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Ana Avilés-González, Juan Piernas, and Pilar González-Férez
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Abstract—We present the design and implementation of
both an enhanced type of OSD device, the OSD+ device,
and a metadata cluster based on it. OSD+s support data
objects and directory objects. A directory object stores file
names and attributes, and supports metadata–related opera-
tions. OSD+s profit the directory implementation and features
of the underlying file systems used by the storage nodes,
achieving a great flexibility, simplicity and small overhead.
By using OSD+ devices, we show how a metadata cluster can
effectively be managed by all the servers in a system, improving
the performance, scalability and availability of the metadata
service. The performance of our new metadata cluster has been
evaluated and compared with Lustre’s. The results show that
our proposal obtains a better throughput than Lustre when
both use a single metadata server, easily getting improvements
of more than 60–80%, and that the performance scales with
the number of OSD+s.
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I. INTRODUCTION

Modern distributed storage systems deal not only with a

large volume of data but also with an increasing number

of files. Accordingly, an efficient metadata management

becomes a fundamental aspect of a system’s storage architec-

ture to prevent bottlenecks and achieve the desired features

of high performance and scalability [1].

Although metadata is usually less than 10% of the overall

storage capacity, its operations represent 50%–80% of all

the requests [2]. Metadata operations are also very CPU

consuming, and a single metadata server can easily be over-

loaded by a few clients. Hence, to improve the performance

and scalability of metadata operations, a cluster of servers is

needed. PVFS [3] and Ceph [4], for instance, use a small set

of servers as metadata cluster, and Lustre expects to provide

a similar production–ready service for version 2.2 [5].

With respect to data, many modern cluster file systems [6],

[3], [4] use hundreds or thousands of OSD [7] (Object

Storage Device) or conceptually equivalent devices to store

information and to achieve a high performance. Because

there are no commodity OSD-based disks available yet, these

devices are implemented by mainstream computers which

export an OSD-based interface, and internally use a regular

local file system to store objects.

By taking into account the design and implementation

of the current OSD devices, this paper explores the use of

such devices as metadata servers to implement the metadata

cluster. In order to deal with metadata, we propose to

extend the type of objects and operations an OSD supports.

Specifically, our new devices, that we call OSD+, support

directory objects. Unlike objects found in a traditional OSD

device (referred here as data objects), the directory objects

store file names and attributes, and support metadata–related

operations, such as the creation and deletion of regular files.

Although OSD+s are basically independent, they should

also be able to collaborate to provide a full-fledged metadata

service. For instance, there exist metadata operations (e.g.,

a directory creation) that involve two or more directory

objects, which can be managed by different OSD+s.

Since our software-based on OSD+s also use an internal

local file system to store data objects, we propose to take

advantage of this fact by directly mapping directory–object

operations to operations in the underlying file system. This

produces several benefits: (a) many features of the local

file system (atomicity, POSIX semantics, etc.) are directly

exported to the parallel file system for metadata operations

of a single directory; (b) utilization of the resources of the

storage nodes (CPU, memory, secondary storage, etc.) is

increased; and (c) the software layer which creates the OSD+

interface is thin and simple, producing a small overhead and

hopefully improving the metadata service performance.

Our OSD+ devices allow us to design a new parallel

file system, called Fusion Parallel File System (FPFS),

which combines data and metadata servers into a single

type of server capable of processing all I/O operations.

FPFS metadata cluster will be as big as the data cluster,

effectively distributing metadata requests among as many

nodes as OSD+s, and improving metadata performance

and scalability. Metadata availability will also be increased

because the temporal failure of a node only affects a small

portion of the directory hierarchy. Note that OSD+s reduce

administration costs too, due to the deployment of a single

type of server.

Although OSD+s manage all the operations, they can be

seen as members of two separate clusters: a data and a

metadata cluster. Since modern file systems already have

a good data performance and failure recovery, FPFS’s data

cluster works as and borrows ideas from them. Therefore,

this paper only focuses on the FPFS metadata cluster.
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Two main problems must be addressed in order to build

a metadata service based on OSD+ devices: (a) distribu-

tion of the directory objects among the storage devices to

balance workload, and (b) atomicity of operations which

involve more than one storage device to ensure file system

consistency.

We have evaluated our metadata cluster and compared its

performance with Lustre’s [6]. The results show that a single

OSD+ can improve the throughput of a Lustre metadata

server by more than 60–80%, and that the performance of

our metadata cluster scales with the number of OSD+s.

To sum up, the main contributions of this paper are: (a)

design and implementation of OSD+ devices (focused on the

support of directory objects), (b) design and implementation

of a metadata cluster using OSD+s, and (c) evaluation of

the performance achieved by this metadata cluster.

II. RELATED WORK

An important issue is where to store the metadata.

Ceph [4] uses objects located in the OSDs themselves,

although the management is handled by a small set of servers

which contact the OSDs to read and write metadata. Ali

et al. [8] explore the use of OSD devices to store and

partially manage directories. They save directory entries

as attributes of empty objects, and introduce an operation

to make attribute changes atomic. But OSDs are basically

passive with respect to metadata operations. They do not

discuss other important issues either: directory distribution,

handling of renames and permission changes, atomicity of

operations involving several OSDs, etc. In FPFS all the

OSD+s actively participate in the storage and management

of a complete directory hierarchy. OSD+s also take advan-

tage of the features of the underlying file systems, avoiding

the insertion of new data structures and software layers.

The namespace distribution across metadata servers is

crucial to balance the use of resources and to get a good

performance. It also determines scalability problems related

to certain metadata operations or changes in the cluster

due to additions, removals or failures of servers. Static

Subtree Partition (used by Coda [9], AFS [10], etc.) statically

assigns portions of the file hierarchy to metadata servers. It

preserves directory locality, but is vulnerable to distribution

imbalances due to changes. A variant is Dynamic Subtree

Partition, used by Ceph [4], which delegates authority for

directory subtrees to different metadata servers. Periodically,

busy servers transfer subtrees to non–busy servers.

Hashing approaches can be used [11], [12], [13] to im-

prove metadata distribution, but present drawbacks such as

the loss of directory locality and massive data migrations due

to, for example, a rename. Lazy Hybrid (LH) [11] mitigates

the migration with a metadata look–up table (MLT) which

maps hash value ranges to server ids. It also applies lazy

policies to defer a migration until a data is accessed again,

and includes a dual–entry access control list (ACL) to avoid

directory traversals to check permissions.

Features introduced by LH have been widely borrowed by

schemes such as Dynamic Hashing (DH) [13] or MHS [12].

DH combines lazy policies and an MLT with several

strategies to dynamically adjust the metadata distribution.

MHS is a directory hashing scheme that uses LH’s access

control mechanisms; it avoids data migrations due to rename

operations by assigning to every directory a unique id which

never changes.

FPFS also adopts LH’s techniques like pathname hashing

to distribute metadata, dual–entry ACLs, and lazy migra-

tions, although they are only applied to directories. This is

an important difference because a rename does not produce

a massive migration of file data, only directory objects are

migrated. Permission changes do not produce a massive

update of files’ ACLs either, because a file’s permissions are

directly derived from its own ACL and its directory’s. FPFS

also uses a different hashing function [4] which minimizes

metadata migration on cluster changes, and handles links in

a more straightforward and efficient way.

III. THE METADATA CLUSTER: DESIGN

The metadata cluster uses OSD+ devices to provide a high

performance and scalable metadata service. It also profits

them to tackle with directory renames, links and permission

changes, in a consistent and atomic manner.

A. Metadata Distribution

FPFS distributes the directory objects (the file–system

namespace) across the metadata cluster to make metadata

operations scalable with the number of OSD+s. The dis-

tribution is based on CRUSH [4], a deterministic pseudo–

random function that guarantees a probabilistically balanced

distribution of objects through the system. For a directory,

CRUSH outputs its placement group (PG), a list of devices

made up of a primary node and a set of replicas. These

devices are chosen according to weights and placement rules

that restrict the replica selection across failure domains,

avoiding, in this way, potential sources of failures and load

imbalance. As input, CRUSH receives an integer which

results from hashing the directory’s full pathname.

Hash partition strategies present different scalability

problems during cluster resizing, renames and permission

changes. When adding and removing nodes in the cluster,

our design avoids the metadata migration or imbalance

through CRUSH. Likewise, for minimizing rename over-

heads and permission changes, FPFS employs lazy tech-

niques [11]. Nevertheless, note that, in our case, renames and

permission changes only affect directories. The experimental

results will show that these operations are infrequent in

directories (similar results have recently been obtained by

other authors [11]). This fact, along with the use of lazy
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Figure 1. Directory object migration.

techniques and CRUSH, will further minimize the impact

of these operations on the metadata cluster performance.

Albeit directory objects are scattered across the cluster, the

directory hierarchy of the parallel file system is maintained

to provide standard directory semantics (e.g., when listing

directory), and to determine access permissions.

B. Directory Renames

If a directory name changes, so does its location and the

location of the underlying directories in the hierarchy. This

can incur a massive migration of metadata. To minimize

this problem, lazy policies, similar to LH [11], are applied.

Unlike LH, file renames do not produce migrations because

their locations do not depend on their pathnames.

Rename requests are sent to the parent directories of

the corresponding target directories. When the rename of a

directory occurs, the OSD+ of its parent directory broadcasts

the rename to inform the other OSD+s in the cluster (as an

optimization, note that the rename message can be sent only

to those nodes affected by the renamed path).

When an OSD+ receives an operation on a directory

whose pathname has changed, but whose object has not been

migrated yet, the OSD+ starts the migration of the object to

carry out the operation instead of returning an error (see

Fig. 1). Due to a previous rename, the source OSD+ may

not contain the directory object either. The process is then

repeated recursively, moving backwards until the directory

object is found and migrated.

C. Permission Changes

To directly determine access permissions and avoid di-

rectory traversals, dual–entry ACLs are used [11]. Given a

directory, one contains its permissions, whereas the other

its path permissions (the intersection of the directory’s

own permissions and its ancestors’ path permissions) Only

directories have dual–entry ACLs. A file’s permissions are

derived from its ACL, and its directory’s dual–entry ACL.

When checking permissions, the OSD+ containing the

target directory object searches in its metadata log for
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Figure 2. Access to a directory containing a symbolic link.

invalidations along the requested path. If they exist, the

parent directory is accessed to get its dual–entry ACL. Once

permissions are updated, the requested ACL is calculated.

Since parent’s permissions might also be invalid, this process

is repeated recursively until the changed directory or an

updated directory is reached. In this way, permissions are

also updated in a lazy fashion.

D. Links

Placing directories by hashing their pathnames presents

the problem of locating the correct OSD+s for paths that

include symbolic links. LH [11] proposes the creation of

shortcuts to deal with files whose pathnames contain sym-

bolic links. A shortcut to one of these files is created during

the first access by traversing the directory hierarchy. Any

subsequent access to the file will use the shortcut. This

approach presents two problems: (a) shortcuts take up space

and, (b) when a file access fails, we cannot know if it

is due to a missing file or a symbolic link in the name.

The ambiguity in (b) produces the traversal of the directory

hierarchy up to the root when accessing to any missing file.

Our proposal to tackle with symbolic links is simpler,

and does not suffer the missing file problem of LH. In

FPFS, a symbolic link is treated as a directory rename.

The differences are: any access to a directory containing

a symbolic link never produces the directory’s migration,

and a client accessing one of these directories receives the

resolved path to contact with the original OSD+ (see Fig. 2).

E. Atomicity

An important aspect is that all the metadata operations

must be atomic to provide a coherent view. When a metadata

operation is performed by a single OSD+ (e.g., create,

unlink, etc.), the backend file system itself guarantees the

atomicity and POSIX semantics of the operation. However,

operations such as rename, mkdir or rmdir, usually

involve two OSD+s. Now, atomicity is jointly guaranteed

through the backend file system, and a three–phase commit
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protocol (3PC) [14], where one node acts as the coordinator
directing the remaining nodes or participants.

IV. THE METADATA CLUSTER: IMPLEMENTATION

A prototype of the metadata cluster has been built on

Linux. Each OSD+ is a user–space multithreaded process,

running on a mainstream computer, which uses a conven-

tional file system as backend. The Linux syscall interface

is used to access the local file system, which must be

POSIX–compliant (remember that we want to export some

characteristics of the underlying system to the parallel file

system), and support extended attributes (see Section IV-C).

For every new established connection from a client or

another OSD+, one thread is launched. It lasts as long as the

communication channel remains open; hence, performance

is improved due to the absence of connection establishments

and termination handshakes per message. In the current

implementation, TCP/IP and UDP/IP protocols are used.

In order to evaluate FPFS on metadata workloads, we

have built a skeleton file system; that is, we have not yet

implemented data operations, data striping, fault detection,

recovery and other amenities which are implemented in

many cluster file systems and can be borrowed from them.

A. Directory Objects

Internally, a directory object is implemented as a regular

directory whose pathname is its directory pathname in the

parallel file system. Thus, the directory hierarchy is imported

within each OSD+ by replicating a partial namespace of the

global hierarchy.

To preserve the hierarchy, directory objects maintain an

entry for every file and subdirectory they contain. Hence,

there are several types of directories differentiated through

extended attributes: a first type to implement directory

objects; a second one to maintain the hierarchy (e.g., the

subdirectories); a third to internally construct the paths of

the directories objects; and finally, temporal directories to

keep renamed metadata which has not been migrated yet.

Fig. 3 shows how an FPFS’s directory hierarchy is

mapped to a four–OSD+ cluster. There are one regular file

(info.pdf) and six directories: /, home, usr1, usr2,

usr3 and docs. Directory objects (marked with o) are

stored in OSD+s 0, 1, 1, 3, 0 and 2, respectively. Note that

a directory object and its corresponding parent’s directory

object are usually placed in different OSD+s, except for

/home/usr1, where both meet, by chance, in the same

OSD+. Directories used for maintaining the hierarchy are

identified by h. Their names will appear as subdirectories

during a directory object’s scan, along with the names of

the regular files in the directory object.

Although every directory object is managed by a single

OSD+, this is probably the most efficient approach for small

directories. Studies of large file systems have found that

99.99% of the directories contain less than 8,000 files [1].
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Figure 3. Implementation of the parallel file system hierarchy in the OSD+
devices.

Striping small directories across multiple servers would

lead to an inefficient resource utilization, particularly for

directory scans that would incur disk-seek latencies on all

servers only to read tiny portions. But huge directories are

common for some HPC applications, and new mechanisms

would be necessary to deal with them1.

B. Client–OSD+ Interaction

Communication between clients and OSD+s is established

via TCP/IP connections and request/reply messages. As

requests, FPFS supports the most frequently used metadata

operations (see Table I).

A client request is usually sent to the OSD+ stor-

ing the parent’s directory object. For instance, if a

client opens /home/usr2/docs/info.pdf, it sends

a message to the OSD+ having the directory object of

/home/usr2/docs.

When an operation involves several OSD+s, that contacted

by the client carries out the operation collaborating with

other OSD+s. For example, to create /home/usr2 (see

Fig. 3), OSD+ 1, which has /homeo, initially creates

the directory /home/usr2h. If the creation is successful,

OSD+ 2 completes the directory object /home/usr2o.

FPFS must also prevent clients from doing malicious

operations on the system. Current implementation entirely

runs in user–space for fast prototyping and evaluation. But

in a production system, the client side of the file system

would be implemented in the kernel, and applications would

access the cluster file system through the VFS interface.

Authentication of the clients against the servers would

occur at mount time. Mechanisms as Kerberos or that

described in the OSD standard [15] could be used to this

end.

C. Files and Data Objects

A file’s metadata is initially stored as an empty file in

its parent directory. This improves operations like stat, since

the directory entry and its metadata are in the same OSD+.

Clients are able to see all the usual attributes (timestamps,

mode, etc.) and extended attributes stored in the empty file.

To make a fair comparison with Lustre, FPFS creates data

objects for files, implemented as regular files in the OSD+s.

1Some of those mechanisms already exist like GIGA+ [1].
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Table I
OVERVIEW OF THE 21-HOUR HP TRACE.

Operation type Count Operation type Count
Lookup 13908189 File rename 7683
Stat 2827387 Mkdir 7389
Open 2572124 Rmdir 6973
Unlink 67883 Directory rename 5
Create 41755

Each data object has an id, stored as an extended attribute in

its file’s metadata, and is made up of 2 values: object name,

and OSD+ where it is stored.

D. Logs

Lazy techniques require each OSD+ to store a metadata
log with permission changes and directory renames. All

the incoming requests are first checked against this log to

provide a coherent and consistent reply to clients accessing

metadata that may not have been updated yet. Aside from

the metadata log, the 3PC employs another log to rollback

in case of failure. Both logs are sync’ed to disk every 5

seconds, which is the time usually used by file systems like

Ext3/Ext4 to commit their metadata.

V. EXPERIMENTAL RESULTS

The performance of the FPFS’s metadata cluster has been

evaluated and compared with Lustre’s.

A. System under Test and Benchmarks

The testbed system is a cluster made up of 16 compute and

1 frontend nodes. Each compute node has two Intel Xeon

E5420 Quad-core CPUs at 2.50GHz, 4GB of RAM, and

two Seagate ST3250310NS disks of 250GB. On each node,

one of the disks has a 64-bit Fedora Core 11 distribution

which supports Lustre 1.8.2. The other disk, used as test

disk, is exported as either an FPFS OSD+ or a Lustre MDS–

MGS/OST server. The interconnect is a Gigabit network

with a D-Link DGS-1248T switch.

Experiments use up to 8 nodes. For FPFS, two configu-

rations are set up: one with 1 OSD+, and another with 4

OSD+s. For Lustre, only one configuration is set up with

1 node running all its services (MGS/MDS, and one OST),

equivalent to our configuration with one OSD+.

For clients, 1 to 4 nodes are used depending on the

test. Since we have not detected either a CPU or network

bottleneck in the clients during the experiments, several

processes are run per CPU and core (up to 256 in total)

to analyze the servers’ performance under heavy workloads.

Issues regarding Lustre should be remarked. Lustre 2.0

includes new functionality to support a metadata cluster, but

a production–ready service will not be available until version

2.2 [5]. We have not found information to set up the service

either. Lustre 2.0 has also been modified to support several

file systems as backend, although, to date, only a customized

Ext3 (“ldiskfs”) is supported. Finally, we run the tests on the

latest version 2.0.0.1, but the results were generally worse

than in 1.8.2, so they are not presented here.

Since the ldiskfs can be considered as something between

Ext3 and Ext4, FPFS has been evaluated using both as

backend. Lustre are due, in many cases, to the smaller

overhead and better performance provided by the OSD+ and

metadata cluster implementation in FPFS.

The metadata performance also depends on the formatting

options of a file system. FPFS has been using Ext3 and

Ext4 formatted with the same options that Lustre uses

in ldiskfs. Other configuration issues that may affect the

performance of Lustre have been considered too, following

the recommendations in the Lustre operations manual [16].

Finally, we have also tried to evaluate the latest version

of the Ceph’s metadata cluster [4], but different problems

have prevented us from succeeding: an excessive memory

use which produces swapping for some workloads, frequent

kernel panics, and a poor performance in many cases.

The following tests are used to evaluate and compare the

performance of FPFS and Lustre on metadata workloads:

HP Trace: it is a 21-hour trace collected in 2002 which is,

in turn, a subset of a 10-day trace of all file system accesses

done by a medium-sized workgroup using a 4-way HP-UX

time-sharing server attached to several disk arrays and a total

of 500 GB of storage space [17]. The selected period, one

of the most active, covers from 6am on the fifth trace day

to 3am on the next day. Table I shows an overview of the

metadata requests in the trace. Since we are only interested

in metadata operations, data operations are omitted.

The trace is replayed by a multithreaded program that

simulates a system with concurrent metadata operations

takes into account dependencies between those operations.

Creation/traversal of directories: made up of two tests:

the first creates directory hierarchies with empty regular

files, and the second traverses those hierarchies. Every

directory hierarchy is created by uncompressing the Linux

kernel 2.6.32.9 source tree whose files are truncated to zero

bytes. Each process accesses its own copy of the tree.

Metarates [18]: evaluates the rate at which metadata

transactions are performed. It measures aggregate transac-

tion rates when multiple processes read or write metadata

concurrently. We use 640000 files in total, distributed into

as many directories as processes. The program tests the

performance achieved by each system for three types of
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metadata transactions2: create–close, stat, and utime calls.

The results shown for every system configuration are the

average of five runs of each benchmark. Confidence intervals

are also shown as error bars, for a 95% confidence level. The

disk is formatted between runs, and unmounted/remounted

between the directory tree creation and traversal tests. The

number of client processes per benchmark varies from 1 to

256 processes, in powers of two.

For any benchmark, the scalability is calculated from 1

and 4 OSD+s results. Also, FPFS and Lustre’s performances

are compared using one node as either an OSD+ or a Lustre

server containing both an MDS/MGS and OST.

B. Results

HP Trace: Although Lustre is a full-fledged parallel file

system and FPFS only implements an incomplete metadata

service, both roughly perform the same operations. This,

along with the large performance differences in this test

(see Fig. 4.(a)), which reaches 82% for 16/32 threads and

Ext4, ensures FPFS represents a significant improvement

with respect to Lustre in time-sharing environments.

Moreover, FPFS outperforms Lustre regardless of the

backend file system used, mainly due to the thin layer

FPFS adds on top of the backend file system which directly

translates FPFS requests into backend file system requests.

Instead, Lustre adds several abstraction layers.

FPFS’s scalability, shown in Fig. 5.(a), reaches 3.04 for

Ext4 and 3.70 for Ext3, when there are 256 threads. This

value is smaller than the ideal 4, due to the dependencies

between the operations in the trace, which limits the parallel

execution of operations. However, as the number of threads

increases, so does the number of possible ongoing metadata

operations. Accordingly, scalability is better for a large

number of threads, showing that FPFS can properly deal

with large time-sharing systems.

Creation/Traversal of Directories: Figs. 4.(b) and 4.(c)

show, respectively, that FPFS’s improvement over Lustre can

reach 86% during the directory tree creation, and more than

90% for the directory tree traversal, but it greatly depends

on the file system used and the number of processes.

The different behavior of Ext3 and Ext4 is due to an

exclusive Ext4’s option, flex bg, used by default when the

file system is created. This flag improves the directory cre-

ation, but downgrades the directory traversal for more than

64 processes. However, when flex bg is unset, Ext4 roughly

behaves as Ext3. Hence, in these tests, the underlying system

and formatting options can be decisive. Due to its flexibility,

FPFS can easily be set up to get the best performance.

The scalability achieved for Ext4 increases with the num-

ber of clients (see Figs. 5.(b) and 5.(c)). It is greater than 4

2Note that the same create–close and stat metadata workloads can be
generated by more up–to–date benchmarks like mdtest [19]. However,
unlike mdtest, metarates also supports utime operations, which read and
write the same metadata element (an i-node in our case) in each transaction.

for the creation test, which can be explained by looking at

Fig. 4.(b): with 256 clients and 4 OSD+s, every OSD+s is

serving around 64 clients, and the performance of 1 OSD+

for 64 clients is much better than for 256 clients.

For Ext3, the scalability can also be quite good for the

directory tree creation, but results for the traversal test are

rather bad. We have not found a plausible explanation yet.

Metarates: FPFS outperforms Lustre as shown in

Fig. 4, except for Ext3 in the create–close test where

it performs badly. That results are consistent with those

obtained by Ext3 in the creation of a directory tree (see

Fig. 4.(b)).

The great results in the stat and utime tests are because

they first create the files, and then perform the operations,

so thousands of inodes and directory entries are already in

the caches. Hence, the performance is limited by CPU and

network bandwidth, and not by hard disks or directory sizes.

But, Lustre’s abstraction layers introduce a larger overhead.

FPFS’s scalability is super–linear in create–close and

utime tests (see Figs. 5.(d) and 5.(f)), mainly due to the

system’s write–back caches, and the number of processes:

when it is high, the increase of OSD+s reduces the applica-

tion time, reducing the number of write operations to disk

during the tests. The huge total cache size provided by four

OSD+s also decreases the number of metadata reads from

disk, which also improves the utime transactions. All this

explains the big confidence intervals for utime too, because

the amount of metadata written to disk greatly varies from

run to run, and so does the application time.

In the stat test, the scalability slightly increases with the

number of clients, although it is clear that, with a single

OSD+, the clients almost get the maximum performance.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced OSD+, a new type of OSD device

which handles not only data but also metadata requests.

OSD+s support directory objects, which store file names and

attributes, and support metadata–related operations. As in the

traditional OSDs, data in OSD+s is stored in data objects,

which mainly support read and write operations.

Our new OSD+ devices profit the existence of a local file

system in the storage nodes. OSD+s directly map directory–

object operations to directory operations in the underlying

system, hence exporting many features of the local file

system to the cluster one, and achieving a great flexibility,

simplicity and small overhead.

We have also presented a metadata cluster, based on

OSD+s, for our FPFS file system. Metadata is managed by

all the servers, improving the performance, scalability and

availability of the service. Atomicity of metadata operations

involving several OSD+s is guaranteed through a network–

commit protocol, and by the local file system in each OSD+

for operations on a single directory.

6969



 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256

F
P

F
S

 i
m

p
ro

v
e

m
e

n
t 

o
v

e
r 

L
u

s
tr

e
 (

%
)

# of threads (clients)

HP Trace   -   FPFS 1 OSD+ Lustre  1 MDT/OST

Ext4
Ext3

-100

-50

 0

 50

 100

1 2 4 8 16 32 64 128 256

F
P

F
S

 i
m

p
ro

v
e

m
e

n
t 

o
v

e
r 

L
u

s
tr

e
 (

%
)

# of processes (clients)

Dir Tree Creation - FPFS 1 OSD+ Lustre 1 MDT/OST

Ext4
Ext3

Ext4 -O  ^flex_bg
-100

-50

 0

 50

 100

1 2 4 8 16 32 64 128 256

F
P

F
S

 i
m

p
ro

v
e

m
e

n
t 

o
v

e
r 

L
u

s
tr

e
 (

%
)

# of processes (clients)

Dir Tree Traversal - FPFS 1 OSD+ Lustre 1 MDT/OST

Ext4
Ext3

Ext4 -O  ^flex_bg

(a) (b) (c)

-200

-150

-100

-50

 0

 50

 100

 150

 200

1 2 4 8 16 32 64 128 256

F
P

F
S

 i
m

p
ro

v
e

m
e

n
t 

o
v

e
r 

L
u

s
tr

e
 (

%
)

# of processes (clients)

Metarates Create - FPFS 1OSD+ Lustre 1 MDT/OST

Ext4
Ext3

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256

F
P

F
S

 i
m

p
ro

v
e

m
e

n
t 

o
v

e
r 

L
u

s
tr

e
 (

%
)

# of processes (clients)

Metarates Stat - FPFS 1OSD+ Lustre 1 MDT/OST

Ext4
Ext3

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128 256

F
P

F
S

 i
m

p
ro

v
e

m
e

n
t 

o
v

e
r 

L
u

s
tr

e
 (

%
)

# of processes (clients)

Metarates Utime - FPFS 1OSD+ Lustre 1 MDT/OST

Ext4
Ext3

(d) (e) (f)

Figure 4. Improvement obtained by FPFS 1OSD+ over Lustre: (a) HP Trace; (b) Creation of directories; (c) Traversal of directories; (d) Metarates:
create-close transactions; (e) Metarates: stat transactions; (f) Metarates: utime transactions.
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Figure 5. Scalability for FPFS 1 OSD+ and 4 OSD+s configurations: (a) HP Trace; (b) Creation of directories; (c) Traversal of directories; (d)
Metarates: create-close transactions; (e) Metarates: stat transactions; (f) Metarates: utime transactions.
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The scalability of our metadata cluster has been evaluated,

and its performance compared with Lustre’s. The results

show that a metadata cluster with a single OSD+ can

improve the throughput of a Lustre metadata server by more

than 60–80%, and that it scales with the number of OSD+s.

As a work in progress, we are currently integrating the

management of huge directories in the OSD+s.
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