An Experimental Environment Validating the
Suitability of CLI as an Effective Deployment
Format for Embedded Systems*

Marco CORNERO, Roberto COSTA**, Ricardo FERNANDEZ PASCUAL* * *,
Andrea C. ORNSTEIN, and Erven RoHOU

STMicroelectronics
Via Cantonale 16E
6928 Manno
Switzerland

Abstract. Software development productivity for embedded systems is
greatly limited by the high fragmentation of platforms and their associ-
ated development tools. Platform virtualization environments, like Java
and Microsoft .NET, help to alleviate the problem, but because of their
advanced run-time features and libraries, they are limited to host func-
tionalities running on the system microcontroller and on top of the op-
erating system. Due to the ever increasing demand for processing power,
it is highly desirable to extend the benefits of platform virtualization to
the rest of the system programmable resources, media processors in par-
ticular, that can boost performance to a great extent. To this aim we are
developing a virtualization framework targeting high performance me-
dia applications running on deeply embedded media processors, which
we combine with traditional host virtualization environments in order
to offer a system-wide virtualization solution. In this paper we present
an experimental framework based on GCC that allowed us to validate
our choice of CLI (ISO/ECMA 335 standard, at the base of the better
known Microsoft .NET environment) as a suitable processor-independent
deployment format for embedded systems. In particular we illustrate the
GCC port to CLI that we use in our development flow, and we evaluate
the quality of the generated bytecode in terms of code size and perfor-
mance. In order to evaluate performance, we re-inject the generated CLI
bytecode back into GCC through a GCC CLI front-end that we also
illustrate, and we complete the compilation process down to native code,
whose quality is compared to the code obtained by the normal GCC
flow. In so doing we prove that using CLI as an intermediate processor-
independent deployment format doesn’t degrade performance. Compared
to other CLI solutions, our experimental environment offers a full devel-
opment flow for the C language, generating a subset of pure CLI that
does not require any virtual machine support other than a JIT com-
piler, which is therefore well suited for targeting deeply embedded media
processors running high performance real-time media applications.
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1 Introduction

The productivity of embedded software development is heavily limited by sev-
eral factors, the most important being the high fragmentation of the hardware
platforms combined with the multiple target operating systems and associated
tools. Indeed, in order to reach a wide customer base, software developers need
to port, test and maintain their applications to ten’s of different configurations,
wasting a great deal of effort in the process. Platform virtualization technolo-
gies have been very successful in alleviating this problem, as it is evident by the
widespread distribution of Java solutions on multiple platforms and operating
systems, as well as .NET on Microsoft-supported platforms. However, because
of their high-level language support, complemented by sophisticated runtimes
and libraries, Java and .NET are well suited only for host functionalities on top
of the system microcontroller and operating system. With the growing demand
for new and computational intensive applications, such as multimedia, gaming
and increasingly sophisticated man-machine interfaces, there is a clear need to
extend the computing resources available to software programmers of embedded
systems, well beyond the reach of the system microcontrollers. Historically per-
formance scaling has been achieved through increased clock frequency, a path
which is not available anymore, especially for portable embedded system, where
power consumption is a primary concern. The alternative is multiprocessing,
that by the way has been adopted in embedded systems well before its more
recent introduction in the PC domain. Multiprocessing comes in many different
flavors though, and for efficiency reasons embedded systems have clearly favored
highly heterogeneous architectures, typically resulting into two well defined and
separated subsystems: the host processing on one side, composed of one mi-
crocontroller, possibly scaling to multiple ones in the future, and the deeply
embedded side composed of multiple dedicated processors. Because of the diffi-
culty in programming the resulting systems, the deeply embedded side is mostly
programmed by the silicon vendors and sometimes by the platform providers,
while only the host part is open to Independent Software Vendors (ISV’s). In
order to respond to the increasing computational power demand, while keeping
the required efficiency, it would be highly desirable to grant access to at least
part of the deeply embedded computational resources to external ISV’s.
Two main issues must be addressed in order to achieve this goal:

1. the programming model and
2. the associated development tools.

Indeed heterogeneous multiprocessor systems are equivalent to small-scale dis-
tributed systems, for which a suitable programming model is required. In our
research we privilege component-based software engineering practices to tackle
this point, but this is not the subject of this paper, so we will not develop
it further. For the second point, it is unconceivable to worsen even more the
fragmentation problem by introducing new tools for each variant of the deeply
embedded processors. That is why we propose to extend the platform virtual-
ization approaches already adopted in environments such as Java and .NET, to



offer a homogeneous software development framework targeting both the host
and the deeply embedded subsystems.

Specifically, what we need is a microprocessor-independent format, well suited
for software deployment on a wide variety of embedded systems, which can be
efficiently Just-In-Time (JIT) compiled for deeply embedded target processors,
typically media processors such as DSP’s and VLIW’s, and which can interact
at no additional cost with existing native environments, such native optimized
libraries, as well as with existing managed frameworks like Java and .NET. To
this aim we have selected a subset of the CLI ISO/ECMA 335 standard [8, 14],
at the base of the better known Microsoft .NET environment, and the goal of
this paper is to illustrate the experimental set up that we have used to validate
this choice.

Given our primary target of performance scalability, our most important
requirement is efficiency in terms of quality of the final code generated by the JIT,
and code size as a second priority. Besides, given the target domain, i.e. compute
intensive code on deeply embedded processors, we also constraint ourselves to
the traditional programming language used in this context, which is C (we will
certainly consider C++ as well in a later phase). And finally, given the real-
time nature of our target applications, we avoid for the time being dynamic
configurations in which the JIT would be invoked while the application is already
running. Instead we pre-compile the input CLI code on the target embedded
device in one of the following two configurations:

1. at application install-time, i.e. the user downloads and application in CLI
format and during the installation procedure the JIT is invoked to translate
the CLI into native code, which is then stored into the device persistent
memory once and for all; or

2. at load time, i.e. the user keeps the application in the device permanent
memory in CLI format, and each time the application is executed it gets
translated by the JIT into native code while being loaded from the persistent
to the main memory.

Like in any platform virtualization environment, the compilation process is
split in two phases: the generation of the processor-independent format, occur-
ring in the development platform, and the JIT compilation which occurs on the
device after the deployment of the applications in a processor-independent for-
mat. For the first compilation phase we have chosen the GCC compiler because
of its wide adoption and because of its relatively recent introduction of the GIM-
PLE middle-level intermediate internal representation, which we prove in this
paper to be well suited for the purpose of generating very efficient CLI bytecode.
For the JIT part, we are developing our JIT infrastructure targeting our embed-
ded processor family, as well as the ARM microcontroller, with very encouraging
results. However the JIT is still work in progress, so we do not illustrate it in
this paper. Instead, in order to validate our choice of CLI, we have developed an
experimental GCC CLI front-end, so that we can re-inject the generated CLI
bytecode back into GCC, and complete the compilation process down to native
code, whose quality is compared to the code obtained by the normal GCC flow



(see Figure 1). In so doing we prove that using CLI as an intermediate processor-
independent deployment format does not degrade performance. We also report
the CLI code size obtained with our GCC CLI generator, which proves to be
competitive with respect to native code.

Finally, for what concerns interoperability, CLI provides the right primitives
(pinvoke) for which, once the bytecode is JIT-ted, it can be either statically
or dynamically linked with native libraries without any specific restriction or
penalty with respect to native code compiled with a normal static flow.

The following section describes our implementation. Section 3 presents our
experimental results and analyses. We review some related works in Section 4
before concluding.
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Fig. 1. Experimental Setup

2 Implementation

We implemented our experiments inside the GCC compiler [9] for several rea-
sons: the source code is freely available, it is quite robust, being the outcome of
hundreds of developers over fifteen years; it already supports many input lan-
guages and target processors; and there is a large community of volunteers and
industrials that follow the developments. Its tree-based middle end is also partic-
ularly well suited both to produce optimized CIL bytecode and to be regenerated
starting from CIL bytecode.

In the first step, GCC is configured as a CLI back-end [5]: it compiles C
source code to CLI. A differently configured GCC then reads the CLI binary
and acts as a traditional back-end for the target processor. The CLI front-end
necessary for this purpose has been developed from scratch for this research [20].



2.1 GCC Structure

The structure of GCC is similar to most portable compilers. A front-end, different
for each input language, reads the program and translates it into an abstract
syntax tree (AST). The representation used by GCC is called GIMPLE [19].
Many high-level, target independent, optimizations are applied to the AST (dead
code elimination, copy propagation, dead store elimination, vectorization, and
many others). The AST is then lowered to another representation called register
transfer language (RTL), a target dependent representation. RTL is run through
low-level optimizations (if-conversion, combining, scheduling, register allocation,
etc.) before the assembly code is emitted. Figure 2 depicts this high-level view
of the compiler. Note that the parsers of some languages first produce another
representation called GENERIC, which is then lowered to GIMPLE [19]. The
GCC internals are described in [4].

ploits all existing
GIMPLE Optimizations

Machine
Descriptions

Fig. 2. Structure of the GCC compiler

2.2 CLI Code Generator

GCC gets the information about the target from a target machine model. It
consists in a machine description which gives an algebraic formula for each of
the machine’s instructions, in a file of instruction patterns used to map GIMPLE
to RTL and to generate the assembly and in a set of C macro definitions that
specify the characteristic of the target, like the endianness, how registers are
used, the definition of the ABI, the usage of the stack, etc.

This is a very clean way to describe the target. But when the compiler needs
information that is difficult to express in this fashion, GCC developers have not
hesitated to define an ad-hoc parameter to the machine description. The machine
description is used throughout RTL passes.

RTL is the lowest level gce intermediate representation; in RTL

— each instruction is target-specific and it describes its overall effects in terms
of register and memory usage;



— registers appearing in RTL instructions may be physical registers as well as
virtual, freely inter-mixed (until register allocation pass is run, which leaves
no virtual registers);

— memory is represented through an address expression and the size of the
accessed memory;

— finally, RTL representation has a very low-level representation of types, which

are called machine modes.
Machine modes correspond to the typical machine language representation of
types, which only includes the size of the data object and the representation
used for it. Examples of RTL machine modes are: BI (single bit), QI (1-byte
integer), HI (2-byte integer), SI (4-byte integer), DI (8-byte integer), SF (4-
byte floating point number), DF (8-byte floating point number), CC (value
of a condition code).

CIL bytecode is much more high-level than a processor machine code. CIL
is guaranteed by design to be independent from the target machine and to allow
effective just-in-time compilation through the execution environment provided
by the Common Language Runtime (CLR). It is a stack-based machine, it is
strongly typed and there is no such a concept of registers or of frame stack;
instructions operate on an unbound set of locals (which closely match the concept
of local variables) and on elements on top of an evaluation stack.

For these reasons our CLI port is not a back-end in the usual sense of GCC.
We kept as much as possible the traditional structure of GCC, but much of the
high-level information is lost at RTL level, while CLI needs to retain it.

Thus, we decided to stop the compilation flow at the end of the middle-end
passes and without going through any RTL pass and to emit CIL bytecode from
GIMPLE representation.

We wrote three specific CLI passes:

— CLI simplification: most GIMPLE tree codes closely match what is repre-
sentable in CIL, this pass expands the ones that do not follow this rule. The
output of the pass is still GIMPLE but it does not contain tree codes that
the emission pass do not handle. The pass can be executed multiple times to
avoid putting constraints on other passes. It is idempotent by construction.

— Remowal of temporary variables: In GIMPLE, expressions are broken down
into a 3-address form, using temporary variables to hold intermediate val-
ues. This pass merges GIMPLE expressions to eliminate such temporary
variables. Intermediate results are simply left on the evaluation stack. This
results in cleaner code and a lower number of locals.

— CLI emission: this pass receives a CIL-simplified GIMPLFE form as input
and it produces a CLI assembly file as output.

With these three passes and a minimal target machine description we are
able to support most of C99 [15]. More details of the implementation can be
found in [6].



2.3 CLI to Native Translation

We have implemented a GCC front-end only for a subset of the CLI language,
pragmatically dictated by the need to compile the ode produced by our back-
end. However, nothing in the design of the front-end forbids us to extend it to
a more complete implementation in the future. The supported features include
most base CIL instructions, direct and indirect calls to static methods, most CIL
types, structures with explicit layout and size (very frequently used by our back-
end), constant initializers, limited access to native platform libraries (pInvoke)
support and other less frequently used features required by our back-end. On
the other hand, unsupported features include object model related functionality,
exceptions, garbage collection, reflection and support for generics.

Our front-end is analogous to the GNU Compiler for Java (GCJ) [10] which
compiles JVM bytecodes to native code (GCJ can also directly compile from Java
to native code without using bytecodes). Both front-ends perform the work that
is usually done by a JIT compiler in traditional virtual machines. However, unlike
JIT compilers, these front-ends are not executed at run-time. Instead, compi-
lation occurs ahead of time. Hence they can use much more time-consuming
optimizations to generate better code, and the startup overhead of JIT compi-
lation is eliminated. In particular, our front-end allows compiling CIL using the
full set of optimizations made available by GCC.

The front-end can compile one or more CLI assemblies into an object file.
The assembly is loaded and its metadata and code streams are parsed. Instead
of writing our own metadata parser, we rely on Mono [3] shared library. Mono
provides a comprehensive API to handle the CLI metadata and it has been easy
to extend where it was lacking some functionality. Hence, the front-end only has
to actually parse the CIL code stream of the methods to compile.

Once the assembly has been loaded, the front-end builds GCC types for all
the CLI types declared or referenced in the assembly. To do this, some referenced
assemblies may need to be loaded too.

After building GCC types, the front-end parses the CIL code stream of each
method defined in the assembly in order to build GCC GENERIC trees for them.
Most CIL operations are simple and map naturally to GENERIC expressions
or to GCC built-in functions. GENERIC trees are then translated to the more
strict GIMPLE representation (gimplified) and passed to the next GCC passes
to be optimized and translated to native code.

Finally, the front-end creates a main function for the program which performs
any required initialization and calls the assembly entry point.

Currently, the main source of limitations in the implementation of a full
CIL front-end is the lack of a run-time library which is necessary to implement
virtual machine services like garbage collection, dynamic class loading and re-
flection. These services are not required in order to use CIL as an intermediate
language for compiling C or other traditional languages. Also, CIL programs
usually require a standard class library which would need to be ported to this
environment. The effort to build this infrastructure was outside the scope of our
experiment.



2.4 Tools

From the user’s point of view, the toolchain is identical to a native toolchain.
We essentially use an assembler and a linker. As exepected, the assembler takes
the CLI in textual form and generates an objet representation. The linker takes
several of those object files and produces the final CLI executable.

At this point we rely on tools provided by the projects Mono [3] and Portable.-
NET [1]. We plan to switch to a Mono only solution, to limit the number of
dependences we have on other projects, and to avoid using the non-standard file
format used by Portable. NET for object files.

3 Experiments and Results

3.1 Setup

This section describes the experimental setup we used to compare the code gen-
erated through a traditional compilation flow with the one generated using CLI
as intermediate representation. GCC 4.1 is the common compilation technol-
ogy for all the experiments; of course, different compilation flows use different
combinations of GCC front-ends and back-ends.

The compilation flows under examination are:

— configuration a: C to native, -02 optimization level. In other words, this is
the traditional compilation flow, it is used as a reference to compare against.

— configuration b: C to CLI, -02 optimization level, followed by CLI to native,
-02 optimization level. This is a compilation flow using CLI that always
keeps -02 as the optimization level. This gives us an upper bound of the
achievable performance when going through CLI.

— configuration c: C to CLI, -02 optimization level, followed by CLI to native,
-00 optimization level for GIMPLE passes and -02 for RTL ones. This
is still a CLI-based compilation flow, in which optimizations at GIMPLE
level are skipped in the final compilation step. Even though it seems a bit
contorted, this setup is important to evaluate up to which degree high-level
optimizations can be performed only in the first step. As a matter of fact, in
dynamic environments the second compilation step may be replaced by just-
in-time compilation, which is typically more time constrained and is likely
to apply only target-specific optimizations.

The benchmarks come from several sources: some are MediaBench [17], MiBench [12],
others are internally developed. Table 1 gives a short description of each.

We ran our experiments on two targets. The first one is an PC Intel Pentium
IIT clocked 800 MHz, with 256 Mbytes of RAM, running Linux 2.6. The second
one is a board developed by STMicroelectronics named STb7100 [24]. The host
processor is a SH-4 clocked at 266 MHz. It features a 64-Mbits flash memory
and 64-Mbytes of DDR RAM. The board itself is actually a complete solution
single-chip, low-cost HD set-top box decoder for digital TV, digital set-top box
or cable box. However, in these experiments we only take advantage of the host
processor.



benchmark |description benchmark|description

ac3 AC3 audio decoder mp4dec MPEG4 decoder
adpcm ADPCM decoder mpegll2 |MPEGI1 audio layer 2 decoder
adpcmc ADPCM encoder mpeg2enc |MPEG2 encoder

render image rendering pipeline||divx DivX decoder

compress Unix compress utility sha Secure Hash Algorithm
crypto DES, RSA and MD5 video video player

dijkstra shortest path in network||yacr2 channel routing

ft minimum spanning tree ||bitcount |count bits in integers
g72lc G721 encoder cjpeg JPEG encoder

g721d G721 decoder tjpeg optimized for embedded
ks graph partitioning crc32 32-bit CRC polynomial
mp2avswitch| MPEG2 intra loop encoder + MPEGI1 layer 2 audio encoder

Table 1. Benchmarks used in our experiments

120.0%

120.0%
CLI smaller CLI smaller

100.0% - 100.0%

80.0% - 80.0%
60.0% - 60.0%

40.0% 40.0%

dijkstra ——
sha ::I

- HH H H H H o NH H H H N
0.0% In HUJ&” = T - 0.0% tprr b H NININLE E o A m,
E°E$2§=_,_$ ég @Yz oy gsv@ae = oo g a g SER DY
-eo-O%Hééw%%g B BeE E8sHEY || o BEE e RRTELE 8§5p2%
"RSECS U ZERY 5 CREEC °e zEE 5
-40.0% 3 g g -40.0% 8 8
E £
-60.0% 1 60.0% 1.1,
CLI larger larger
-80.0% -80.0%
86 SH-4

Fig. 3. Native code size wrt. CLI

3.2 Experiments

To evaluate the relevance of the CLI as a deployment format, we ran two ex-
periments. The first one evaluates the size of the code that needs to be shipped
on a device: on one hand the CLI file, and the other hand the respective native
binaries. In Table 2, the second column gives the size of the CLI executable. The
following two columns give the size of the 86 binary, in absolute value, and as
a percentage of the CLI. The respective numbers for SH-4 are given in the last
two columns. Those number are graphically represented on Figure 3.

The second experiment is about performance. Since we break the compilation
flow, one might expect that the compiler lose information in the back-end, and
thus performance. Table 3 shows the execution times (in seconds, averaged over
five runs) of our set of benchmarks compiled with the three compilation flows
for z86 target and SH-/.



CLT 286 SH-J
benchmark size size % size %
ac3 86016|| 63381(|-26.3%|| 66407|-22.8%
adpcm 8704|| 11160| 28.2%|| 13974| 60.5%
adpcmc 8704| 10943| 25.7%|| 13621| 56.5%
render 144384(/114988(-20.4%)](122232| -15.3%
compress 16384|| 18555| 13.3%|| 23567| 43.8%
crypto 73216 80796| 10.4%|| 87040| 18.9%
dijkstra 7680| 11208| 45.9%|| 13990| 82.2%
ft 18944|| 21359| 12.7%|| 23868| 26.0%
g72lc 19456|| 18226| -6.3%|| 21392| 10.0%
g721d 19456|| 18159| -6.7%| 21321| 9.6%
ks 16896|| 16196| -4.1%|| 22034| 30.4%
mp2avswitch| 272384(/202446|-25.7%]|198486|-27.1%
mp4dec 67584 53824|-20.4%|| 57636|-14.7%
mpegll2 104960|| 86279|-17.8%|| 84863|-19.1%
mpeg2enc 88576 85415| -3.6%]|[185632(109.6%
divx 67584 49134|-27.3%|| 55869|-17.3%
sha 7680|| 10960| 42.7%|| 13858| 80.4%
video 1036288||275819-73.4%||264067| -74.5%
yacr2 37376|| 34441| -7.9%|| 39653| 6.1%
bitcount 9728|| 12678| 30.3%|| 15912| 63.6%
cipeg 226304||153161|-32.3%|| 158330/ -30.0%
tipeg 54272|| 52826| -2.7%)| 56682 4.4%
crc32 8704|| 10794| 24.0%|| 13428| 54.3%

Table 2. Code size results for CLI, 286 and SH-4 (in bytes)

3.3 Analysis

The first comment we make on code size is that, even though z86 and SH-4
have quite dense instruction sets, the CLI binary is often smaller. The case of
mpeg2enc on SH-4 is extreme and comes from the fact that the native compiler
decided to statically link part of the math library to take advantage of special-
ized trigonometric routines. Several benchmarks see their code size increased by
the introduction of SH-/ nops to ensure proper alignment of basic blocks and
functions, required to achieve high performance of this architecture.

The worst case comes from the benchmark video, where the CLI is roughly
74% larger than 286 or SH-4. It turns out that two thirds of the CLI code size
is made of initializers or arrays of bitfields, for which we have a very poor code
generation. A smarter code emission (which we have planned already, but not yet
implemented) will get rid of most initializers and generate the values in-place.

Excluding the pathological cases, video for both architectures and mpeg2enc
for SH-4, the SH-/ (resp. z86) is 19% (resp. 2%) larger than CLI.

There are other opportunities for improvements: in some cases, we have to
generate data segments for both little-endian and big-endian architectures. It is
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x86 SH-4

benchmark a b ¢ a b c

ac3 0.17| 0.18| 0.19]| 0.68| 0.71] 0.71
adpcm 0.04| 0.04| 0.04| 0.16| 0.17 0.17
adpcme 0.07( 0.07| 0.06|| 0.27| 0.27| 0.27
render 2.15| 1.97| 2.08|| 9.87| 8.85| 8.86
compress 0.03| 0.03| 0.03|| 0.50{ 0.48| 0.47
crypto 0.12| 0.14| 0.15|| 0.52| 0.51| 0.53
dijkstra 0.20 0.22| 0.22|| 1.32| 1.34| 1.34
ft 0.35| 0.35| 0.29| 2.64| 2.44| 2.62
g72lc 0.47| 0.46| 0.48|| 1.86| 1.66| 1.69
g721d 0.43| 0.46| 0.42|| 1.54| 1.73| 1.64
ks 28.00]29.27(30.32(|123.44(144.04|140.27
mp2avswitch| 2.55| 2.55| 2.67|| 12.09| 11.55| 11.78
mp4dec 0.05| 0.06| 0.06|| 0.33] 0.35| 0.34
mpegll2 0.67| 0.64| 0.63| 1.77] 1.96| 1.95
mpeg2enc 0.76| 0.50| 0.79( 3.37| 3.50| 4.19
divx 0.39 0.41| 0.41]| 1.27| 1.25| 1.25
sha 0.30{ 0.30| 0.37|| 1.98| 2.17| 217
video 0.10( 0.10| 0.10|| 0.36/ 0.37| 0.37
yacr2 0.67| 0.65| 0.70|| 3.16| 3.18| 3.08
bitcount 0.03| 0.03| 0.03| 0.13] 0.11] 0.11
cjpeg 1.72| 1.72| 1.70|| 7.73| 7.53| 7.80
tjpeg 0.48| 0.44| 0.45|| 3.05| 2.90| 3.02
cre32 0.57| 0.58| 0.55| 1.53| 1.48| 1.52

Table 3. Performance results on z86 and SH-4(in seconds)

likely that, at deployment-time, the endianness is known'. In this case, the use-
less data definition could be dropped. Another reduction can come from the fact
that CLI retains all the source code function and type names in the metadata.
In the absence of reflection, which is true for the C language, those names can
be changed to much shorter ones. Using only lower case and upper case letters,
digits and underscore, one can encode (2 x 26 + 10 + 1)? = 5329 names on two
characters, drastically reducing the size of the string pool.

Our experiments confirm a previous result [7] that CLI is quite compact, sim-
ilar to 286 and roughly 20% smaller (taking into account the preceding remarks)
than SH-4, both notoriously known for having dense instruction sets.

On the performance side, consider the Figure 4 which represents the perfor-
mance of the binaries generated by the configuration b (through CLI, at -02)
with respect to a (classical flow also at -02). It measures the impact on per-
formance of using the intermediate representation. The code generated through
CLI in configuration b is, on average, barely slower than a. In other words, us-
ing -02 optimization level in all cases causes a 1.5% performance degradation

! Some platforms are made of processors of both endiannesses. It could be advanta-
geous to migrate the code from one to another and thus to keep both definitions.
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Fig. 4. Respective performance of CLI based code

on 286 and 0.6% on SH-/. The worst degradation is also contained, with -18%
for crypto on 86 and -17% for ks on SH-4.

Understanding the reasons of variations is quite difficult. Even though the
compiler infractucture is the same, each target triggers the heuristics in different
ways. For example, in the case of bitcount, a inner loop has been unrolled by
the SH-4 compiler and not by the 286 compiler, even though the input file is
identical. This lead to the difference in performance seen on Figure 4.

Figure 5 compares the two configurations that use CLI, evaluating the need
to rerun high-level optimizations in the CLI to native translation. The average
slowdown is 1.3% on SH-4 and 4% on z86. Excluding the extreme case mpeg2enc,
they are respectively 0.4% and 1.3%. Most performance degradations are within
5% on the SH-4 and within 10% on the 286. The is a good news because it means
that there is little need to run high-level optimizations on the CLI executable,
it is enough to run the back-end (target specific) optimizer. The poor results of
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Fig. 5. Performance of CLI based code without high-level optimizations
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some benchmarks are explained by some poor patterns we emit in CIL. Array
accesses are expressed in GIMPLE by a single node, e.g. a[i]. There is no such
abstraction in CLI (at least for non managed data). We are forced to emit the
code sequence corresponding to * (@a+sizeof_elemx*i). When a loop contains
several array accesses, we repeat the address computation. This happens at code
emission time, and there is no code cleanup afterwards. In configuration b, the
high level loop optimizer with take care of moving loop invariants and rewriting
induction variables. In configuration ¢, this does not happen, leaving the back-
end with poor quality code. This is obviously a inefficiency we have to fix.

Keep also in mind that those experiments rely on a prototype implementation
of the CLI to native code generator. Emphasis has been put on correctness, not
yet on quality. Even though the CLI generator is in a much better state, we
have also identified a number of areas where it could be improved.

4 Related Work

4.1 Not CLI-based

In many aspects, the Java framework [18] is the precursor of CLI. Similarly to
CLI, Java defines a bytecode based virtual machine, a standard library and it
offers services like garbage collection, multi-threading, etc. Java is widely used
in embedded systems in order to provide complementary capabilities, like games
for cellphones or TV guides for set-top-boxes. However, it is not adapted for the
core software for several reasons.

Java typically incurs a significant performance overhead, not acceptable for
performance critical applications; this is mostly because it does not offer install-
time compilation, and also because it does not provide the lower-level abstraction
the way C does: pointer arithmetic, no garbage collection, no array bound checks,
etc. The Java language [11] is high-level and object-oriented language. Porting
source code from C to Java typically involves significant changes that may even
lead to a full redesign of the application.

AppForge used to be a company selling Crossfire, a plugin for Microsoft Vi-
sual Studio .NET that converted the CLI bytecode to their own proprietary
bytecode. Developers could use VB.NET or C# to develop applications for var-
ious mobile devices. The bytecode is interpreted and is not meant to run the
performance critical parts of the application, which are still executed natively.

4.2 CLI-based

The CIL bytecode was first introduced by Microsoft .NET. It has also been
standardized by ECMA [8] and ISO [14]. CIL has been designed for a large
variety of languages, and Microsoft provides compilers for several of them: C++,
C#, J#, VB.NET. The C language, though, cannot be compiled to CIL.

Mono [3] is an open source project sponsored by Novell. It provides the nec-
essary software to develop and run .NET applications on Linux, Solaris, Mac OS
X, Windows, and Unix. It is compatible with compilers for many languages [2].
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DotGNU Portable.NET [1] is another implementation of the CLI, that in-
cludes everything you need to compile and run C# and C applications that use
the base class libraries. It supports various processors and operating systems.

Lee is a simple retargetable compiler for Standard C. In [13], Hanson de-
scribes how he targeted Lcc to CLI. He covered most of the language and ex-
plains the reasons for his choices, and the limitations. The port was meant more
as an experiment to stress lcc itself than to produce a robust compiler.

Singer [23] describes another approach to generate CLI from C, using GCC.
While based on the same compiler, it differs in the implementation: he starts from
the RTL representation and suffers from the loss of high level information. As
the title suggests, this is a feasibility study that can handle only toy benchmarks.

Lowis and Moller [26] developed a CLI front-end for GCC with a different
goal: while we focus on very optimized C code, they aim at running all the
features of CLI on the Lego Mindstorm platform [25]. However, they currently
support a fraction of the CLI features and they can run only small programs.

Very similar to our work is another CLI port of GCC done by a student as
part of the Google Summer of Code and sponsored by the Mono project [16].
This work is still very preliminary and stopped at the end of the internship.

Some applications may have a long startup time because they are linked
against large libraries. Even if the application requires only few symbols, the
runtime system might scan a large portion of the library. This also increases the
memory footprint off the application. Rabe [21] introduces the concept of self-
contained assembly to address these problems. He builds a new CLI assembly
that merges all previous references and does not depend on any other library.

While we priviledged programming embedded systems in C, using CLI as an
intermediate format, Richter et al. [22] proposed to extend CLI with attributes
to be able to express low-level concepts in C#. They encapsulate in CLI classes
the notions of direct hardware access, interrupt handler and concurrency.

5 Conclusion

We have illustrated the motivations of our platform virtualization work and the
experimental framework that we have used for validating the choice of CLI as
an effective processor-independent deployment format for embedded systems, in
terms of code size and performance. In addition we have described the implemen-
tation of our open source CLI generator based on GCC4. The presented results
show that using CLI as an intermediate deployment format does not penalize
performance, and that code size is competitive with respect to native code.

We are currently working on optimized JIT compilers for our target embed-
ded processors as well as for the ARM microcontroller. We are also investigating
how to optimally balance the static generation of highly effective CLI byte-code,
complemented with additional information resulting from advanced static anal-
yses, with the dynamic exploitation of that information by our JIT compilers
in order to generate highly optimized native code as quickly as possible in the
target embedded devices.

14



References

o=

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

DotGNU project. http://dotgnu.org.

Mono-compatible compilers. http://www.mono-project.com/Languages.

The Mono Project. http://www.mono-project.com.

Richard M. Stallman ad the GCC Developer Community. GNU Compiler Collec-
tion Internals. Free Software Foundation.

Andrea Bona, Roberto Costa, Andrea Ornstein, and Erven Rohou. GCC CLI
back-end project. http://gcc.gnu.org/projects/cli.html.

Roberto Costa, Andrea Ornstein, and Erven Rohou. CLI Back-End in GCC. In
GCC Developers Summit (to be published), 2007.

Roberto Costa and Erven Rohou. Comparing the Size of .NET Applications with
Native Code. In Proceedings of the 3rd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, number ISBN:1-59593-161-
9, pages 99-104, Jersey City, NJ, USA, 2005. ACM Press.

ECMA International, Rue du Rhone 114, 1204 Geneva, Switzerland. Common
Language Infrastructure (CLI) Partitions I to IV, 4th edition, June 2006.

Free Software Foundation. The GNU Compiler Collection. http://gcc.gnu.org.

. The GNU Compiler for the Java Programming Language.

http://gcc.gnu.org/java.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Addison-Wesley, 2nd edition, June 2000.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor
Mudge, and Richard B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In IEEE 4th Annual Workshop on Workload Charac-
terization, Austin, TX, USA, December 2001.

David R. Hanson. Lcc.NET: Targeting the NET Common Intermediate Language
from Standard C. Software: Practice and Ezxperience, 34(3):265-286, 2003.
International Organization for Standardization and International Electrotechnical
Commission. International Standard ISO/IEC 23271:2006 - Common Language
Infrastructure (CLI), Partitions I to VI, 2nd edition.

International Organization for Standardization and International Electrotechnical
Commission. Internation Standard ISO/IEC 9899:TC2 - Programming languages
- C, 1999.

Jeyasankar ”Jey”  Kottalam. Blog of Jeyasankar "Jey” Kotta-
lam who participated to Google’s Summer of Code and did a CIL
backend for GCC with Novell http://gcc-cil.blogspot.com and

http://forge.novell.com/modules/xfmod/project/?gcc-cil, 2005.

Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Communications Sys-
tems. In Proceedings of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 330-335, 1997.

Tim Lindholm and Franck Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, April 1999.

Jason Merill. GENERIC and GIMPLE: A New Tree Representation for Entire
Functions. In GCC' Developers Summit, 2003.

Ricardo Ferndndez Pascual. HIPEAC PhD Internship: Ricardo Fernandez Pascual
— GCC CIL Frontend. http://www.hipeac.net/node/823, 2006.

Bernhard Rabe. Towards a CLI Assembly Format for Embedded Systems. In
International Conference on Embedded Systems and Applications, Las Vegas, NE,
USA, June 2006.

15



22.

23.

24.

25.

26.

Stefan Richter, Andreas Rasche, and Andreas Polze. Hardware-near Programming
in the Common Language Infrastructure. In Proceedings of the 10th IEEE In-
ternational Symposium on Object and Component-oriented Real-time Distributed
Computing, Santorini Island, Greece, May 2007. IEEE.

Jeremy Singer. GCC .NET - a Feasibility Study. In 1st International Workshop
on C# and .NET Technologies on Algorithms, Computer Graphics, Visualization,
Distributed and WEB Computing, Plzen, Czech Republic, 2003.
STMicroelectronics. STb7100-MBoard Datasheet — Single-chip, low-cost HD set-
top box decoder for digital TV, digital set-top box or cable box, December 2005.
Operating Systems and Middleware Group. Lego.NET  website.
http://www.dcl.hpi.uni-potsdam.de/research/lego.NET.

Martin v. Lowis and Jan Moéller. A Microsoft .NET Front-End for GCC. In
Proceedings of .NET Technologies’2006, pages 17-20, Plzen, Czech Republic, June
2006. ISBN 80-86943-11-9.

16



