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Abstract—

We present a framework for simulating the performance
obtained by different I/O system mechanisms and algorithms
at the same time, and for dynamically turning them on and
off to improve the overall system performance. A key element
of this framework is the the design and implementation of a
virtual disk inside the Linux kernel. Our virtual disk creates a
virtual block device which is able to simulate any hard drive
with a negligible overhead, without interfering with regular
I/O requests. We describe the potential of our proposal in
REDCAP, a RAM-based disk cache which is dynamically
activated/deactivated according to the throughput achieved.
The results show that, by using our virtual disk, REDCAP
obtains its maximum possible improvements: up to 80% for
workloads with some spatial locality, and the same performance
as a “normal system” for workloads with random or large
sequential reads.

Keywords-Virtual disk; disk modeling; simultaneous evalua-
tion; REDCAP.

I. INTRODUCTION

Over the years, advances in disk technology have been

very important, and vast improvements in disk drives have

been made. But the disk I/O subsystem is still the major

bottleneck for performance in many computer systems,

because the mechanical operations considerably reduce its

speed as compared to other components (CPU or RAM).

There are several mechanisms which play an important

role in the performance achieved by the I/O subsystem:

page and buffer caches of the operating system; built–in

cache (disk cache) of the disk drives; prefetching of the

operating system and of the disk drive itself; I/O schedulers;

etc. Although these mechanisms can greatly reduce the I/O

time, they are not optimal and its improvement depends on

the workload. Moreover, all of them usually have a worst-

case scenario which could downgrade the I/O performance.

So, it could be a good idea to activate/deactivate a

mechanism, or to change from one to another, depending

on the workload and expected performance. To achieve this

dynamic behavior, we need a means to evaluate several I/O

strategies at the same time.

As a first step to implement such a general system-wide

simulation, we present the design and implementation of

an in-kernel disk simulator which fulfills the above require-

ments. It is implemented inside the Linux kernel, creating a

virtual disk. It has several important features: i) it is able to

simulate any disk by using a table of I/O times addressable

by seek distance, request size and operation type; ii) the

system overhead produced by the simulator is negligible;

iii) it does not interfere with regular I/O requests because

virtual requests are processed out of the I/O path; and iv) by

updating the table dynamically while the requests are served

by the real disk, the disk behavior is modeled in a precise

way.

As a use case, the virtual disk has been used for improving

the effectiveness of REDCAP [1], [2], a RAM-based disk

cache which uses a small portion of the main memory

to enlarge the disk cache of the real disk, mitigating the

problem of a premature eviction of blocks from the disk

cache. REDCAP uses the disk simulator to evaluate the

expected performance of its cache, turning it on and off

accordingly. Its performance has been analyzed by using

different workloads, and both a fresh and aged Ext3 file

system. The results are consistent with those obtained in

previous studies: REDCAP can greatly reduce the I/O time

of the read requests (up to 80%) for workloads with some

spatial locality, and that it roughly has the same performance

as a traditional system for workloads with a random access

pattern, or large sequential reads. But, unlike previous stud-

ies, this comparison also shows that, with the virtual disk, it

can achieve its maximum possible improvements in all the

workloads.

II. RELATED WORK

There have been many proposals about disk simulators [3]

and its possible applications, which have been used during

many years to analyze the impact of disk trends [4], file

system designs [5], buffer–cache replacement algorithms [6],

and other architectural elements’ designs and policies [7], on

system’s performance.
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Simulators have usually been implemented in user space

as standalone applications or integrated in a more general

simulation environment, although, in some cases, they have

also been implemented inside an operating system’s kernel.

Wang et al. [5], for example, implement a disk simulator

inside the Solaris kernel, but it is specific to a disk model,

and is not aimed at an on-line performance analysis of a

system component, as ours is.

Table–models to simulate storage devices has also been

explored previously [8], [9], [10], [11]. Popovici et al. [11]

implement a table–based disk simulator of the underlying

storage device inside the Linux kernel (Disk Mimic) which

is quite similar to ours. As our virtual disk, it is portable

across the full range of devices, uses automatic run–time

simulation, and its computational overhead is small. How-

ever, there are also several important differences.

The first one is that their table–model only uses two

input parameters: inter–request distance, and request type.

However, we also take into account the request size. Our

results show that the size is important for small inter–

request distances, where both the disk cache, and the transfer

time are the dominant factors in the I/O time, (see subsec-

tion V-B).

Memory overheads are also quite different. For instance,

given a disk of 400 GB, the amount of memory required for

their table is around 3 GB (there are more than 80 millions

of possible of inter–request distances with interpolation).

However, our tables only require 7 MB of memory (in

our table each column represents a 1 GB of inter–request

distance, except for the first columns).

Another difference is that Disk Mimic only captures

the effects of simple prefetching, but our disk simulator

implements a dynamic model which takes into account the

effect of the disk cache on the current workload in a more

accurate way. Moreover, thanks to the dynamic model, our

virtual disk is also able to forget the past history, which

depends on the past workload (in many cases, quite different

to the current workload). By being dynamic and forgetting

the past, our model performs a very quick adaptation to the

real disk, when there is a change of the workload. But it

seems that Popovici’s on–line configuration takes a long time

to equal the off–line configuration (which, in turn, needs

two orders of magnitude more requests than our off–line

training).

Finally, they only use Disk Mimic in a new disk schedul-

ing algorithm to select the request with the shortest posi-

tioning time. But we can evaluate several I/O strategies in

parallel, and change from one to another depending on the

obtained performance.

The idea of issuing a “real” and a “virtual” request at

the same time is similar to the I/O speculation proposed by

Fraser and Chang [12], or Chang and Gibson [13]. But their

goal is just to make prefetching more efficient.

III. IN-KERNEL VIRTUAL DISK

A virtual disk inside the Linux kernel has been imple-

mented to simulate the behavior of a real hard drive. The

virtual disk is created by a driver which works much like

a block device driver. Like a regular disk, it has its own

I/O scheduler which sorts the incoming requests. These

requests are a copy of those submitted to the real disk:

before inserting a request in the scheduler queue of the

real disk, a new “virtual” request is created with the same

basic parameters of the real one. The virtual requests are

then inserted in an auxiliary queue of the virtual disk to be

processed.

The virtual disk driver creates a kernel thread that, after

a creation and initialization phase, executes a routine which

continuously performs the following actions:

1) Moves the requests from the auxiliary queues to the

scheduler queue.

2) Fetches the next request from the scheduler queue.

3) Gets the estimated I/O time needed to attend the

request from a table–based model of the real disk.

4) Sleeps the estimated time to simulate that the disk

operation is being performed.

5) After waking up, completes the request, and deletes it

from the scheduler queue.

A. Disk model

To model the storage device, a dynamic table is used.

Given a request, the resulting table–based model receives a

series of input parameters, and returns the I/O time needed

to attend the request. As we will see, our disk model tables

are trained by means of the requests issued to the real

disk, without taking into account any disk–specific feature.

Therefore, our method is able to model the behavior of any

hard drive that could be used in practice.

Although the time of an I/O operation may depend on

several factors [14], [15], our table–based model only uses

the type (read or write), size, and inter–request distance [15]

of a request to predict its I/O time. Section V-B shows that

these three parameters, along with the dynamic behavior of

the tables, are enough to accurately model the real disk.

Popovici et al. [11] claim that the logical distance between

two requests and the request type are enough for predicting

the positioning time. But we have also considered the request

size for two reasons. First, because the transfer time is

proportional to the request length [14], especially for small

inter–request distances for which this time is the dominant

factor in the I/O time. Second, because we take into account

the disk cache, and the service time also depends on the

request length in a cache hit. Subsection V-B shows that the

request size is fundamental in our disk model.

Since read and write operations take different I/O

times [14], [15], our model manages two tables: one for

read requests and other for write requests. In our tables,
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rows represent request sizes. Each table has thirty two rows,

representing sizes from 1 (4 KB) to 32 blocks (128 KB),

the minimum and maximum disk request sizes allowed by

the operating system, respectively.

Columns represent inter–request distances. But, due to the

huge number of possible inter–request distances in a modern

disk, we have assigned ranges of inter–request distances per

column. The first one represents a distance of 0 KB. Note

that this column represents some disk cache hits. From the

2
nd to the 19

th columns, the table stores values for small

inter–request distances to simulate, with a higher precision,

the disk behavior, and the effect of its prefetching and cache.

The n − th column (n from 2 to 19) represents distances

from 4 ·2n−2KB to less than 4 ·2n−1 KB. The largest inter–

request distances are represented by the rest of the columns.

The 20
th from 1 GB to less than 2 GB, the 21

st from 2 GB

to less than 3 GB, and so on. Note that the disk capacity

determines the number of columns.

To sum up, given a request, its type selects the table, its

size the row, and its inter–request distance the column. The

value of the cell is the I/O time needed to serve the request.

B. Training the table

The tables can be initialized on–line or off–line. For

the off–line initialization, we have implemented a training

program. This program has to be executed only once for

every disk model, before actually using the real disk (due to

the write operations). The training is usually “fast”. In our

system, it took 80 minutes for a 400 GB disk.

Although this program is executed in user space, tables

are built inside the Linux kernel, which records the size,

type, inter–request distance and disk I/O time of every

request. The value of each cell is the average I/O time of the

corresponding samples. Once obtained, the tables are copied

from the kernel through the /proc virtual file system, which

is also used to provide the tables to the virtual disk after the

off–line initialization.

The training program produces a random access pattern

which does not appear in many workloads. So, to model the

disk behavior in a more precise way, to adapt the model to

the current workload, and to catch the effects of the disk

cache, a dynamic method has been implemented. During

regular system operation, cells are updated with the I/O

times of the requests served by the real disk. Each cell stores

the last sixty four measured I/O times (forgetting, in this

way, past values which depends on past workloads), and its

value is computed by averaging these times. Section V-B

analyzes the sensitivity of the disk model to the number

of averaged values per cell, and shows that, thanks to

this dynamic approach, the virtual disk’s behavior greatly

matches the behavior of the real one.

With an on–line configuration, there is no training over-

head; cells are just zeroed, and then dynamically updated

as disk requests are served. For a not–yet–updated cell, the

Figure 1. Overview of the virtual disk.

model will return the average of the corresponding column

as I/O time, if this value is not zero; otherwise, it will return

the average of the nearest column with non-zero cells.

Note that our model does not explicitly consider sev-

eral modern disk features, such as zoned recording,

track/cylinder skew, and bad sector remapping. Its impact is

indirectly taken into account through the I/O times obtained

from the real disk during the dynamic update of the tables.

C. Request management

The virtual disk has to serve requests in the same order as

the real disk had produced. Since our virtual disk may serve

requests slower than the real one, dependencies between

requests have to be controlled to allow the virtual disk to

serve them in the “right” order.

A read request is usually synchronous: it blocks the

corresponding application which can not issue new requests

until the request is served. Read operations, hence, introduce

dependencies among requests of the same process. More-

over, they also introduce dependencies among requests of

related processes. A simple example is a parent process that

executes the following piece of code:

1) Issue a synchronous read request (PRQ1).

2) Create a child process and wait for it.

3) Issue a second synchronous read request (PRQ2).

If the child process issues a synchronous read request

(CRQ), the following dependencies will arise: (a) CRQ has

to be issued once PRQ1 has finished, and (b) PRQ2 can not

be issued until CRQ has not been completed.

However, there are also asynchronous reads. For instance,

the Linux kernel supports file prefetching, and transforms

(small) sequential read requests into large asynchronous

readahead ones. So, we have to distinguish between syn-

chronous and readahead operations.

Three queues, in addition to the scheduler one, are used

to maintain those dependencies (see Figure 1). The shared

queue communicates the disk simulator and the operating

system. When a request is submitted, just before inserting it

into the scheduler queue of the real disk, the system creates

a virtual request which is inserted in the shared queue.
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The waiting queue stores requests that can not be inserted

into the scheduler queue, because they have dependencies to

meet, and maintains their arrival order. Requests are moved

from the shared to the waiting queue by the virtual disk after

serving a request and before serving the next.

A request in the waiting queue is moved to the scheduler

only if it does not have pending dependencies. The following

heuristic implements the control of dependencies (although

all the dependencies are not controlled, most of them are

captured):

• Write requests are inserted immediately. They are usu-

ally asynchronous, and do not have dependencies.

• A synchronous read request will be inserted into the

scheduler queue if there is not another synchronous

read request of the same process, either ahead in

the waiting queue, or in the scheduler queue. Note

that a synchronous read request can be inserted in

the scheduler queue even when there already exists a

readahead request of the same process in this queue.

• A readahead request is inserted into the scheduler

queue if there is no synchronous read request of the

same process ahead in the waiting queue.

• The first request of a new process is inserted into the

scheduler queue when the last request of its parent

process, issued before child creation, has been served.

On the other hand, if the parent process waits for the

completion of the child, none of its new requests will be

inserted into the scheduler queue until the child exits.

The last one, the process queue, just controls which pro-

cesses have pending requests in the scheduler. The scheduler

queue itself can not be used for this task because Linux

manages it as a black box that can not be scanned.

Finally, although a virtual request has to be moved be-

tween different queues, its service time is computed in the

same way as in a real disk: the elapsed time since it is

inserted into the scheduler queue until its completion.

D. The I/O scheduler

We have adapted Complete Fair Queuing (CFQ) and

Anticipatory (AS) schedulers to work with the request queue

of the virtual disk. Moreover, since the virtual disk appears

as a regular block device, it is even possible to change its

scheduler on the fly, without rebooting the system.

Both schedulers use information about the process that

issued a request to sort the queue. But, in the virtual disk,

requests are submitted by the virtual disk itself and, hence,

they belong to the kernel thread. So, the schedulers have

been modified to store and use the process information in

a different way. The new schedulers, CFQ–VD and AS–VD,

have the same behavior as the corresponding original ones.

IV. THE RAM ENHANCED DISK CACHE PROJECT

The RAM Enhanced Disk Cache Project (REDCAP) [1]

implements a new cache of disk blocks, between the page

Figure 2. System with an active REDCAP

cache and the disk cache, which can greatly reduce the

I/O time of the read requests. This cache works as an

extension in RAM of the disk cache. A dynamic activation–

deactivation algorithm controls the performance achieved by

the REDCAP cache. The time that the cache needs to process

the requests is compared with the estimated time to process

them without cache, and, accordingly, the cache is turned on

or off. When the cache is off, the algorithm keeps studying

its possible success, and, when it detects that the cache could

be efficient, it activates the cache again.

Originally, the algorithm used the I/O time of the read

requests sent to disk to estimate other I/O times. Specifically,

a “seconds per kilobyte” average was computed by using

the I/O time and the size of the last 100 disk requests.

This average actually provided a coarse model of the disk

drive. It worked reasonably well, although had problems

in some workloads, being unable to set the proper state

of the cache [1], [2]. To solve these problems, the new

implementation uses our disk simulator, which provides

better estimated I/O times. When REDCAP is on, the virtual

disk simulates the behavior of a normal system without

REDCAP (Figure 2). When REDCAP is off, the virtual disk

estimates the benefits that REDCAP could provide.

V. EXPERIMENTAL RESULTS

To analyze the performance of REDCAP with the in-

kernel virtual disk, both have been implemented in a Linux

kernel 2.6.23 (the REDCAP kernel). We have carried out

several experiments to compare the REDCAP kernel with a

vanilla Linux kernel 2.6.23 (the original kernel).

A. System under Test and Benchmarks

Our experiments are conducted on a 2.67 GHz Intel dual–

core Xeon system with 1 GB of RAM and three disks.

One is the system disk, with a Fedora 8 operating system,

used for collecting traces. The other two are the test drives.

One is a 400GB Seagate ST3400620AS disk with a 16

MB built–in cache. It has an Ext3 file system, containing

nothing but the files used for the tests. The other is a
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Figure 3. Virtual disk’s percentage of I/O time difference with respect to the real disk in the All the benchmarks in a row test, when the clean file system
is used for 1 (a), 8 (b) and 32 (c) processes. The vertical dashed lines mark the end of a benchmark and the beginning of the next one.

320 GB Samsung HD322HJ disk with a 16 MB built–in

cache. It contains several aged Ext3 file systems in different

partitions, obtained by copying sector by sector the disk of

our department server. The file system containing the users’

home directories has been selected to perform the tests; it is

270 GB in size and, at the time of the copy, was 84% full,

and had been in use for several years. Files for carrying out

the benchmarks have also been created in this file system.

The REDCAP cache has a size of 64 MB, with 512

segments of 128 KB each. In all the tests, the initial state

of REDCAP is active.

Activity of the test disks has been traced by instrumenting

the kernels to record when a request starts, finishes, and

arrives at the queue. The REDCAP kernel also records

information about the behavior of its cache.

Both CFQ and AS, and both CFQ-VD and AS-VD (see

Subsection III-D), have been used in all the tests. Due to

space constraints, however, AS results have been omitted,

although they are very similar to those obtained by CFQ.

Our study uses the following benchmarks, each one exe-

cuted for 1, 2, 4, 8, 16, and 32 processes:

Linux Kernel Read (LKR). This one consists of reading

the sources of the Linux kernel 2.6.17 by using:

find -type f -exec cat {} > /dev/null \;

In the test disks, there are 32 copies of the kernel source,

one for each process.

IOR Read (IOR–R). The IOR [16] test (version 2.9.1) is

used for testing parallel sequential reads. This test has been

configured to use the POSIX API for I/O, one file of 1GB

per process, and a transfer unit of 64 KB.

TAC. Each process reads a file backward with the tac

command. Files are the same as those of the IOR–R test.

8 KB Strided Read (8K–SR). Processes read files of 1

GB with a strided access pattern. Each process reads the

first block of 4 KB of its file, skips two blocks (8 KB),

reads the next 4 KB, skips another two blocks, and so on.

Files are the same as those of the IOR–R and TAC tests.

512 KB Strided Read (512K–SR). Each process reads 4

KB, skips 512 KB, reads 4 KB, skips 512 KB, and so on.

When the end of the file is reached, a new read with the

same access pattern starts at a different offset. There are

four read series at offsets 0, 4 KB, 8 KB, and 12 KB. Files

used are the same as those of the IOR–R and TAC tests.

Directories Read (DR). This benchmark reads files in

selected directories in the aged file system by using:

find -type f -exec cat {} > /dev/null \;

We have chosen 32 user’s home directories, one per

process, whose sizes range from 1 to 3 GB. This test is

only executed in the aged file system, because the clean file

system does not contain these directories.

All the benchmarks in a row. The previous benchmarks

are run one after another, without restarting the computer

until the last is done. Since some of them use the same

files, the execution order tries to reduce the effect of the

buffer cache. On the clean file system: TAC; 512K–SR; 8K–

SR; LKR; and IOR–R. On the aged one: TAC; DR; 512K–

SR; 8K–SR; LKR; and IOR–R. The goal is to show how the

table–based model adapts to changes on the workload.

All the benchmarks at the same time. This test runs all

the benchmarks in parallel, and finishes when each one has

been run at least once (hence, if a benchmark ends when

others are still in their first run, it is launched again). This

test is only executed for 1, 2 and 4 processes, i.e., each

benchmark is run for that number of processes. The aim is

to analyze the behavior of our proposal when the workload

is a blend of different access patterns.

B. Accuracy of the virtual disk model

In order to evaluate the accuracy of the disk model, the All

the benchmarks in a row test has been run by making the real

and virtual disks serve the same requests (however, requests

can be served in different orders because each disk has its

own I/O scheduler); I/O times achieved by both disks have

been compared. This test has been selected because it shows

how our virtual disk adapts to changes in the workload

and, hence, indirectly, its accuracy in all the benchmarks.

It also shows how the dynamic update of the tables allows

the virtual disk to follow the real disk behavior.

Figure 3 presents the difference (in I/O time percentage)

of the virtual disk with respect to real disk for 1, 8 and
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32 processes, and the clean file system. It also shows the

evaluation of different configurations of the virtual disk

based on the number of values averaged per cell in the tables:

eight (“VD 8” in Figure 3), sixteen (“VD 16”), thirty two

(“VD 32”), and sixty four (“VD 64”). When each cell stores

the average of the last sixty four values, our model has its

best behavior by matching the real disk in a more accurate

way.

The major differences are observed at the beginning of

the test execution, when the TAC benchmark is run, due to

the disk cache. Like a sequential one, a backward access

pattern takes advantage of the prefetching performed by the

disk cache. However, at a cache miss, the time needed to read

the requested blocks is bigger than in the forward access due

to the backward seeks. Although our read table is updated

with all these times, the disk cache effect has a noticeable

impact on the stored times, making the virtual disk faster

than the real one. Despite this, the “VD 64” configuration

of the virtual disk has the best behavior, greatly matching

the real disk.

After the TAC execution, the difference between both

disks decreases quickly. In fact, for the “VD 64” con-

figuration, this difference is, on average, less than 5%.

Hence, we can claim that the virtual disk closely matches

the real one. The reason of this fast adaptation is that

only a small percentage of table cells is used and updated,

even with 32 processes. This can be observed in Figure 4,

which shows the cells that have been modified once the

execution has finished. The x–axis stands for the inter–

request distance (table columns), and the request size (table

rows) is represented in the y–axis.

One reason why the virtual disk behavior is not the same

as the real disk’s one is the difficulty to simulate the disk

cache. To analyze this influence, the same test has been

run with the disk cache off, and only for the “VD 64”

configuration, line “VD 64, disk cache off” in Figure 3.

Note that, without cache, the virtual disk matches the real

one in a very accurate way, with a difference less than 0.2%.

Finally, to show that the request size is important in our

model, we have run the same benchmark, but this time

leaving out request sizes, and modeling the disk by using,

for a given inter–request distance, the average of the values

in its corresponding column. This study has been performed

for only 1 process (“VD 64 average” in Figure 3.a), but

it is enough to see that, if request sizes are not taken into

account, the differences between our disk model and the real

disk are very significant.

C. Benchmark Results

We have performed five runs for each benchmark and file

system with both the REDCAP and the original kernel. Only

the average results are presented, including their confidence

intervals as error bars, for a 95% confidence level.

The computer is restarted after each run. Tables obtained

from the off–line training are given to the virtual disk each

time the system is initialized, and each cell averages the last

sixty four values.

Benchmarks executed independently

We first analyze the results for the benchmarks run in an

independent way. Figures 5.a and 5.b show the improve-

ments achieved by REDCAP with respect to the original

kernel for the clean and aged file systems, respectively.

TAC. With this test, REDCAP always performs better

than the original kernel, obtaining improvements of up to

28.4%. The original kernel, unlike REDCAP, is unable to

detect the backward access pattern, so it does not perform

any prefetching. REDCAP cache is active most of the time,

DR. In this one, only run in the aged file system, our

method reduces the application time (up to 9.7%) except

for 2 and 4 processes where the confidence intervals say

that the REDCAP and original kernels statistically have the

same performance.

512K–SR. For this test, REDCAP provides no contribu-

tion because its cache is not effective, being almost im-

possible to profit the prefetching performed. The algorithm

detects this fact and turns it off, which is inactive a long time.

REDCAP behavior is quite similar to the original kernel’s

one, and, statistically, both have the same performance. The

worst result is got for 1 process and the aged file system

with a degradation of only 2.1%. This is due to the time

initially lost while the cache is active at the beginning of

the run.

8K–SR. In this case, REDCAP always performs better

than the original kernel for both file systems. For this

access pattern, REDCAP achieves the best results when

its cache is always active, as it happens in this case. The

operating system does not detect this access pattern nor does

it implement any prefetching. But, with our technique, most

of the requests take advantage of the prefetching performed

by REDCAP, since almost nine out of every ten requests are

cache hits. Reductions of up to 37% and 45% are achieved

for the clean and the aged file systems, respectively.

LKR. Our method always performs better than the orig-

inal one for this test. Our cache is always active for both

file systems, what allows it to minimize the application time.

REDCAP presents significant improvements, which increase

as the number of processes grows. For 32 processes, the

application time is reduced by up to 80% and 63% for the

clean and aged file systems, respectively.

IOR–R. Since this test has a sequential access pattern,

and the prefetching techniques of both the original kernel

and the disk cache are optimized for this kind of pattern, the

REDCAP contribution is rather small. Because, the I/O times

of both disks are very similar, sometimes, our algorithm

alternates the cache state between active and inactive. But

the right decision would be to keep it inactive. For both
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(a) Clean FS, all benchmarks in a row, 1 process
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(b) Clean FS, all benchmarks in a row, 8 processes
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(c) Clean FS, all benchmarks in a row, 32 processes
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Figure 4. Modified cells in the read table once all the benchmarks in a row are executed for the clean file system, CFQ, and 1 (a), 8 (b) and 32 (c)
processes.
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Figure 5. Independent execution of the benchmarks in a) and b), with the Clean and the Aged file system, respectively, and all the benchmarks in a row
in c) and d), with the Clean and the Aged file system, respectively.

file systems, the behavior of the REDCAP kernel is very

similar to that of the original one. Taking into account the

confidence intervals, both present the same performance.

All the benchmarks in a row

Due to space constraints, the figures for the benchmarks

executed in a row are not shown, and we only explain the

more important aspects.

The results present a similar behavior to those obtained

when the benchmarks are executed independently. Hence,

the virtual disk adapts very quickly to the workload changes.

Only minor differences are observed due to both the buffer

and the REDCAP caches.

Clean file system and 1 process. When TAC has finished,

a significant amount of file blocks are already in the buffer

cache. So, 512K–SR has to read only a small amount of

data from the end of the file. After the first series, all the

blocks requested by the other three series that are not in the

buffer cache, are in our REDCAP cache. But the original

kernel has to read all these blocks. For this reason, REDCAP

unexpectedly gets an improvement of 50%.

When 8K–SR is executed, our method reads more blocks

than the original kernel, which reduces the improvement

from 37% to 5%. This is due to the size of the kernel image,

the REDCAP kernel image is larger than the original kernel

one. So, after the execution of the two first test, with the

REDCAP kernel, there are less file blocks in memory.

At the end of 8K–SR, 4 out of every 12 file blocks are in

RAM. And, when LKR ends, all these blocks are still in main

memory. So, IOR–R produces a “strided” access pattern

which prevents the original kernel from performing large

prefetching requests. Whereas, the REDCAP prefetching is

used widely, getting an improvement of 32%.
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Figure 6. All the benchmarks executed at the same time.

Clean file system and 2 processes. At the end of the TAC

execution, part of the files read by the two processes are in

memory. But, due to the size of the kernel images, there are

less file blocks in memory with REDCAP. So, when 512K–

SR is run, REDCAP reads more blocks than the original

kernel. In this case, a degradation of up to 5% is produced.

Aged file system and 1 process. Now, there is an un-

expected result only for IOR–R and 1 process. Again, the

original kernel cannot perform large prefetching requests,

whereas the REDCAP prefetching is completely exploited,

achieving an application time reduction of 22%.

All the benchmarks at the same time

Results for the application time achieved by REDCAP, as

compared to the original kernel’s ones when all the bench-

marks are executed in parallel, are presented in Figure 6.

Our method always performs better than the original one,

reducing the application time by up to 80%.

VI. CONCLUSIONS

This work presents the implementation of a virtual disk

inside the Linux kernel which has several interesting prop-

erties: i) it creates a disk simulator which is able to simulate

any disk by using a table of I/O times; ii) since it has the

same interface as any other block device, it makes it possible

to use any I/O scheduler with minimal modifications; iii)

it does not interfere with regular I/O requests; and iv) it

simulates the service order of the requests in a real disk by

considering the possible dependencies between them.

Our virtual disk can be used for a simultaneous evaluation

of different system mechanisms, and for dynamically turning

them on and off depending on the performance obtained.

Specifically, we have described how REDCAP can use the

virtual disk to activate or deactivate its cache. Our results

show that, by using our proposal, REDCAP usually obtains

its maximum possible performance.

A line of future work is the application of the virtual disk

to other I/O mechanisms, such as I/O scheduling.
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