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Abstract. One way of dealing with transient faults that will affect the
interconnection network of future large-scale Chip Multiprocessor (CMP)
systems is by extending the cache coherence protocol. Fault tolerance at
the level of the cache coherence protocol has been proven to achieve very
low performance overhead in absence of faults while being able to support
very high fault rates. In this work, we compare two already proposed
fault-tolerant cache coherence protocols in a common framework and
present a new one based in the cache coherence protocol used in AMD
Opteron processors. Also, we thoroughly evaluate the performance of the
three protocols, show how to adjust the fault tolerance parameters of the
protocols to achieve a desired level of fault tolerance and measure the
overhead achieved to be able to support very high transient fault rates.

1 Introduction

The number of transistors available due to current technology trends have en-
abled the design of progressively more powerful chips. However, these trends
have several drawbacks which need to be overcome. Notably, the complexity of
designing a system which takes advantage of so many components has forced
architects to think of ways to simplify the design. This way, Chip Multiproces-
sors [2,7] have proved to be a viable way for building newer systems by exploiting
thread-level parallelism. Further, tiled CMPs [14] which are built by replicating
several tiles comprised by a core, private cache, part of a shared cache and an in-
terconnection network interface further help in keeping complexity manageable,
scale in a power-efficient way to larger number of cores and support a family of
products with a varying number of tiles.

A main drawback of these trends is that, due to the miniaturization and
the lower voltages, the susceptibility of future chips to transient failures will
increase. Transient failures [11], also known as soft errors, occur when a com-
ponent produces an erroneous output but continues working correctly after the
event. Any event which upsets the stored or communicated charge can cause soft



errors. Typical causes include alpha-particles strikes, cosmic rays, radiation from
radioactive atoms which exist in trace amounts in all materials, and electrical
sources like power supply noise or radiation from lightning.

The increased importance of transient failures means that fault-tolerance
measures have to be considered across all levels of chip design. Even for com-
modity systems, reliability needs to be above a certain level for the system to be
useful for anything. In fact, since the number of components in a chip increases
and the reliability of each component decreases, it is no longer economical to de-
sign and test assuming a worst case scenario for new chips. Instead, new designs
will target the common case and assume a certain rate of transient failures.

One of the components which will be affected by transient failures in a CMP
is the interconnection network (IN). The IN occupies a significant part of the
chip real estate and is critical to the performance of the system. It handles the
communication between the cores and caches, which is done by means of a cache
coherence protocol. This requires very small and frequent messages. Hence, to
achieve good performance the IN must provide very low latency and should avoid
acknowledgment messages and other flow-control messages as much as possible.

Fault tolerance in the IN can be provided at the network level. There are
several recent proposals [3,12,13] exploring this approach. Ensuring the reliable
transmission of all messages imposes significant overheads in latency, power con-
sumption and area. In contrast, we propose to deal with transient errors in the
IN at the level of the cache coherence protocol. This allows for more flexibility to
design a high-performance on-chip network which can be unreliable. At the same
time, the higher level information available to the coherence protocol enables it
to achieve fault tolerance but avoids using acknowledgment messages in most
cases, protecting only those messages which are critical for correctness. These
few acknowledgments are sent out of the critical path of coherence transactions
to minimize the effect of fault tolerance on performance.

We have already proposed two fault-tolerant cache coherence protocols which
are described in detail in previous works [5, 6]. The contributions of this paper
are: an explanation of these protocols under a common framework, a description
of another fault tolerant protocol which is based on a modern coherence protocol
widely used in commercial systems [1] and an evaluation and comparison of
this and our two previous fault tolerant protocols to show how the overhead
introduced by fault-tolerance varies depending on the base protocol.

The rest of this paper is organized as follows. Section 2.1 describes the base
architecture which is being extended. Section 2.2 summarizes our previously
proposed fault tolerant protocols while section 3 describes a new fault tolerant
protocol. The evaluation is presented in section 4 and section 5 concludes.

2 Background

2.1 Base architecture

We assume single CMP systems built using a number of tiles [14]. Each tile
contains a processor core, private L1 data and instruction caches, a bank of



the logically shared L2 cache and a network interface. The L2 cache is logically
shared by all cores but it is physically distributed among the tiles. Each tile has
its network interface which connects it to the on-chip IN. We assume in-order
processors since that seems the most reasonable approach to build power-efficient
CMPs with many cores. While we have assumed a tiled architecture and in-order
processors, these choices are not constraints of the evaluated coherence protocols,
whose functionality and correctness is not affected if out-of-order cores are used
or a different arrangement is used instead of tiles.

We consider two base architectures: one using a token-based cache coherence
protocol (TokenCMP) [10] and another one using a more traditional directory-
based protocol (DirCMP). A third base architecture is described in section 3.

TokenCMP is a protocol based on token coherence which targets multiple
CMPs and is well suited for single CMPs. Token coherence provides a framework
for defining coherence protocols by separating the definition in a correctness
substrate and a performance policy which define how the nodes exchange a
fixed number of tokens among them. Most requests are transient requests which,
in the case of TokenCMP, are broadcasted to all other nodes without ordering
guarantees and without even a guarantee of being satisfied. Token counting rules
ensure that coherency is maintained while persistent requests ensure forward
progress by providing serialization when races between transient requests are
detected. TokenCMP uses a performance policy similar to TokenB (Token-

using-broadcast) with distributed arbitration for persistent requests.
DirCMP is a traditional MOESI-based directory cache coherence protocol

[4] which uses an on-chip directory to maintain coherence between several private
L1 caches and a shared non-inclusive L2 cache. It uses a directory cache in L2
and the L2 effectively acts as the directory for the L1 caches.

2.2 Our previous work

We have designed two fault-tolerant cache coherence protocols for CMPs based
on two different approaches to cache coherence: token coherence and directory
coherence. Both protocols have been shown to provide fault-tolerance with re-
spect to transient faults in the IN with very little overhead. FtTokenCMP [5]
is a token based coherence protocol which extends TokenCMP with fault tol-
erance, while FtDirCMP [6] is another fault-tolerant coherence protocol which
is based in a more traditional directory protocol which we call DirCMP.

The fault tolerance measures of both protocols are similar in their intent and
functionality and differ mostly in the implementation. In our experience, a fault
tolerant cache coherence protocol needs to provide the following things: a fault
detection mechanism, a fault recovery mechanism, and a mechanism to ensure
that data is never lost or corrupted. Both protocols rely on error detection codes
in messages to discard corrupted messages. It is assumed that the error detection
code checks the whole message. Thus, from the point of view of the coherence
protocols, a message can either arrive correctly or not arrive at all.

In both protocols, fault detection is achieved by means of a number of time-
outs which detect deadlocks caused by discarded messages. This fault detection



mechanism is reliable and valid for every coherence protocol where a discarded
message can be either harmless or lead to a deadlock in the same or a subsequent
memory transaction. This is the case of TokenCMP, where discarded transient
requests are harmless and the rest of message types lead to deadlock; and in the
case of DirCMP where every discarded message leads to a deadlock. However,
not all cache coherence protocols have this property: for example, some protocols
do not require acknowledgments for invalidation messages, hence discarding an
invalidation message would lead to an incoherence instead of a deadlock. Table
1 shows a summary of the timeouts used by each protocol.

Table 1. Timeouts summary for FtDirCMP and FtTokenCMP.

Timeout When is it activated? When is it deactivated? Action when it triggers?
FtDirCMP

Lost Request When a request is is-
sued.

When the request is satis-
fied.

The request is reissued
with a new serial number.

Lost Unblock When a request is an-
swered.

When the unblock message
is received.

An UnblockPing is sent.

FtTokenCMP

Lost Token When a persistent re-
quest becomes active.

When the persistent re-
quest is deactivated.

Request a token recreation.

Lost Persistent
Deactivation

When an persistent re-
quest is activated.

When the persistent re-
quest is deactivated.

Send a persistent request
ping.

Both protocols
Lost Data When a backup state is

entered.
When the Ownership Ac-
knowledgement arrives.

Issue an OwnershipPing /
Request a token recreation.

Lost Backup Dele-
tion Ack.

When a line enters the
blocked state.

When the Backup Deletion
Acknowledgement arrives.

Reissue the AckO / Re-
quest a token recreation.

Also, both protocols use essentially the same mechanism to avoid data loss,
ensuring reliable transmission of owned data by means of exchanging a pair of
acknowledgments. The mechanism works as follows: when a cache sends owned
data to another cache, it keeps a backup copy of it. This backup copy may be
used by the respective recovery mechanism if necessary, but it cannot be used
by the cache for any other purpose. The backup will be kept until an ownership

acknowledgment sent by the receiver arrives. On the other hand, the cache which
receives the data can use it as soon as it arrives, but it cannot send it to another
cache until it receives a backup deletion acknowledgment sent by the previous
owner once its backup has been discarded. The last restriction is necessary to
ensure that there is no more than one backup copy of each cache line, because
otherwise fault recovery would be significantly more complex.

These acknowledgments are sent out of the critical path of cache misses so
they do not directly affect the execution time of programs. Also, in many cases
the acknowledgments are piggybacked in other messages of the same coherence
transaction. However, the increased network traffic caused by this mechanism is
the main overhead incurred by the fault tolerant measures of both protocols.

The fault recovery mechanism is different for each protocol. In FtTokenCMP,
fault recovery is achieved by means of a centralized mechanism called the token

recreation process arbitrated by the memory controller. This process works as
long as there is a valid copy of data in some cache or one and only one backup



copy (which is guaranteed by the owned data transmission mechanism described
above). The memory controller attends token recreation requests in FIFO order
to avoid livelock and it works sending messages to every cache asking it to inval-
idate all tokens and send back to memory any data that it may have. Once the
memory receives the data or invalidation acknowledgments from every cache, it
sends it to the cache which requested the recovery with a new set of tokens.

To avoid creating an incoherence due to stale response messages still traveling
through the IN after a token recreation, all coherence responses are tagged with
a token serial number (TSN) which is increased during the token recreation
process. Messages with a wrong TSN are discarded when received by any node.
Token serial numbers are stored in every node in a dedicated structure (the TSN

table), but only for those cache lines which have a serial number different than
0. We have found that having a very small number of entries of only a few bits
each is enough for good results. When all entries are used, one of them is evicted
setting its serial number to 0 by means of the token recreation process.

In contrast, FtDirCMP achieves fault recovery reissuing requests with a dif-
ferent request serial number. FtDirCMP does not need an specific serialization
point for fault recovery since the directory (or the on-chip L2 directory cache)
acts already as the serialization point for all requests. These reissued requests
need to be identified as such by the node that answers to them and not be treated
like an ordinary request. In particular, a reissued request should not wait in the
incoming request buffer to be attended by the L2 or the memory controller until
a previous request is satisfied, because that previous request may be precisely
the older instance of the request that is being reissued in case of a false positive.

Since stale responses to a few reissued request messages may lead to an in-
coherence in FtDirCMP, we use request serial numbers to discard responses
which arrive too late (when the request has already been reissued). Every mes-
sage carries a serial number. Request serial numbers are chosen by the cache
that issues the request while responses or forwarded requests will carry that of
the request that they are answering to. When a request is reissued, it will be
assigned a new serial number which will allow to distinguish between responses
to the old request and to the new one. Nodes must remember the serial number
of the requests that they are currently handling and discard any message which
arrives with an unexpected serial number or from an unexpected sender. This
information needs to be updated when a reissued request arrives.

In some cases, both protocols achieve deadlock recovery issuing ping messages
when a timeout triggers to force the reissue of a message which is expected to
finish a coherence transaction, like an Unblock message in case of FtDirCMP

or a Persistent Request Deactivation message in case of FtTokenCMP.

The token serial numbers used in FtTokenCMP serve a similar purpose to
request serial numbers used in FtDirCMP (e.g.: being able to discard stale mes-
sages after fault recovery which could cause an incoherence), but the latter are
easier to implement and more scalable. Token serial numbers are associated with
each cache line and need to be updated in a coordinated fashion during the token

recreation process. Hence, they required an additional structure in each cache to



store them (only for those hopefully few lines that had a token serial number
different than 0, but even for lines which were not currently in any cache). On
the other hand, request serial numbers are associated with individual requests
and so they are short-lived information which can be stored in the MSHR. How-
ever, token serial numbers do not need to be carried in request messages (only in
responses) while request serial numbers are sent with every request and need to
be propagated with every message which is sent as consequence of the request.

Notice that discarding any message in FtDirCMP or FtTokenCMP is
always safe (even if it could be not strictly necessary in some cases) since the
protocol already has provisions for lost messages of any type.

3 A new broadcast-based cache coherence protocol

No real system has been implemented yet using a coherence protocol based on the
token framework. Also, many cache coherence protocols which are used in widely
used systems cannot be precisely categorized as snoopy-based nor directory-
based. AMD Hammer [1] is one of these protocols. It targets systems with a
small number of processors using a tightly-coupled point-to-point unordered IN.

In this work, we have implemented HammerCMP which is an adaptation of
AMD Hammer protocol to the tiled CMP environment and we have used it as a
base for FtHammerCMP, a new fault tolerant protocol for small scale CMPs.

Like DirCMP, HammerCMP sends requests to a home L2 bank which acts
as the serialization point for requests to its cache lines. There is no directory
information, and all requests are forwarded using broadcast to all other caches.
All of them answer to the forwarded requests sending either an acknowledgment
or a data message to the requestor. When the requestor receives all the acknowl-
edgments informs to the home L2 controller that the miss has been satisfied.

HammerCMP avoids the overhead of directory information and the latency
of accessing the directory structure at the cost of much more IN traffic. Also, all
processors need to intervene in all misses, like in a snoopy protocol.

Using the principles described in section 2.2, FtHammerCMP adds fault
tolerance measures to HammerCMP as the ones described for FtDirCMP. It
uses the same set of timeouts for detecting faults and reissues requests using
different request serial numbers in a way very similar to FtDirCMP for recov-
ering from faults. Reliable owned data transference is done using the same pair
of acknowledgments as the other two protocols.

4 Evaluation

4.1 Methodology

We have performed full system simulations of a mix of scientific applications with
fault injection with the aims of determining adequate values for some protocol
parameters, assess the fault tolerance capability of each protocol and measure
the overhead introduced by the fault tolerance measures. For this, we have used



a custom version of Multifacet GEMS [9] detailed memory model and Virtutech
Simics [8]. Every simulation has been performed several times using different
random seeds to account for the variability of multithreaded execution, this is
represented by the error bars in the figures which enclose the resulting 95% confi-
dence interval of the results. We have simulated tiled CMP systems as described
in section 2.1. Table 2(a) shows the most relevant parameters of the systems.

Table 2. Characteristics of simulated architectures and input sizes used for benchmarks
in the simulations.

(a) System characteristics

16-Way Tiled CMP System

Processor speed 2 GHz
Cache parameters

Cache line size 64 bytes
L1 cache:

Size, associativity 32 KB, 4 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 1024 KB, 4 ways
Hit time 15 cycles

Memory parameters

Memory access time 300 cycles
Memory interleaving 4-way

Network parameters

Topology 2D Mesh
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

(b) Input sizes

Benchmark Input Size

Barnes 8192 bodies, 4 time steps

Cholesky tk16.O

FFT 256K complex doubles

Ocean 258 × 258 ocean

Radix 1M keys, 1024 radix

Raytrace 10Mb, teapot.env scene

Tomcatv 256 points, 5 iterations

Unstructured Mesh.2K, 5 time steps

Water-NSQ 512 molecules, 4 time steps

Water-SP 512 molecules, 4 time steps

Finally, we have used a selection of scientific applications for the evaluation:
Barnes, Cholesky, FFT, Ocean, Radix, Raytrace, Water-NSQ, and Water-SP are
from the SPLASH-2 benchmark suite. Tomcatv is a parallel version of a SPEC
benchmark and Unstructured is a computational fluid dynamics application.
The experimental results reported here correspond to the parallel phase of each
program only. Problem sizes are shown in table 2(b).

4.2 Adjusting the fault detection timeouts

All fault tolerant protocols achieve fault detection by means of a number of
timeouts. Each protocol requires up to four timeouts which are active at different
places and times during a memory transaction or cache replacement. The value
of these timeouts determine the latency of fault detection, hence shorter values
help to achieve lesser performance degradation in presence of faults since fault
recovery will start earlier. For example, for the three fault tolerant protocols
considered in this work figure 1(a) shows how the execution time increases with
the value of these timeouts under a fixed fault rate.

Since false positives occur when a timeout triggers before a miss has had
enough time to be satisfied, to avoid false positives the timeout values should
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Fig. 1. Relative execution time with respect to DirCMP without faults for each fault
tolerant protocol with 250 corrupted messages per million using different values for
the fault detection timeouts and maximum miss latency (in cycles) of each coherence
protocol without faults..

be large enough to allow every memory transaction to finish, assuming that no
fault occurs. Figure 1(b) shows the measured maximum latency in CPU cycles
of each protocol when no faults occur and disabling all the timeouts.

Looking at figure 1(b), we can see that the maximum latency of the fault-
tolerant protocols is almost exactly the same than that of their corresponding
non fault-tolerant counterpart. This is expected, since the behavior of the fault-
tolerant protocols when no timeout triggers is almost the same than that of the
non fault-tolerant ones, except for the ownership acknowledgments which are
sent out of the critical path of cache misses.

This latency is around 1250 cycles for the FtDirCMP protocol, 1350 for the
FtHammerCMP protocol and 2000 for the FtTokenCMP protocol. Hence,
we can choose any value greater than those for the timeouts to avoid having
any false positive for these workloads. Using shorter values is still possible but
would increase the number of false positives and could degrade performance and
increase network traffic due to the retried requests or token recreation requests.
However, if the chosen values are too low (lower than the time required to finish a
transaction), the recovery mechanism would be invoked too frequently preventing
forward progress.

Finally, we have considered using different values for each of the four timeouts
of each protocol, but our experiments do not show any significant advantage in
doing so.

We have chosen a value of 2000 cycles for all timeouts in the FtTokenCMP

protocol and 1500 cycles in the FtDirCMP and FtHammerCMP protocols.
These values are large enough to avoid false positives in every case and, as
shown below, achieve very low performance degradation when faults actually
occur. Making this value smaller achieves very little benefit while significantly
increasing the risk of false positives.



4.3 Effect of the request serial number size in fault-tolerance

In the case of FtDirCMP and FtHammerCMP, the ability to correctly re-
cover from faults depends on the number of bits used for encoding the request
serial number which is used to discard stale responses to reissued requests (for ex-
ample, to discard old acknowledgments to reissued invalidation messages which
could lead to incoherence). This number should be as low as possible to reduce
overhead in terms of increased message size and hardware resources to store it
while being sufficient to ensure that when a request is reissued (even several
times in a row) every response to the old request is discarded. Since the number
of reissued messages increases as the fault rate increases, the number of bits used
to encode request serial numbers determines the maximum fault rate supported.

To measure this, we have performed simulations of FtDirCMP using a
wide variety of fault rates. We have used 32-bit request serial numbers for those
simulations but we have recorded how many lower order bits were required to
distinguish all the request serial numbers that needed to be compared. For doing
this, every time that two request serial numbers are compared, we record the
position of the least significant bit which is different in both numbers. Then,
we assume that the maximum of all these measures is an upper bound of the
number of bits required to ensure correctness for each fault rate. These results
are shown in figure 2.
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Fig. 2. Required RSN bits to discard every old response to a reissued message.

As it can be seen, when using the FtDirCMP protocol 9 bits are enough
for all the tested fault rates and 8 bits suffice for fault rates up to 250 corrupted
messages per million. In case of using the FtHammerCMP protocol, 8 bits
provide fault tolerance up to 500 corrupted messages per million, while 10 bits
are required for the maximum tested fault rate, 1000 corrupted messages per
million. Hence, we have chosen to use 8 bits to encode the request serial numbers
in the rest of our experiments for both protocols which is enough to achieve
fault tolerance up to 250 corrupted messages per million, which is already an
unrealistic and unreasonably high failure rate.



4.4 Execution time overhead

We have measured the execution time of each one of the fault-tolerant protocols
using the fault tolerance parameters determined above with several message loss
rates and compared it to the execution time of the non fault tolerant protocols
in a fault-free scenario. The results are shown in figure 3(a). Fault rates are
expressed in number of messages discarded per million of messages that travel
trough the network and all results are normalized with respect to the execution
time of the DirCMP protocol.
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Fig. 3. Execution time and network overhead of each protocol for several fault rates.

We can see that the run-time overhead of each fault-tolerant protocol when
compared to its non fault-tolerant counterpart in a fault-free scenario is not
measurable. This is consistent with the fact that, when no faults occur, the only
difference in the behavior of the fault-tolerant protocols with respect to the non
fault-tolerant ones is just the extra acknowledgments used to ensure reliable
owned data transmission, which are sent out of the critical path of misses.

For these workloads, both FtTokenCMP and FtDirCMP achieve very
similar execution times when no faults occur (less than 3% difference on aver-
age). FtHammerCMP execution time difference is less than 4% higher than
FtDirCMP also, and 6% higher than FtTokenCMP.



As the fault rate increases, so does the execution time of each protocol. In the
case of FtDirCMP and FtTokenCMP, the average performance degradation
is almost unmeasurable until the message loss rate reaches 32 corrupted messages
per million. However, even when the fault rate reaches 64 corrupted messages
per million, the execution time of FtTokenCMP is lower than the execution
time of the directory protocol in a fault free scenario.

On the other hand, HammerCMP and FtHammerCMP without faults
have the same performance than FtDirCMP under a fault rate of 125 mes-
sages lost per million. Also FtHammerCMP performance degradation starts
being significant under a fault rate of 8 messages corrupted per million and the
rate at which it increases is noticeably worse than in the case of the other pro-
tocols. This is due to the much higher network traffic of HammerCMP and
FtHammerCMP in comparison to all the other protocols even in absence of
faults as can be seen in figure 3(b).

4.5 Network overhead

In absence of faults, the most important difference in the behavior of our pro-
tocols with respect to their non fault-tolerant counterparts is the exchange of
acknowledgments to ensure that owned data is transferred safely and avoid data
loss. Although they are sent out of the critical path of cache misses so that
they do not have effect in the miss latency, these acknowledgments introduce
additional network traffic which is the main cost of the fault tolerance measures.

We have measured the network overhead of our proposal in terms of the
relative increase in the number of messages and the number of bytes transmitted
through the network. We have increased one byte the message sizes of the fault
tolerant protocols with respect to the non fault-tolerant ones to accommodate
the request serial numbers and token serial numbers. This means 1.14% increase
in size for data messages and 12.5% increase for control messages. The results
of these measurements are shown in figure 4.
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Fig. 4. Network overhead of the fault tolerant protocols.



We can see that, in terms of message traffic, the overhead of the fault-tolerant
protocols comes entirely from the acknowledgments used to ensure reliable data
transmission (“Ownership” part of each bar). This overhead is less than 30% for
all our fault-tolerant protocols. Moreover, the overhead drops considerably when
it is measured in terms of bytes, even considering that every message is one byte
longer in the fault-tolerant protocols.

Figure 3(b) shows the network overhead under several fault rates. The net-
work traffic increases slowly with the fault rate due to the reissued messages
or the token recreation messages. In the case of FtDirCMP, the increase is
almost unmeasurable for the fault rates shown. However, as can be seen for
FtHammerCMP, once the network traffic reaches certain point (around 1.9 in
our plot), the slope becomes steeper. This is due to the fact that the capacity
of the network is exceeded and this increases the average latency which in turn
causes a number of false positives which lead to more reissues which further in-
crease the network traffic and consequently the execution time. Hence, network
capacity can become a limiting factor for the fault tolerance of our protocols.

4.6 Hardware requirements

The token serial number table is implemented with a small associative table at
each cache and at the memory controller to store those serial numbers whose
value is not zero. Using two bits to encode the serial number and 16 entries at
each node is enough for supporting the fault rates used in this paper. If the
tokens of any line need to be recreated more than 4 times the counter wraps
to zero (effectively freeing an entry in the table) and if more than 16 different
lines need to be stored in the table, the least recently modified line is evicted by
means of using the token recreation process to set its serial number to zero.

On the other hand, request serial numbers do not need to be kept once the
memory transaction has been completed. They can be stored in the MSHR or
(optionally) in a small associative structure in cases where a full MSHR is not
needed. As shown in section 4.3, using 8 bits to encode request serial numbers
is enough to achieve tolerance to very high fault rates, and even less bits are
required to support more realistic but still very high fault rates.

Also, to be able to detect reissued requests in FtDirCMP and FtHammer-

CMP, the identity of the requester currently being serviced by the L2 or the
memory controller needs to be recorded, as well as the identity of the receiver
of owned data when transferring ownership from one L1 cache to another to be
able to detect reissued forwarded requests.

The timeouts used for fault detection require the addition of counters to the
MSHRs or a separate pool of timeout counters. Although there are up to four dif-
ferent timeouts involved in any coherence transaction, no more than one counter
is required at any time in the same node for a single coherence transaction.
In the case of FtTokenCMP, all but one timeout can be implemented using
the same hardware already used to implement the starvation timeout required
by token protocols. Also, our fault-tolerant protocols require one extra virtual
channel than their non fault-tolerant counterparts.



Finally, a less important source of overhead is the increased pressure in caches
and writeback buffers because of the blocked ownership and backup states and
the effect of the reliable ownership transference mechanism in replacements.
When a backup buffer or a writeback buffer is used, we have not been able to
detect any effect in the execution time due to these reasons. The size of the
writeback buffer may need to be increased, but our previous work [5] shows that
one extra entry would be enough to avoid any slowdown.

5 Conclusions

We propose implementing fault tolerance measures at the cache coherence pro-
tocol level to deal with transient faults in the interconnection network of CMPs
and provide several cache coherence protocols which can ensure the correct ex-
ecution of parallel programs using a non reliable on-chip IN.

In this work, we have presented a new fault tolerant protocol based on AMD
Hammer protocol which could be useful for small scale CMPs. We have thor-
oughly compared and evaluated the performance of two previously presented
fault tolerant cache coherence protocols and the new one. We have shown that
the overhead imposed in the execution time due to the fault tolerant measures
is negligible. Further, we have shown that the performance impact of moderate
fault rates in the IN is insignificant when using our protocols.

We have explained how to tune the fault tolerance parameters of the pro-
tocols to achieve the desired level of fault tolerance, performance degradation
in presence of faults and overhead in absence of faults. We have shown that,
even for fault rates which are unrealistically high, the hardware overhead of our
proposals is low. The main cost of our fault tolerance measures is a moderate
increase in network traffic, but this increase is much lower that the difference in
network usage between protocols, specially considering currently used protocols
like AMD Hammer.

Our evaluation shows that a token coherence based protocol can provide
sightly better performance than a directory based one even when the token
based protocol is subjected to higher fault rates, but at the cost of much higher
network usage. We have found that the network usage of our protocols increases
with the fault rate and hence network capacity can be a limiting factor for fault
tolerance. Due to the efficient network usage of directory-based protocols and
the small difference in performance with respect to the other two fault tolerant
protocols shown in our evaluation, we think that FtDirCMP is a good cache
coherence protocol for large scale tiled CMPs.
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