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ABSTRACT
The selection of the right I/O scheduler for a given workload
can greatly improve the performance of a system. But, this
is not an easy task because several factors should be consid-
ered, and even the scheduler deemed the “best” can change
at any moment. So, we present a Dynamic and Automatic
Disk Scheduling framework (DADS) that compares different
Linux I/O schedulers and automatically and dynamically
selects that which achieves the best performance for any
workload. The implementation described here compares two
schedulers by running two instances of a disk simulator in-
side the Linux kernel, each one having a different scheduler.
Our proposal compares the schedulers’ service times, and
changes the scheduler in the real disk if the performance is
expected to improve. DADS has been analyzed by using dif-
ferent workloads, hard disks, and schedulers. Results show
that it selects the best scheduler of the two compared at each
moment, improving the performance and exempting system
administrators from selecting a suboptimal scheduler.

Categories and Subject Descriptors
D.4 [Operating Systems]: Storage Management—Secon-
dary storage

General Terms
I/O scheduling, hard disk

Keywords
I/O disk scheduler, DADS

1. INTRODUCTION
Nowadays, disk performance is a dominant factor in a sys-

tem’s overall behavior. Indeed, because mechanical opera-
tions considerably reduce disk speed as compared to other
components (e.g., CPU [3]), the I/O subsystem is still the
major performance bottleneck in many computer systems.
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Despite this fact, over the last decades, advances in disk
technology have been very important, and many proposals
have improved the overall I/O performance. Hence, several
mechanisms play an important role in the I/O subsystem:
operating system’s page and buffer caches; disk drives’ built–
in caches (disk caches); prefetching; schedulers; etc.

Regarding I/O schedulers, many policies have been pro-
posed to improve the I/O performance. Some of them try to
minimize seek time, other proposals also take rotational de-
lay into account, and even there are algorithms that assign
deadlines to requests and try not to violate them. However,
none of the scheduling algorithms is optimal in the sense
that the improvement that they provide depends on several
factors: workload characteristics, file systems, hard disks,
tunable parameters, etc. They even usually have a worst–
case scenario which could downgrade I/O performance.

In Linux 2.6.23 (used in our experiments), there exist four
I/O schedulers: Anticipatory (AS), Complete Fair Queuing
(CFQ), Deadline, and Noop. System administrators can
select any of them, but choosing the one that always achieves
the best performance is not easy. Most of the times, they
do not make any selection, and the default scheduler (CFQ)
is used, when a different one could improve the throughput.

Therefore, we present the design and implementation of a
Dynamic and Automatic Disk Scheduling framework (DADS)
that, by using an enhanced version of an existing in–kernel
disk simulator [2], is able to automatically and dynamically
select the best Linux I/O scheduler by comparing the ex-
pected performance achieved by each one. Our first im-
plementation compares two schedulers, by running two in-
stances of the disk simulator. One of the instances has the
same scheduler as the target real hard disk, simulating its
behavior. The other one has the scheduler with which the
comparison is made, simulating the behavior of the real disk
with a different scheduler. Disk instances calculate the ser-
vice time of all the served requests. DADS then compares
these service times, and decides a scheduler change in the
real disk if its performance is expected to improve.

DADS has two important features: i) it can be used on
any hard disk, since the new in–kernel disk simulator is able
to simulate any disk, including its built-in cache and re-
quest arrival order; ii) it does not interfere with regular I/O
requests because simulation and comparison are performed
out of the I/O path.

DADS performance has been analyzed by using different
workloads, four different hard disks, both fresh and aged
Ext3 file systems, and the four Linux schedulers. The results
show that it selects the best scheduler of the two compared
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at each moment, improving I/O performance.
To sum up, the main two contributions of this paper are:

(a) the design and implementation of the Dynamic and Au-
tomatic Disk Scheduling framework, which is able to choose
the I/O scheduler that achieves the greatest performance,
exempting sysadmins from selecting a suboptimal scheduler;
and (b) a new disk simulator which not only estimates disk
I/O times but also simulates thinking times and disk caches.

2. RELATED WORK
The idea of an adaptable operating system or its compo-

nents is not new. VINO [7] is an example of such operating
systems. Denys et al. [1] also provide a good survey of this
kind of systems. However, unlike DADS, VINO and other
existing proposals have never been implemented.

Regarding scheduling, several proposals exist. ADIO is an
Automatic and Dynamic I/O scheduler selection algorithm
which selects among Deadline and CFQ based on expired
deadlines [6]. It has two shortcomings: (a) deadlines can
wrongly make ADIO select the scheduler which produces
the worst performance, and (b) comparison always has to
be done with Deadline. DADS, however, optimizes service
time, and can compare any schedulers.

The Two–layer Learning Scheme [10] automates the sched-
uler selection by combining workload and request–level learn-
ing algorithms, and by using machine learning techniques.
Two drawbacks of this proposals are that there must exist
a learning phase, and the appearance of unexpected access
patterns can produce the selection of the wrong scheduler.
DADS does not have these problems because it dynamically
decides the scheduler by means of the current requests.

3. DADS
DADS is a mechanism that compares any Linux I/O sched-

ulers and automatically and dynamically selects that which,
among them, obtains the best I/O performance. For simplic-
ity, the version described here only compares two schedulers.

To carry out the analysis, we use a much–enhanced ver-
sion of an existing disk simulator (see Section 4), run inside
the Linux kernel. DADS uses two instances of the simula-
tor (configured to mimic the target real disk) to evaluate
each scheduler’s performance. One instance, called VD RD
(Virtual Disk of the Real Disk), has the same I/O sched-
uler as the real disk, simulating its behavior. The other,
called VD VD (Virtual Disk of the Virtual Disk), has the
scheduler with which the comparison is made, simulating
the behavior of the real disk with a different scheduler (see
Figure 1). By using two instances, and not the real disk and
one instance of the disk simulator, comparison is fairer, and
allows us to know that differences are due to the schedulers’
performance, and not to error in the disk simulation itself.

Service time of a request is calculated as the elapsed time
since it is inserted into a scheduler queue until its comple-
tion. A scheduler’s performance is measured as the sum of
the service times of all requests that it serves. Our proposal
selects the scheduler that optimizes this total service time.

4. IN-KERNEL VIRTUAL DISK
The new in–kernel virtual disk simulator, used for imple-

menting DADS, consists of two subsystems: a virtual disk
(VD), which works as a block device driver and hard disk

Figure 1: Overview of DADS.

drive, and a request arrival simulator (RAS), which simu-
lates the request arrival to the I/O scheduler of the VD.

The virtual disk is implemented by using a kernel thread
that continuously performs the following routine: fetch the
next request from the scheduler queue; get, from a disk
model, the estimated I/O time needed to attend the request;
sleep the estimated time to simulate the disk operation; and
after waking up, finish the request and inform to RAS.

RAS is also a kernel thread which inserts requests into
the I/O scheduler queue by simulating the arrival of the re-
quest to the block device driver (see Section 5). It simulates
thinking times: times elapsed between the completion of a
request and the arrival of the next request issued by the
same application. Since the virtual requests of a process
have to be served in the same order as they were produced,
RAS also controls dependencies between requests to allow
VD to serve them in the “right” order. This control is done
among requests of related processes too.

We have added a new table of read I/O times to the initial
table–based disk model [2], and introduced a disk cache too.

Since read operations take different times depending on if
they are cache hits or misses, now there are two read tables,
making the disk model manage three tables in total. The
three tables have the same structure, the only difference is
the kind of values they store in each cell: I/O write times,
cache–miss read times, and cache–hit read times.

Although the I/O time of a request may depend on several
factors [4], to predict its disk time, our table–based model
only uses its type, size, and inter–request distance [9], and,
for read operations, information about its possible cache hit
or miss. So, given a request, its type and the simulated
cache determine the table to use, its size specifies the row,
and its inter–request distance the column. The correspond-
ing cell gives the I/O time for the request. As in the original
model [2], cell values are dynamically updated through the
I/O times provides by the real hard disk when serving re-
quests issued by user applications (realize that the disk sim-
ulator itself never submits requests to the real disk). This
allows DADS to adapt the cell values to the workload char-
acteristics. Specifically, the value of each cell is the average
of the last 64 corresponding samples.

Note that, if we used a single read table as in the original
model [2], the estimated read times would not be as exact
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Table 1: Parameters of the computers.

Computer 1 Computer 2
CPU Intel dual–core Xeon Intel dual–core

2.67 GHz 1.86 GHz
RAM 1 GB 2 GB

1st Test Disk Seagate ST3250310NS Seagate ST3500630AS
Capacity 250 GB 500 GB

Cache 32 MB 16 MB

2nd Test Disk Samsung HD322HJ Seagate ST3500320NS
Capacity 320 GB 500 GB

Cache 16 MB 32 MB

as we need, since a cell’s value would be the average of both
cache hit and miss times, and the differences between them
are usually very large. DADS, however, requires the disk
cache, and the corresponding hit and miss times, to be pre-
cisely simulated, because the hit ratio produced by a sched-
uler greatly determines its performance. Also note that we
need a single write table because a write–back policy and
an immediate reporting are normally used in disk caches [8],
and a request is considered “done” as soon as it is in cache.

There are many properties and features, most of them
considered a trade secret, that specify a disk cache’s be-
havior [4, 8]. Hence, it is not easy to simulate a disk cache,
specially if it has a dynamic behavior. To reduce the number
of possibilities, we model a cache that uses both read–ahead
and immediate reporting, is divided into segments of equal
size, and uses LRU as replacement algorithm. We have not
considered a dynamic division of the cache. The number of
segments and read–ahead sizes are calculated with a captur-
ing program that uses the instructions given by Worthington
et al. [9], and Schindler and Ganger [5], whereas the cache
size is obtained from the manufacturer’s specification.

We only perform read–aheads on cache misses, or partial
misses. And, we have considered an adaptive read–ahead
policy which uses two read–ahead sizes: one for sequential
accesses (the maximum size), and one for random accesses.

Of course, our disk cache model does not fully simulate a
disk cache and it is just an approximation. But, our intent
is to develop one “alike enough” that allows us to study the
performance of a system with different I/O schedulers. Our
results show that our cache model meets this requirement.

The virtual disk has an I/O scheduler to manage its re-
quest queue. Moreover, since it appears as a regular block
device, it is even possible to change its scheduler on the fly.

We have adapted CFQ and AS to work with the virtual
disk. Both use information about the process that issued a
request to sort the queue, but, in the virtual disk, all the
requests are submitted by RAS. Consequently, CFQ and AS
have been modified to use the process information in a differ-
ent way, although the new CFQ–VD and AS–VD schedulers
have the same behavior as the corresponding original ones.

Noop and Deadline, on the contrary, do not use any pro-
cess information, and can be used without any modification.

5. DADS: IMPLEMENTATION
As aforementioned, DADS has been implemented to select

between two Linux I/O schedulers by using two instances of
the disk simulator and comparing their service times. Both
instances serve the same requests, which are a copy of those
issued to the real disk. “Virtual” requests are then inserted
into the virtual disks for a later processing (see Figure 1).

Table 2: Parameters of the simulated disk caches.

read–ahead size
Disk Model Size # seg. sequential non sequential
ST3250310NS 32 MB 63 256 sectors 256 sectors
HD322HJ 16 MB 64 256 sectors 96 sectors
ST3500630AS 16 MB 20 256 sectors 32 sectors
ST3500320NS 32 MB 128 256 sectors 256 sectors

A first issue to address is that schedulers on the virtual
disks (and, hence, the disk simulator instances themselves)
tend to be alike. The problem is that the request arrival
order in the VD VD and VD RD instances depends on the
order in which the real disk’s scheduler attends requests.

To avoid this mimicry problem, the simulation process is
run in three phases. The first one collects requests from the
real disk. During a time interval, the system copies to RAS
requests issued to the real disk. For each virtual request,
RAS calculates its dependencies and its thinking time. No
request is queued into the scheduler; no simulation is done.

The second phase runs the simulation itself. RAS queues
requests into its scheduler, and controls their dependencies
and thinking times while the virtual disk serves requests
simulating the real disk. For each served request, its ser-
vice time is calculated. During this phase, the system does
not copy any new requests. This phase finishes when both
instances have served all the collected requests.

The last one compares the total service times achieved
by the two disk simulator instances. If the performance
achieved by VD VD improves that obtained by VD DR, it
is expected that the performance of the real disk will also
improve with a scheduler change. So, schedulers on the real
disk and VD VD are exchanged. Note that the change is
also done in VD DR. Once this phase is finished, the process
starts over by collecting new requests.

As we are aware that a scheduler switch is time consum-
ing (the active scheduler’s queue has to be drained, and the
new one initialized), a change is done iff the improvement
achieved by VD VD is greater than 5%. Moreover, an esti-
mation of the time needed to do a change is also considered.
So, if TV D RD and TV D V D are the service times of VD RD
and VD VD, respectively, and TChange is the time estima-
tion to carry out a change, a scheduler switch is done when:

TV D V D + TChange < 0.95 · TV D RD. (1)

6. EXPERIMENTAL RESULTS
DADS and the in–kernel virtual disk simulator has been

implemented in a Linux kernel 2.6.23 (the DADS kernel).
We have carried out several experiments comparing two by
two the Linux schedulers. The results have, in turn, been
compared with those achieved by a vanilla Linux kernel
2.6.23 (the original kernel) with the same schedulers.

We have used two computers, with three disks each. One
is the system disk, with a Fedora Core 8 operating system,
used for collecting traces to evaluate the proposal. The other
two are the test drives. Table 1 presents the main features
of the computers and test disks.

All the test disks have an Ext3 file system. Three have
a clean file system, but Samsung HD322HJ has an aged file
system, in use for several years. Files for carrying out tests
have been created in all of them.

We run the following tests, each one executed for 1, 2, 4,
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8, 16, and 32 processes:
Linux Kernel Read (LKR). Each process reads its own

copy of sources of the Linux kernel 2.6.17 by using:
find -type f -exec cat {} > /dev/null \;

IOR Read (IOR–R). IOR (version 2.9.1) is used for
testing parallel sequential reads. It has been configured to
use the POSIX API for I/O, and a transfer unit of 64 kB.

TAC . Each process reads a file backward with tac.
8 kB Strided Read (8k–SR). With a strided access pat-

tern, each process reads the first block of 4 kB of its file, skips
two blocks (8 kB), reads the next 4 kB, skips another two
blocks, and so on.

512 kB Strided Read (512k–SR). Each process reads
4 kB, skips 512 kB, reads 4 kB, skips 512 kB, and so on.
When the end of the file is reached, a new read with the
same access pattern starts at a different offset. There are
four read series at offsets 0, 4 kB, 8 kB, and 12 kB.

To show how DADS adapts to changes on the workload,
switching the scheduler if necessary, the previous tests are
run in a row, without restarting the computer until the last
is done. The order is: IOR–R; LKR; 512k–SR; TAC ; and
8k–SR. To reduce the effect of the buffer cache, and since all
the tests but LKR use the same 32 files of 1 GB (one file per
process), we have established that, until 16 processes, IOR–
R, 512k–SR, TAC and 8k–SR use files which have not been
used by the previous test. But, since there are only 32 files,
for 32 processes it is not possible to meet this restriction.
Due to space constraints, results obtained when the tests
are run independently are not presented here, but they are
similar to those achieved when the tests are run in a row.

Although we have compared all the I/O schedulers in
Linux 2.6.23, due to space constraints, we only present the
results of comparing CFQ vs Deadline. Nevertheless, the
omitted results are very similar to those shown here. For the
DADS kernel, two configurations have been tested: CFQ–
Deadline and Deadline–CFQ. CFQ–Deadline, for example,
means that, initially, the real disk uses CFQ, VD RD uses
CFQ–VD, and VD VD Deadline. It also means that CFQ
is the default scheduler, that is, the scheduler selected when
a high rate of changes occurs and the change mechanism
is deactivated for not hurting the system performance (the
mechanism is reactivated later if the rate decreases). In the
case of the original kernel, two configurations have also been
tested: one using CFQ, and another one with Deadline.

Figures show how DADS adapts to the best scheduler,
and the improvement achieved by each configuration over
the worst one. Specifically, figures show:

Tconf

Max(TCFQ−Deadline, TDeadline−CFQ, TCFQ, TDeadline)
(2)

where TCFQ−Deadline, TDeadline−CFQ, TCFQ and TDeadline

are the application times for the two DADS kernel and the
two original kernel configurations, respectively, and Tconf is
one of those four application times. Lines in figures represent
the results of the original kernel, and histograms are the
results of the DADS kernel.

The results are the average of five runs. The confidence
intervals, for a 95% confidence level, have been calculated
(but omitted for clarity), and are less than 5% of the mean.

Since the computer is restarted after each run, all tests
have been done with a cold page cache. Initial disk simula-
tor tables, obtained from an off–line training, are given to
the virtual disks each time the system is initialized. The con-

figuration of the simulated disk caches appears in Table 2.
Every first phase of the simulation takes 5 seconds.

Figure 2 depicts the results for the four test disks. The
first histogram shows the total application time, calculated
as the sum of the application times of the five benchmarks,
and summarizes our proposal’s behavior. The other his-
tograms show the application time of each individual test.

As we can see, for a given number of processes, DADS fol-
lows the best scheduler, changing the scheduler, if necessary,
when moving from one test to the next one. Adaptation can
easily be seen in figures 2.a and 2.d. Also note that DADS
even outperforms the best scheduler in several cases.

IOR. For the sequential access pattern, DADS works as
expected, and it adapts to the best scheduler. However, for
Deadline–CFQ and any number of processes but 32, there
is a small degradation with respect to the best scheduler
because the worst one (Deadline) is initially used. A change
is usually made in the first check, but the time initially lost
during the first interval is not recoverable.

LKR. With this test, our mechanism adapts to the best
scheduler, although there are a small degradation with re-
spect to the best one in some cases. Since the scheduler
that provides the best behavior with this benchmark is dif-
ferent from the one that presents the greatest performance
with IOR (executed previously), LKR initially has the worst
scheduler for its access pattern. Although a change is done
in the first check, the increase in I/O time produced by the
bad scheduler hurts the final result. This problem appears
in all the test disks except the ST3200630AS model.

512k–SR. The DADS kernel presents the same behavior
than the best scheduler, and only one case is remarkable.
With the ST3500630AS disk and 32 processes, DADS is not
able to select Deadline and spends all the time with CFQ.
The problem is that, in the vanilla kernel, the application
time difference between both schedulers is less than 5.7%,
and DADS is not able to detect such a small difference.

TAC. With a backward access pattern, the DADS behav-
ior depends on the disk used. For ST3500630AS, the best
scheduler is selected, achieving the same performance as the
original kernel. But, for the other disks, it is not able to
perform this selection, and increases the service time with
respect to the best achievable result. For any number of
processes except 32, the schedulers obtain almost the same
performance, and our mechanism is not able to catch this
difference. It introduces a small overhead which increases
slightly the application time, although I/O time remains
the same. For 32 processes, DADS frequently alternates
from one scheduler to another, and the control mechanism to
avoid such frequent changes is put into effect. Performance
of each configuration is close to its default scheduler’s one.

8k–SR. DADS always selects the best scheduler in this
test. But, in some cases, it introduces a small overhead
that slightly increases application time with respect to the
original kernel and the best scheduler. The overhead is more
noticeable for 1 process since application time is quite small.

One unexpected result in this test is that the DADS kernel
slightly increases I/O time (and, hence, application time)
with respect to the original kernel when both use the same
scheduler. The cause is the small overhead added when it
copies a real request. This overhead delays the arrival of the
request to the scheduler queue of the real disk. The delay
is small, but big enough to make the disk wait for the time
of almost a full rotation, because the requested sectors have
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(a) Seagate ST3250310NS
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(b) Samsung HD322HJ
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(c) Seagate ST3500630AS
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(d) Seagate ST3500320NS

Figure 2: Configurations CFQ–Deadline and Deadline–CFQ
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just passed. Nevertheless, it is important to note that this
problem only affect requests which are cache misses, and
jump a small amount of sectors with respect to a previous
one; it also depends on the disk model (different hard drive
can have different sector layouts). So, the problem does not
appear in the other tests and is almost negligible for the
ST3500630AS and ST3500320NS drives.

7. CONCLUSIONS
DADS is a framework that automatically and dynami-

cally selects the best of any Linux I/O schedulers for a given
workload. The implementation presented here evaluates the
expected performance of two I/O schedulers by running two
instances of an in–kernel disk simulator. Simulations cal-
culate the service times achieved by the schedulers for the
served requests. DADS then compares these service times,
and decides a scheduler change in the real disk if its perfor-
mance is expected to improve.

Results show that DADS selects the best scheduler at each
moment, improving the I/O performance. Hence, by using
DADS, system administrators are exempted from selecting
a suboptimal scheduler, which can provide a good perfor-
mance for some workloads, but may downgrade the system
throughput when workloads change.
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