
A Low Overhead Fault Tolerant Coherence Protocol
for CMP Architectures

Ricardo Fernández-Pascual, José M. Garcı́a,
Manuel E. Acacio

Dpto. Ingenierı́a y Tecnologı́a de Computadores
Universidad de Murcia

SPAIN
{r.fernandez,jmgarcia,meacacio}@ditec.um.es

José Duato
Dpto. Informática de Sistemas y Computadores

Universidad Politécnica de Valencia
SPAIN

jduato@disca.upv.es

Abstract

It is widely accepted that transient failures will appear
more frequently in chips designed in the near future due to
several factors such as the increased integration scale. On
the other hand, chip-multiprocessors (CMP) that integrate
several processor cores in a single chip are nowadays the
best alternative to more efficient use of the increasing num-
ber of transistors that can be placed in a single die. Hence,
it is necessary to design new techniques to deal with these
faults to be able to build sufficiently reliable Chip Multi-
processors (CMPs). In this work, we present a coherence
protocol aimed at dealing with transient failures that affect
the interconnection network of a CMP, thus assuming that
the network is no longer reliable. In particular, our pro-
posal extends a token-based cache coherence protocol so
that no data can be lost and no deadlock can occur due
to any dropped message. Using GEMS full system simu-
lator, we compare our proposal against a similar protocol
without fault tolerance (TOKENCMP). We show that in ab-
sence of failures our proposal does not introduce overhead
in terms of increased execution time overTOKENCMP.
Additionally, our protocol can tolerate message loss rates
much higher than those likely to be found in the real world
without increasing execution time more than 15%.

1. Introduction

Chip Multiprocessors (CMPs) [4, 3] are currently ac-
cepted as the best way to take advantage of the increasing
number of transistors available in a single chip, since they
provide better performance without excessive power con-
sumption exploiting thread-level parallelism.

In many applications, high availability and reliability are
critical requirements. The use of CMPs in critical tasks

can be hindered by the increased rate of transient faults due
to the ever decreasing feature size and higher frequencies.
To enable more useful chip multiprocessors to be designed,
several fault tolerant techniques must be employed in their
construction.

Moreover, the reliability of electronic components is
never perfect. Electronic components are subject to sev-
eral types of failures due to a number of sources. Failures
can be either permanent, intermittent or transient. Perma-
nent failures require the replacement of the component and
are caused by electromigration among other causes. Inter-
mittent failures are mainly due to voltage peaks or falls.

Transient failures [11], also known as soft errors or sin-
gle event upsets, occur when a component produces an er-
roneous output and it continues working correctly after the
event. The causes of transient errors are multiple and in-
clude alpha-particle strikes, cosmic rays, and radiation from
radioactive atoms which exist in trace amounts in all mate-
rials and electrical sources like power supply noise, elec-
tromagnetic interference (EMI) or radiation from lightning.
Any event which upsets the stored or communicated charge
can cause soft errors in the circuit output.

Transient failures are much more common than perma-
nent failures [13]. Currently, transient failures are already
significant for some devices like caches, where error cor-
rection codes are used to deal with them. However, cur-
rent trends of higher integration and lower power consump-
tion will increase the importance of transient failures [6].
Since the number of components in a single chip increases
so much, it is no longer economically feasible to assume a
worst case scenario when designing and testing the chips.
Instead, new designs will target the common case and as-
sume a certain rate of transient failures. Hence, transient
failures will affect more components and more frequently
and will need to be handled across all the levels of the sys-
tem to avoid actual errors.



Communication between processors in a CMP is very
fine-grained (at the level of cache lines), hence small and
frequent messages are used. In order to achieve the best
possible performance it is necessary to use low-latency in-
terconnections and avoid acknowledgement messages and
other control-flow messages to ensure a reliable transmis-
sion.

In this work, we propose a way to deal with the tran-
sient failures that occur in the interconnection network of
CMPs. We can assume that these failures cause the loss of
some cache coherence messages, because either the inter-
connection network loses them, or the messages reach the
destination node (or other node) corrupted. Messages cor-
rupted by a soft error will be discarded upon reception using
error detection codes.

We attack this problem at the cache coherence proto-
col level. We have designed a coherence protocol which
assumes an unreliable interconnection network and guar-
antees correct execution in presence of dropped messages.
Our proposal only modifies the coherence protocol and does
not add any requirement to the interconnection network, so
it is applicable to current and future designs. Since the co-
herence protocol is critical for good performance and cor-
rect execution of any workload in a CMP, it is important to
have a fast and reliable protocol.

Up to the best of our knowledge, there has not been
any proposal dealing explicitly with transient faults in
the interconnection network of multiprocessors or CMPs
from the point of view of the cache coherence protocol.
Also, most fault tolerance proposals require some kind of
checkpointing and rollback, while ours does not. Our pro-
posal could be used in conjunction with other techniques
which provide fault tolerance to individual cores and caches
in the CMP to achieve full fault tolerance coverage inside
the chip.

The main contributions of this paper are the following:
we have identified the different problems posed to a token
based CMP cache coherence protocol (TOKENCMP) by the
loss of messages due to an unreliable interconnect, we have
proposed modifications to the protocol and the architecture
to cope with these problems without adding excessive over-
head, and we have implemented such solutions in a full
system simulator to measure their effectiveness and execu-
tion time overhead. We show that in absence of failures our
proposal does not introduce overhead in terms of increased
execution time over TOKENCMP. Additionally, our proto-
col can tolerate message loss rates much higher than those
likely to be found in the real world without increasing exe-
cution time more than 15%.

The rest of the paper is organized as follows. In sec-
tion 2 we present some related work. In sections 3 and 4
we describe the problems posed by an unreliable intercon-
nection network and the solutions that we propose. Section

5 presents an evaluation of the overhead introduced by our
proposal and its effectiveness in presence of faults. Finally,
in section 6 we present some conclusions of our work.

2. Related work and background

There have been several proposals for fault tolerance
targeting shared-memory multiprocessors. Most of them
use variations of checkpointing and recovery: R.E. Ahmed
et al. developed Cache-Aided Rollback Errors Recovery
(CARER) [1], Wu et al. [17] developed error recovery
techniques using private caches for recovering from pro-
cessor transient faults in multiprocessor systems, Banâtreet
al. proposed aRecoverable Shared Memory(RSM) which
deals with processor failures on shared-memory multipro-
cessors using snoopy protocols [2], while Sunadaet al. pro-
posedDistributed Recoverable Shared Memory with Logs
(DRSM-L) [15]. More recently, Pruvlovicet al. presented
ReVive, which performs checkpointing, logging and mem-
ory based distributed parity protection with low overhead
in error-free execution and is compatible with off-the-shelf
processors, caches and memory modules [12]. At the same
time, Sorinet al. presented SafetyNet [14] which aims at
similar objectives but has less overhead, requires custom
caches and can only recover from transient faults.

Regarding the cache coherence protocol background,
Token coherence [7, 8] is a framework for designing coher-
ence protocols whose main asset is that it decouples the cor-
rectness substrate from several different performance poli-
cies. This allows great flexibility, making it possible to
adapt the protocol for different purposes easily [7] since the
performance policy can be modified without worrying about
infrequent corner cases, whose correctness is guaranteed by
the correctness substrate.

The main observation of the token framework is that sim-
ple token counting rules can ensure that the memory system
behaves in a coherent manner.Token countingspecifies that
each line of the shared memory has a fixed number of to-
kens and that the system is not allowed to create or destroy
tokens. A processor is allowed to read a line only when it
holds at least one of the line’s tokens and has valid data,
and a processor is allowed to write a line only when it holds
all of its tokens and valid data. One of the tokens is distin-
guished as theowner token. The processor or memory mod-
ule which has this token is responsible for providing the data
when another processor needs it or write it back to memory
when necessary. The owner token can be either clean or
dirty, depending on whether the contents of the cache line
are the same as in main memory or not, respectively. In
order to allow processors to receive tokens without data, a
valid-data bitis added to each cache line (independently of
the usual valid-tag bit). These simple rules prevent a proces-
sor from reading the line while another processor is writing



it, ensuring coherent behavior at all times.
Token coherence avoids starvation by issuing a persis-

tent request when a processor detects potential starvation.
Persistent requests, unlike transient requests, are guaranteed
to eventually succeed. To ensure this, each token protocol
must define how it deals with several pending persistent re-
quests.

Token coherence provides the framework for designing
several particular coherence protocols. TOKENCMP [10]
is a performance policy which targets hierarchical multiple
CMP systems. It uses a distributed arbitration scheme for
persistent requests, which are issued after a single retry to
optimize the access to contended lines.

3. Problems arising in CMPs with an unreli-
able interconnection network

We consider a CMP system whose interconnection net-
work is not reliable due to the potential presence of transient
errors. We assume that these errors cause the loss of mes-
sages (either an isolated message or a burst of them) since
they directly disappear from the interconnection network or
arrive to their destination corrupted and are discarded.

Instead of detecting faults and return to a consistent state
previous to the occurrence of the fault, our aim is to design
a coherence protocol that can guarantee the correct seman-
tics of program execution over an unreliable interconnection
network without ever having to perform a checkpointing or
rollback. We do not try to address the full range of errors
that can occur in a CMP system. We only concentrate on
those errors that affect directly the interconnection network
and which can be tolerated modifying the coherence pro-
tocol. Hence, other mechanisms should be used to com-
plement our proposal to achieve full fault tolerance for the
whole CMP. Next, we present the problems caused by the
loss of messages in the TOKENCMP protocol and later we
show how these problems can be solved.

From the point of view of the coherence protocol, we as-
sume that a coherence message either arrives correctly to its
destination or it does not arrive at all. In other words, we
assume that no incorrect or corrupted messages can be pro-
cessed by a node. To guarantee this, error detection codes
are used. Upon arrival, the CRC is checked using special-
ized hardware and the message is discarded if it is wrong.
To avoid any negative impact on performance, the message
is speculatively assumed to be correct because this is by far
the most common case.

There are several types of coherence messages that can
be lost which translate into a different impact in the coher-
ence protocol. Firstly, losing transient requests is harm-
less. Note that even when we state that losing the mes-
sage is harmless we mean that no data loss, deadlock, or

incorrect execution would be caused, although some per-
formance degradation may happen.

Since invalidations (which can be persistent or transient
requests) in the base protocol require acknowledgement (the
caches holding tokens must respond to the requester), losing
a message cannot lead to an incoherence.

Losing any other type of message, however, may lead to
deadlock or data loss. Particularly, losing coherence mes-
sages containing one or more tokens would lead to a dead-
lock, because the total number of tokens in the whole sys-
tem must remain constant to ensure correctness. More pre-
cisely, if the number of tokens decreases because a message
carrying one or more tokens does not reach its destination,
no processor will be able to write to that line of memory
anymore.

The same thing happens when a message carrying data
and tokens is lost, as long as it does not carry the owner
token. No data loss can happen because there is always
a valid copy of the data at the cache which has the owner
token.

Another different case occurs if the lost coherence mes-
sage contains a dirty owner token, since it must also carry
the memory line. Hence, if the owner token is lost, no
processor (or memory module) would send the data and a
deadlock and possibly data loss would occur. In the TO-
KENCMP protocol, like in most cache coherence protocols,
the data in memory is not updated on each write, but only
when it is evicted from the owner cache. Also, the rules
governing the owner token ensure that there is always at
least a valid copy of the memory line which travels along
with it every time that the owner token is transmitted. So,
losing a message carrying the owner token means that it is
possible to totally lose data.

Finally, while a persistent request is in process, we have
to deal also with errors in the persistent request messages.
Losing a persistent request or persistent request deactiva-
tion would create inconsistencies among the persistent re-
quest tables at each cache in a distributed arbitration scheme
which would lead to deadlock situations too.

4. A fault tolerant token coherence protocol

The main principle that guided the protocol development
was to prevent adding significant overhead to the fault-free
case and to keep the flexibility of choosing any particular
performance policy. Therefore, we should try to avoid mod-
ifying the usual behavior of transient requests. For example,
we should avoid placing point-to-point acknowledgements
in the critical path as much as possible.

Once a problematic situation has been detected, the main
recovery mechanism used by our protocol is thetoken recre-
ation processdescribed later. That process resolves a dead-
lock ensuring both that there is the correct number of tokens



Table 1. Timeouts summary.
Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it

triggers?

Lost Token When a persistent request be-
comes active.

At the starver cache. When the persistent request is satis-
fied or deactivated.

Request a token recre-
ation.

Lost Data When a backup state is entered.
(When the owner token is sent.)

At the cache that holds the
backup.

When the backup state is aban-
doned. (When the Ownership Ac-
knowledgement Arrives.)

Request a token recre-
ation.

Lost Backup
Deletion Ac-
knowledgement

When a line in a blocked status
needs to be replaced.

At the cache that needs to
do the replacement.

When the blocked state is aban-
doned. (When the Backup Deletion
Acknowledgement arrives.)

Request a token recre-
ation.

Lost Persistent
Deactivation

When a persistent request from
another cache is activated.

At every cache (by the per-
sistent request table).

When the persistent request is deac-
tivated.

Send a persistent re-
quest ping.

and one and only one valid copy of the data.
As shown in the previous section, only the messages car-

rying transient read/write requests can be lost without neg-
ative consequences. For the rest of the cases, losing a mes-
sage results in a problematic situation. However, all of these
cases have in common that they lead to deadlock. Hence, a
possible way to detect faults is using timeouts for transac-
tions. We use four timeouts for detecting message losses:
the “lost token timeout” (see section 4.1), the“lost data
timeout”, the“lost backup deletion acknowledgement time-
out” (see section 4.2) and the“lost persistent deactivation
timeout” (see section 4.3.2). Notice that all these timeouts
along with the usual retry timeout of the token protocol (ex-
cept thelost persistent deactivation timeout) can be imple-
mented using just one hardware counter, since they do not
need to be activated simultaneously. For thelost persistent
deactivation timeout, an additional counter per processor at
each cache or memory module is required. A summary of
these timeouts can be found in table 1.

Since the time to complete a transaction cannot be
bounded reliably with a reasonable timeout due to the in-
teraction with other requests and the possibility of network
congestion, our fault detection mechanism may produce
false positives, although this should be very infrequent.
Hence, we must ensure that our corrective measures are safe
even if no fault really occurred.

We present a summary of all the problems that can arise
due to loss of messages and their proposed solutions in table
2. In the rest of this section, we explain how our proposal
prevents or solves each one of these situations in detail.

4.1. Dealing with token loss

When a processor tries to write to a memory line which
has lost a token, it will eventually timeout and issue a persis-
tent request. In the end, after the persistent request gets ac-
tivated, all the available tokens in the whole system for the
memory line will be received by the starving cache. Also,
if the owner token was not lost and is not blocked (see sec-

Table 2. Summary of the problems caused by
loss of messages.

Fault / Lost message Effect Detection and Recovery

Transient read/write
request

Harmless

Response with tokens Deadlock Lost token timeout, to-
ken recreation

Response with tokens
and data

Deadlock Lost token timeout, to-
ken recreation

Response with a dirty
owner token and data

Deadlock and
data loss

Reliable transfer of
owned data using ac-
knowledgements, lost
data timeout

Persistent read/write
requests

Deadlock Lost token timeout, to-
ken recreation

Persistent request de-
activations

Deadlock Lost persistent deactiva-
tion timeout, persistent
request ping

Ownership acknowl-
edgement

Deadlock and
cannot evict
line from cache

Lost data timeout

Backup deletion ac-
knowledgement

Deadlock Lost backup deletion ac-
knowledgement timeout

tion 4.2), the cache will receive it too together with data.
However, since the cache will not receive all the tokens, it
will not be able to complete the write miss, and finally the
processor will be deadlocked.

We use the“lost token timeout”to detect this deadlock
situation. It will start when a persistent request is activated
and will stop once the miss is satisfied or the persistent re-
quest is deactivated. The value of the timeout should be
long enough so that, in normal circumstances, every trans-
action will be finished before triggering this timeout1.

Hence, if the starving cache fails to acquire the neces-
sary tokens within certain time after the persistent request
has been activated, thelost token timeoutwill trigger. In

1Using a value too short for any of the timeouts used to detect faults
would lead to many false positives which would hurt performance.



that case, we will assume that some token carrying message
has been lost and we will request a token recreation pro-
cess for recovery to the memory module (see section 4.4).
Notice that thelost token timeoutmay be triggered for the
same coherence transaction that loses the message or for a
subsequent transaction for the same line. Once the token
recreation has been done, the miss can be satisfied immedi-
ately.

4.2. Avoiding data loss

To avoid losing data in our fault tolerant coherence pro-
tocol, a cache (or memory controller) that has to send the
owner token will keep the data line in abackupstate. A
line in backup state will not be evicted from the cache un-
til an ownership acknowledgementis received, even if ev-
ery token is sent to other caches. This acknowledgement
is sent by every cache in response to a message carrying
the owner token. While a line is inbackupstate its data is
considered invalid and will be used only if required for re-
covery. Hence, the cache will not be able to read from that
line2. Also, when a line enters in a backup state thelost
data timeoutwill start and will stop once the backup state is
abandoned.

Cache C1 broadcasts a transient exclusive request (GetX). C2,
which has all the tokens and hence it is inmodifiedstate (M),
answers to C1 with a message (DataO) carrying the data and all
the tokens, including the owner token. Since C2 needs to sendthe
owner token, it goes to abackupstate (B) and starts thelost data
timeout. When C1 receives the DataO message, it satisfies the miss
and enters amodified and blockedstate (Mb), sending an owner-
ship acknowledgement to C2. When C2 receives it, it discards
the backup, goes toinvalid state (I), stops thelost data timeout
and sends abackup deletion acknowledgementto C1. Once C1
receives it, it transitions to a normalmodifiedstate.

Figure 1. Transition diagram for the states and
events involved in data loss avoidance and
message interchange example.

A cache line in a backup state will be used for recov-

2It is possible for a cache to receive valid data and a token before aban-
doning a backup state, only if the data message was not lost. In that case, it
will be able to read from that line and the line will be transitioned to an in-
termediate backup state until theownership acknowledgementis received.

ery if no valid copy is available when a message carrying
the owner token is lost. To be able to do this in an effective
way, it is necessary to ensure that there is a valid copy of the
data or one and only one backup copy at all times, or both3.
Hence, a cache which has received the owner token recently
cannot transmit it again until it is sure that the backup copy
for that line has been deleted. We say that the line will be
in a blocked ownershipstate. A line will leave this state
when the cache receives abackup deletion acknowledge-
mentwhich is sent by any cache when it deletes a backup
copy after receiving anownership acknowledgement. Fig-
ure 1 shows an example of how the owner token is transmit-
ted with our protocol.

The two acknowledgements necessary to finalize this
transaction are out of the critical path of the miss. How-
ever, there is a period after receiving the owner token until
thebackup deletion acknowledgementarrives during which
a cache cannot answer to write requests because it would
have to transmit the owner token, which is blocked. This
blocking also affects persistent requests, which are serviced
immediately after receiving thebackup deletion acknowl-
edgement. This blocked period could increase the latency
of some cache-to-cache transfer misses, however we have
found that it does not have impact on performance, as most
writes are sufficiently separated in time.

This mechanism also affects replacements (from L1 to
L2 and from L2 to memory), since the replacement can-
not be performed until anownership acknowledgementis
received. We have found that the effect on replacements
is much more harmful for performance than the effect of
cache-to-cache transfer misses mentioned above.

To alleviate the effect of the blocked period in the latency
of replacements, we propose using a smallbackup buffer
to store the backup copies. In particular, we add a backup
buffer to each L1 cache. A line is moved to the backup
buffer when it is in a backup state, it needs to be replaced
and there is enough room in the backup buffer4. The backup
buffer acts as a small victim cache, except that only lines in
backup states are moved to it. We have found that a small
backup buffer with just 1 or 2 entries is enough to practically
remove the negative effect of blocked ownership states (see
section 5.2).

4.2.1 Handling the loss of an owned data carrying mes-
sage or an ownership acknowledgement

Losing a message which carries the owner token means that
possibly the only valid copy of the data is lost. However,
there is still an up to date backup copy at the cache which

3Having more than one backup copy would make recovery impossible,
since it could not be known which backup copy is the most recent one.

4We do not move the line to the backup buffer immediately afterit
enters a backup state to avoid wasting energy in many cases and avoid
wasting backup buffer space unnecessarily.



sent the data carrying message. Since the data carrying
message does not arrive to its destination, no corresponding
ownership acknowledgementwill be received by the cache
and thelost data timeoutwill trigger.

If an ownership acknowledgementis lost, the backup
copy will not be discarded and nobackup deletion acknowl-
edgementwill be sent. Hence, the backup copy will remain
in one of the caches and the data will remain blocked in the
other. Eventually, thelost backup deletion acknowledge-
ment timeoutwill trigger too.

When thelost backup deletion acknowledgement timeout
triggers, the cache requests a token recreation process to
recover the fault (see section 4.4). The process can solve
both situations: if theownership acknowledgementwas lost,
the memory controller will send the data which had arrived
to the other cache; if the data carrying message was lost,
the cache will use the backup copy as valid data after the
recreation process ensures that all other copies have been
invalidated.

4.2.2 Handling the loss of a backup deletion acknowl-
edgement

When abackup deletion acknowledgementis lost, a line will
stay in a blocked ownership state. This will prevent it from
being replaced or to answer any write request. Both things
would lead to a deadlock if they are not resolved.

If a miss cannot be resolved because the line is blocked
in some other cache waiting for abackup deletion acknowl-
edgementwhich has been lost, eventually a persistent re-
quest will be activated for it and after some time thelost
token timeoutwill trigger. Hence, thetoken recreation pro-
cesswill be used to solve this case.

To be able to replace a line in a blocked state when the
backup deletion acknowledgementis lost, we use thelost
backup deletion acknowledgementtimeout. It is activated
when the replacement is necessary, and deactivated when
thebackup deletion acknowledgementarrives. If it triggers,
a token recreation processwill be requested.

The token recreation process will solve the fault in both
cases, since even lines in blocked states are invalidated and
must transfer their data to the memory controller.

4.3. Dealing with errors in persistent requests

Assuming a distributed arbitration policy, persistent re-
quest messages (both requests and deactivations) are always
broadcasted to keep the persistent request tables at each
cache synchronized. Losing one of these messages will lead
to an inconsistency among the different tables.

If the persistent request tables are inconsistent, some per-
sistent requests may not be activated by some caches or
some persistent requests may be kept activated indefinitely.
These situations could lead to starvation.

4.3.1 Dealing with the loss of a persistent request

Firstly, it is important to note that the cache which issues the
persistent request will always eventually activate it, since
no message is involved to update its own persistent request
table.

If a cache holding at least one token for the requested
line which is necessary to satisfy the miss does not receive
the persistent request, it will not activate it in its local table
and will not send the tokens and data to the starver. Hence,
the miss will not be resolved and the starver will deadlock.

Since the persistent request has been activated at the
starver cache, thelost token timeoutwill trigger eventually
and the token recreation process will solve this case too.

On the other hand, if the cache that does not receive the
persistent request did not have tokens necessary to satisfy
the miss, it will eventually receive an unexpected deactiva-
tion message which it should ignore.

4.3.2 Dealing with the loss of a deactivation message

If a persistent request deactivation message is lost, the re-
quest will be permanently activated at some caches. To
avoid this, caches will start thelost persistent deactivation
timeoutwhen a persistent request is activated and will stop
it when it is deactivated. When this timeout triggers, the
cache will send apersistent request pingto the starver. A
cache receiving apersistent request pingwill answer with
a persistent request or persistent request deactivation mes-
sage whether it has a pending persistent request for that line
or not, respectively. Thelost persistent deactivation timeout
is restarted after sending thepersistent request pingto cope
with the potential loss of this message.

If the cache receives a persistent request from the same
starver before thelost persistent deactivation timeouttrig-
gers, it should assume that the deactivation message has
been lost and deactivate the old request, because caches can
have only one pending persistent request.

4.4. Token recreation process

The token recreationis the main fault recovery mecha-
nism provided by our proposal. This process needs to be ef-
fective, but since it should happen very infrequently, it does
not need to be particularly efficient. In order to avoid any
race and keep the process simple, the memory controller
will serialize the token recreation process, attending token
recreation requests for the same line in FIFO order.

The process works as long as there is at least a valid copy
of the data in some cache or one and only one backup copy
of the data or both things (the valid data or backup can be at
the memory too). The protocol guarantees that these condi-
tions are true at every moment, despite any message loss5.

5In particular, these conditions are true if no message has been lost,



In a transaction like the one of figure 1 theownership acknowledgementgets lost. Hence, C2 keeps the line in backup state (B). Aftersome
time, thelost data timeouttriggers (LDto) and C2 sends atoken recreation requestmessage (TrR) to the memory controller and enters the
backup and recreatingstate. The memory controller sends aset token serial numbermessage (TrS) to each cache. C2 and C3 receive this
message and answer with an acknowledgement (TrSAck) without changing their states, since they are either in invalid or backup state. On
the other hand, C1 is inmodified and blockedstate, hence it returns an acknowledgement with data (TrSAck+Data) and changes its state
to invalid (I). When the memory receives the acknowledgement with data, it sends abackup invalidatemessage to each cache. C1 and
C3 answer with an acknowledgement (BInvAck) without changing their states, while C2 discards its backup data (which could be invalid
since C1 may have written already to the cache line), sets itsstate toinvalid and recreating(Ir) and answers with an acknowledgement too.
When the memory receives all the acknowledgements, it sendsa destruction donemessage to C2 including the new data (TrDone+Data).
Finally, C2 receives the new data and sets its state tomodified(M).

Figure 2. Transition diagram for the states and events invol ved in the token recreation process (used
in this case to recover from the loss of an ownership acknowle dgement).

If there is at least a valid copy of the data, it will be used for
the recovery. Otherwise, the backup copy can be used for
recovery.

At the end of the process, there will be one and only one
copy of the data with all the tokens (recreating any token
which may have been lost) at the cache which requested the
token recreation process.

There is one exception to this when the data was actually
lost (hence no valid copy of it exists, only a backup copy)
and thetoken recreation processwas requested by a cache
other than the one which holds the backup copy. In this
case, thetoken recreation processwill fail to recreate the
tokens, but the cache that holds the backup copy will even-
tually request another token recreation process (because its
lost data acknowledgement timeoutwill trigger), and this
new process will succeed using its backup copy to recover
the data.

When recreating tokens, we must ensure theConserva-
tion of Tokensinvariant [7]. In particular, if the number

hence thetoken recreation processis safe for false positives and can be
requested at any moment.

of tokens increases, a processor would be able to write to
the memory line while other caches hold readable copies
of the line, violating the memory coherence model. So, to
avoid increasing the total number of tokens for a memory
line even in the case of a false positive, we need to ensure
that all the old tokens are discarded after the recreation pro-
cess. To achieve this we define atoken serial numbercon-
ceptually associated with each token and each memory line.

All the valid tokens of the same memory line should have
the same serial number. The serial number will be trans-
mitted within every coherence response. Every cache in
the system must know the current serial number associated
with each memory line and should discard every message
received containing an incorrect serial number. Thetoken
recreation processmodifies the currenttoken serial num-
ber associated with a line to ensure that all the old tokens
are discarded. Hence, if there was no real failure but a to-
ken carrying message was delayed on the network due to
congestion (a false positive), it will be discarded when re-
ceived by any cache because thetoken serial numberwill
not match.



To store the token serial number of each line we pro-
pose a small associative table present at each cache. Only
lines with an associated serial number different than zero
must keep an entry in that table. The overhead of the token
serial number is small. In the first place, we will need to
increase it very infrequently, so a counter with a small num-
ber of bits should be enough (we use a two bit wrapping
counter). Secondly, most memory lines will keep the initial
serial number unchanged, so we only need to store those
ones which have changed it and assume the initial value for
the rest. Thirdly, the comparisons required to check the va-
lidity of received messages can be done out of the critical
path of cache misses.

Since thetoken serial numbertable is finite, serial num-
bers are reset using the own token recreation mechanism
when the table is full and a new entry is needed, since reset-
ting a token serial numberactually frees up its entry in the
table.

The information of the tables must be identical in all the
caches except while it is being updated by the token recre-
ation process. The process works as follows:

When a cache decides that it is necessary to start atoken
recreationprocess, it sends arecreate tokensrequest to the
memory controller responsible for that line. The memory
can also decide to start atoken recreation process, in which
case no message needs to be sent. The memory will queue
token recreationrequests for the same line and service them
in order of arrival.

When servicing atoken recreationrequest, the memory
will increase thetoken serial numberassociated to the line
and send aset token serial numbermessage to every cache.

When receiving that message, each cache updates theto-
ken serial number, destroys any token that it could have and
sends an acknowledgement to the memory. The acknowl-
edgement will also include data if the cache had valid data
(even if it was in a blocked owner state).

Since all the tokens held by a cache are destroyed, the
state of the line will become invalid, even if the line was in
a blocked owner state. However, if the line was held in a
backup state, it will remain that way.

If the memory controller receives an acknowledgement
with data, it will send abackup invalidatemessage to all the
caches. When receiving that request, the caches will send an
acknowledgement and discard its backup copy. This avoids
having two backup copies when several faults occur and two
or more backup recreation processes are requested in quick
succession.

Once the memory receives all the acknowledgements
(including the acknowledgements for the backup invalida-
tion if it has been requested), it will send adestruction done
message to the cache which initiated the recreation process
(unless it is the memory itself). Thedestruction donemes-
sage will include the data if it was received by the memory

or the memory had a valid copy itself, otherwise it means
that there was no valid copy of the data and there must be a
backup copy in some cache (most likely in the same cache
that requested the token recreation).

When a cache receives adestruction donemessage with
data, it will recreate all the tokens (with the newtoken serial
number) and hence set its state tomodified. If the destruc-
tion donemessage came without data and the cache was in
backup state, it will use the backup data and recreate the to-
kens anyway. If thedestruction donemessage came without
data and the cache did not have a backup copy, it will not be
able to recreate the tokens, instead it will restart the usual
timeouts for the cache miss. As mentioned above, when this
last case happens there must be a backup copy in another
cache and thelost data timeoutof that cache will eventu-
ally trigger and recover from this fault. Figure 2 shows an
example of thetoken recreationprocess at work.

4.4.1 Handling faults in the token recreation process

Since the efficiency of the token recreation process is not
a great concern, we can use unsophisticated (brute force)
methods to avoid problems due to losing the messages in-
volved. Hence, all of these messages are repeatedly sent
every certain number of cycles (1000 in our current imple-
mentation) until an acknowledgement is received. Serial
numbers are used to detect and ignore duplicates unneces-
sarily sent.

4.5. Hardware overhead of our proposal

Firstly, to implement the token serial number table we
have added a small associative table at each cache and at
the memory controller to store those serial numbers whose
value is not zero. In this work, we have assumed that each
serial number requires two bits (if the tokens of any line
need to be recreated more than 4 times the counter will
wrap) and that 16 entries are sufficient (if more than 16 dif-
ferent lines need to be stored in the table, the least recently
modified entry will be chosen for eviction using the token
recreation process to reset the serial number).

Most of the timeouts employed to detect faults can be im-
plemented using the same hardware that is already used to
implement the starvation timeout required by token coher-
ence protocols, although the counters may need more bits
since the new timeouts are longer. For thelost persistent
deactivationtimeout it is necessary to add a new counter
per processor at each cache and at the memory controller.

Also, some hardware is needed to calculate and check
the error detection code used to detect and discard corrupt
messages.

Finally, to avoid performance penalty in replacements
due to the blocked ownership period, we have proposed to



add a small backup buffer at each L1 cache. The backup
buffer can be effective having just one entry, as will be
shown in section 5.2.

5. Evaluation

5.1. Methodology

We have evaluated the performance of our proposal us-
ing full system simulation. We have used Virtutech Sim-
ics [5] functional simulator with Multifacet GEMS [9] tim-
ing infrastructure. Although GEMS can model out-of-order
processors, we have used the in-order model provided by
Simics to keep simulation times tractable and because most
probably future cores in CMPs will use in-order execution
to reduce power consumption. Using out-of-order execu-
tion would not affect the correctness of the protocol at all
and would not have measurable effect in the overhead intro-
duced by the fault tolerance measures compared to the non
fault tolerant protocol.

We have implemented the proposed fault tolerant coher-
ence protocol using the detailed memory model provided by
GEMS simulator (Ruby) to evaluate its overhead compared
to the TOKENCMP [10] protocol and to check its effective-
ness dealing with message losses. TOKENCMP is a token
based coherence protocol without fault tolerance provision
but that has been optimized for performance in CMPs.

We model a CMP whose more relevant configuration
parameters are shown in table 3. Although we use an in-
order processor model for simulation efficiency, the simu-
lated processor frequency is four times as fast as the mem-
ory model frequency to approximate a 4-way superscalar
model. We have evaluated CMP configurations consisting
on 4, 8 and 16 processor cores.

Finally, all the simulations have been conducted using
several scientific programs. Barnes, Cholesky, FFT, Ocean,
Radix, Raytrace, Water-NSQ, and Water-SP are from the
SPLASH-2 [16] benchmark suite. Tomcatv is a parallel ver-
sion of a SPEC benchmark and Unstructured is a computa-
tional fluid dynamics application. The experimental results
reported here correspond to the parallel phase of each pro-
gram only.

5.2. Measuring the overhead for the fault-free case

First, we evaluate both execution time overhead and net-
work overhead of our protocol when no messages are lost.
As previously explained, the execution time overhead de-
pends on the size of the backup buffer (see section 4.2).
Figure 3 plots it using different sizes for the backup buffer,
including the case of not having a backup buffer at all.

As derived from figure 3, without a backup buffer the
overhead in terms of execution time is more than 5% on

Table 3. Characteristics of architectures sim-
ulated.

4, 8 or 16-Way CMP System
Processor Parameters

Processor speed 2 GHz
Max. fetch/retire rate 4

Cache Parameters
Cache line size 64 bytes
L1 cache:
Size, associativity 32 KB, 2 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 512 KB, 4 ways
Hit time 15 cycles

Memory Parameters
Memory access time 300 cycles
Memory interleaving 4-way

Network Parameters
Topology 2D Torus
Non-data message size 2 flits
Channel bandwidth 64 GB/s

Fault tolerance parameters
Lost token timeout 20000 cycles
Lost data timeout 6667 cycles
Lost backup deletion acknowledgement 10000 cycles
Lost persistent deactivation timeout 10000 cycles
Token serial number size 2 bits
Token serial number table size 16 entries
Backup buffer size 0, 1, 2 or 4 entries

average for the 4-core CMP and more than 10% for some
benchmarks, which we think is not acceptable. The re-
sults for 8-core and 16-core CMPs are similar too. We have
found that this slowdown is due to the increased latency of
the misses which need a replacement of an owned line first,
since the replacement is no longer immediate but has to wait
until an ownership acknowledgementis received from the
L2 cache.

Fortunately, the use of a very small backup buffer is
enough to avoid nearly all this penalty. In the 4-core CMP, a
backup buffer of just one entry cuts down the penalty to less
than 0.5% on average. For 8 cores the penalty is reduced to
less that 0.5% using a single entry too. And for the 16-core
architecture, the slowdown using one entry in the backup
buffer is less than 1%.

Additionally, a backup buffer big enough could even im-
prove the execution time when compared to the non fault
tolerant protocol in some cases, as seen in figure 3 for some
benchmarks when the backup buffer size is 2 or 4. This is
because the backup buffer can act temporarily as a victim
cache when a miss happens while a line was in a backup
state. However, there is no significant performance im-
provement with respect to TOKENCMP on average.

The other potential source of miss latency overhead in
our protocol is due to the fact that a cache holding a line
in an blocked owner state cannot respond to write requests
(not even persistent write requests). The blocked time lasts
while theownership acknowledgementtravels to the previ-
ous owner and until thebackup deletion acknowledgement



barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

4 core CMP 0 1 2 4

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

8 core CMP 0 1 2 4

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

16 core CMP 0 1 2 4

Figure 3. Execution time overhead of our pro-
posal compared to TOKENCMP for several
backup buffer sizes.

arrives to the new owner. The results shown in figure 3 sug-
gest that the effect of this overhead in the total execution
time is negligible, since the writes that different cores per-
form on the same line are usually sufficiently separated in
time and the new owner can progress its execution as soon
as the data is received.

On the other hand, figure 4 shows the network overhead
measured as relative increase of bytes transmitted trough
the network for the same benchmarks and configurations
employed above. As we can see, the network overhead is
mostly independent of the size of the backup buffer. As
we increase the number of processors, the relative network
overhead decreases slightly (12% for 4 processors, 10% for
8 processors and 8% for 16 processors on average). The
network overhead is due to the acknowledgements used to
guarantee the correct transmission of the owner token and
its associated data.

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

4 core CMP 0 1 2 4

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

8 core CMP 0 1 2 4

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

16 core CMP 0 1 2 4

Figure 4. Network traffic overhead of our pro-
tocol compared to TOKENCMP.

5.3. Measuring the supported fault-tolerance ratio

We have shown that, when a backup buffer with just one
entry at each L1 cache is used, our protocol introduces neg-
ligible overhead in the execution time and slight network
overhead (around 10% more traffic). On the other hand, our
proposal is capable of guaranteeing the correct execution of
a multi threaded workload on a CMP even in the presence
of transient faults. However, the failures and the necessary
recovery introduce certain overhead which we would like to
keep as small as possible.

Figure 5 shows the execution time overhead of the pro-
tocol using a backup buffer with one entry under several
message loss rates. Failures rates are expressed in number
of messages lost per million of messages that travel through
each switch in the network. These failure rates are much
higher than realistic failure rates, so these tests overstress
the fault tolerance provisions of the protocol. Obviously,



the base TOKENCMP protocol (or any previously proposed
cache coherence protocol) would not be able to execute cor-
rectly any of these tests.

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

4 core CMP 125 250 500 1000 2000

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

8 core CMP 125 250 500 1000 2000

barnes
cholesky

fft
ocean

radix
raytrace

tomcatv
unstructured

waternsq
watersp

Average

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

16 core CMP 125 250 500 1000 2000

Figure 5. Execution time overhead under sev-
eral message loss rates.

As we can see, our proposal can support failure rates of
up to 250 messages lost per million with an average degra-
dation of 8% in the execution time in a 4-core CMP. In
an 8-core system, the same loss rate yields 11% average
slowdown, and in a 16-core CMP the degradation is 15%.
Hence, our protocol can support a message loss rate of up
to 250 messages per million without increasing the execu-
tion time more than 15%. As expected, higher failure rates
create a higher slowdown in the execution but the fault tol-
erance measures of the protocol still allow the program to
complete correctly, confirming the robustness of such mea-
sures. The slowdown depends almost linearly on the failure
rate.

Additionally, figure 5 shows that the slowdown observed
for a given fault rate increases with the number of proces-

sors. This is expected, since greater number of processors
means greater number of messages traveling through the
network in less time, and hence higher number of faults will
occur in less time because the fault rate is independent of
time in our experiments. The execution time overhead per
fault is approximately the same and depends mainly on the
values of the timeouts used to detect faults.

The results shown in this work use long timeouts for
detecting faults which have been chosen experimentally to
avoid false positives. Using shorter timeout values would
reduce the performance degradation in presence of faults at
the expense of some false positives which would degrade
performance in the fault-free scenario.

6. Conclusions

The rate of transient failures in near future chips will in-
crease due to a number of factors like the increased scale
of integration, the lower voltages used and changes in the
design process. This will create problems for CMPs and
new techniques will be required to avoid errors. One im-
portant source of problems will be faults in the intercon-
nection network used to communicate between the cores,
the caches and the memory. In this work, we have shown
which problems appear in a CMP system with a token based
cache coherence protocol when the interconnection network
is subject to transient failures and we have proposed a new
cache coherence protocol aimed at dealing with those faults
that ensures the correct execution of programs while intro-
ducing very small overhead. The main recovery mechanism
introduced by our protocol is thetoken recreation process,
which takes a cache line to a valid state and ensures forward
progress after a fault is detected.

We have implemented our protocol using a full system
simulator and we have presented results comparing it to a
similar cache coherence protocol previously proposed [10]
which does not support any fault tolerance but is tuned for
performance in CMPs. We have shown that in the fault
free scenario the overhead introduced by our proposal is be-
tween 5% and 11% when no backup buffer is used, and that
using a backup buffer able to store just one cache line in
each L1 cache is enough to reduce it to insignificant levels
for 4, 8 and 16 way CMPs.

We have checked that our proposal is capable of support-
ing message loss rates of up to 250 messages lost per million
without increasing the execution time more than 15%. The
message loss rates used for our tests are several orders of
magnitude higher than the rates expected in the real world,
hence under real world circumstances no important slow-
down should be observed even in the presence of transient
failures in the interconnection network.

The hardware overhead required to provide the fault-
tolerance is minimal: just a small associative table at each



cache to store thetoken serial number, some extra counters
at each cache, and a very small backup buffer at each L1
cache.

In this way, our protocol provides a solution to transient
failures in the interconnection network with very low over-
head which can be easily combined with other fault toler-
ance measures to achieve full system fault tolerance in fu-
ture CMPs.

Acknowledgements

This work has been supported by the Spanish Min-
istry of Ciencia y Tecnologı́a and the European Union
(Feder Funds) under grant TIC2003-08154-C06-03. Ri-
cardo Fernández-Pascual has been supported by the fellow-
ship 01090/FPI/04 from the Comunidad Autónoma de la
Región de Murcia (Fundación Séneca, Agencia Regional de
Ciencia y Tecnologı́a).

References

[1] R. Ahmed, R. Frazier, and P. Marinos. Cache-aided rollback
error recovery (CARER) algorithm for shared-memory mul-
tiprocessor systems. InFault-Tolerant Computing. FTCS-
20., pages 82–88, June 1990.

[2] M. Banâtre, A. Gefflaut, P. Joubert, C. Morin, and P. A. Lee.
An architecture for tolerating processor failures in shared-
memory multiprocessors.IEEE Transactions on Computers,
45(10):1101–1115, October 1996.

[3] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing. InProc. of 27th Int’l
Symp. on Computer Architecture (ISCA’00), pages 282–293,
June 2000.

[4] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu,
M. Chen, and K. Olukotun. The Stanford Hydra CMP.IEEE
MICRO Magazine, 20(2):71–84, March-April 2000.

[5] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.Com-
puter, 35(2):50–58, 2002.

[6] A. Maheshwari, W. Burleson, and R. Tessier. Trading off
transient fault tolerance and power consumption in deep
submicron (DSM) VLSI circuits. IEEE transactions on
very large scale integration (VLSI) systems, 12(3):299–311,
March 2004.

[7] M. M. Martin. Token Coherence. PhD thesis, University of
Wisconsin-Madison, December 2003.

[8] M. M. Martin, M. D. Hill, and D. A. Wood. Token co-
herence: A new framework for shared-memory multipro-
cessors.IEEE Micro, 23(6):108–116, November/December
2003.

[9] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and

D. A. Wood. Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset.Computer Architecture
News, 33(4):92–99, September 2005.

[10] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K.
Martin, and D. A. Wood. Improving multiple-CMP sys-
tems using token coherence. In11th Int’l Symposium
on High-Performance Computer Architecture (HPCA’05),
pages 328–339. IEEE Computer Society, February 2005.

[11] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft
error problem: An architectural perspective. In11th Int’l
Symposium on High-Performance Computer Architecture
(HPCA’05), February 2005.

[12] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-
effective architectural support for rollback. In29th Annual
Int’l Symposium on Computer Architecture (ISCA’02), pages
111–122, May 2002.

[13] T. Sato. Exploiting instruction redundancy for transient fault
tolerance. In18th International Symposium on Defect and
Fault Tolerance in VLSI Systems (DFT), pages 547–554,
November 2003.

[14] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood. Safe-
tyNet: Improving the availability of shared memory multi-
processors with global checkpoint/recovery. In29th Annual
Int’l Symposium on Computer Architecture (ISCA’02), pages
123–134, May 2002.

[15] D. Sunada, M. Flynn, and D. Glasco. Multiprocessor archi-
tecture using an audit trail for fault tolerance. InTwenty-
Ninth Annual International Symposium on Fault-Tolerant
Computing, pages 40–47, June 1999.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodologi-
cal Considerations. In22nd Int’l Symposium on Computer
Architecture (ISCA’95), pages 24–36, June 1995.

[17] K. Wu, W. Fuchs, and J. Patel. Error recovery in shared
memory multiprocessors using private caches.IEEE Trans-
actions on Parallel and Distributed Systems, 1(2):231–240,
April 1990.


