to check the potential for performance im-
provement of new ideas for dynamic reassignment.

8 Conclusions

Simulation is an important and extensively used tool in
the computer architecture research arena. Both execution-
driven and functional simulators are currently being used to
design, evaluate and refine the new multicore architectures.

Virtualization has become a hot topic nowadays, because
server consolidation is a good approach to reduce costs and
management time. However, there is a lack of simulators
usable for research in the virtualization field.

This paper introduces Virtual-GEMS, a new simulator
based on Simics and GEMS that allows us to simulate the
behaviour of a multicore architecture running several virtual
machines on it. Virtual-GEMS is based on virtualizing the
functional simulator (by creating several instantes of Sim-
ics, as many as the number of VMs), and doing the timing
simulation with a single instance of GEMS. We have de-
veloped new interfaces between Simics and GEMS, and we
have also discussed some issues on virtualization schemes.

The main contribution of our infrastructure is the ease
for using ordinary checkpoints as VMs, instead of needing
to build complex checkpoints including the hypervisor and
virtual machines. Also, the hypervisor included in our in-
frastructure can be expanded with new functionality without
having to create new checkpoints.

For testing the simulator, we have used Virtual-GEMS to
evaluate the best configuration of the shared L2 cache of
a 16-core CMP running 4 virtual machines, with different
workloads, two different coherence protocols and three dif-
ferent mapping policies for the memory blocks to L2 cache.



We consider that our simulator can help to improve the
new multicore architectures designed for being used for
server consolidation.
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