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Abstract—Management of directories with millions of files,
accessed by thousands of clients at the same time, is a problem
recently identified in HPC environments. This paper introduces
an OSD+-based technique to deal with those directories. We use
directory objects in OSD+ devices for dynamically distributing
a huge directory among several servers. Directory objects work
independently, achieving good performance and scalability.
Experiments show that, by using just 8 OSD+s and Ext4, FPFS
is able to create, stat and delete more than 70,000, 120,000
and 37,000 files per second, respectively. With ReiserFS, these
numbers are 118,000, 97,000 and 67,000. Experiments, however,
have produced unforeseen results too. While distribution is
beneficial when a huge directory is accessed by many clients,
it can also downgrade the performance when several huge
directories are concurrently accessed by a few clients.

Keywords-Distributed huge directories; metadata cluster;
OSD+; FPFS.

I. INTRODUCTION

The average size of files in many storage systems, that

store petabytes of data, is decreasing, and this, in turn,

increases the number of files that a modern distributed

storage system has to deal with [1], [2], [3]. The increase

in the number of files strains the metadata services provided

by storage systems because metadata operations are CPU

consuming and sensitive to storage devices’ performances.

A growing number of files is not the only problem file

systems need to face. Another issue is the increasing use of

huge directories with millions or billions of entries accessed

by thousands of clients at the same time [2], [4], [5],

[1]. This scenario appears, for instance, for data-intensive

parallel applications that create a file per thread/process,

instead of creating a single large file for all the threads,

because design and implementation is easier [6], [7].

To deal with a large number of files, some parallel file

systems use a small cluster of metadata servers [8], [9], [10].

Other parallel file systems expect to provide a similar service

shortly [11], [12]. Only a few provide (or plan to provide)

some support for huge directories [10], [11], [13].

The Fusion Parallel File System (FPFS) builds such a

metadata cluster by means of OSD+ devices [14]. OSD+s

support directory objects. Unlike objects found in a tradi-

tional OSD (referred here as data objects), directory objects

store file names and attributes, and support metadata-related

operations. Through OSD+s, an FPFS metadata cluster is as

large as its corresponding data cluster. OSD+s have already

proved they can achieve a high performance and scalability

for metadata operations [14].

In this paper, we show how to integrate the management

of huge directories with OSD+s. Our approach leverages

the existing directory objects in OSD+s. We propose to

dynamically spread a huge directory across several directory

objects in different OSD+s, where the original directory

object will act as the primary directory object while the

rest as secondary directory objects. We also describe the

implications that this technique has for other FPFS elements.

We have evaluated our metadata cluster’s performance

and scalability for huge directories. Experiments show that,

using Ext4 or Reiserfs as backend files systems, dozens and

even hundreds of thousands of operations per second are

performed with just a few OSD+s. Also, scalability achieved

is very good, being superlinear in some cases. These results

show that FPFS can fulfill the tough requirements of many

HPC environments for huge directories such as a billion

files per directory, and more than 40,000 files created per

second [6].

Experiments, however, have also produced unexpected

results. When a huge directory is accessed by hundreds or

thousands of clients at the same time, distribution is ben-

eficial. But, when several huge directories are concurrently

accessed by a few clients, distribution can downgrade the

performance of the metadata service. Moreover, the dynamic

redistribution of several huge directories at the same time

can also be expensive if it is not properly implemented. This

paper analyzes these problems along with some possible

solutions.

II. RELATED WORK

GPFS [15] distributes hugedirs through extendible hash-

ing. However, working at a disk-block level basis, and using

several locking mechanisms, limit the performance achieved

by GPFS for some directory-related operations, including

those on large directories [4]. Boxwood [16] also supports

hugedirs by means of B-link trees, each one distributed

among several servers. Nevertheless, since Boxwood relies

on a global lock service for synchronized metadata accesses,

it lacks the ability to effectively deal with a concurrently-

accessed directory.
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Patil and Gibson [2] introduce GIGA+, a POSIX-

compliant scalable directory design. GIGA+ incrementally

hashes a directory into a growing number of partitions, that

are migrated among metadata servers for load balancing.

Migrations are individually done by the servers, without a

system-wide serialization, synchronization or notification.

By merging ideas from extendible hashing and GIGA+,

Yang et al. [13] present an implementation of distributed

directories for OrangeFS. When a directory is created, an

array of dirdata objects is allocated, with each object on one

metadata server. Directory entries are then spread across the

different dirdata objects. Unlike GIGA+, the initial number

of active dirdata objects is configurable. They claim that

the splitting process is expensive and, for a directory that is

expected to be large, it is better to use all the dirdata objects

to get better scalability from the start. A similar approach

has been proposed for Lustre [11], where directories are

statically striped over several MDTs.

Ceph [10] writes a directory’s content to the object storage

devices using the same striping and distribution strategy as

file data, although metadata operations are carried out by

a small cluster of metadata servers. Each metadata server

keeps a record of the popularity of metadata within a

directory, and adaptively hashes individual directories when

they get too big or experience too many accesses.

Finally, Shvachko [17] proposes the use of HBase for

maintaining the HadoopFS namespace, making HBase a

scalable replacement for the HadoopFS’s NameNode. To

partition the namespace, Shvachko analyzes several existing

approaches such as hashing of file paths, Ceph-like par-

titioning, and fixed-height tiles. In theory, some of these

approaches (e.g., hashing of file paths) can also be used

for splitting a big directory into several servers.

Our proposal for managing hugedirs in FPFS is similar

to that of Lustre and OrangeFS, although, unlike them, it is

dynamic since new directories are not initially distributed,

and only directories which grow too large get distributed.

Our focus, however, is not on proposing new mechanisms for

hugedirs but on showing that distributed directories can be

efficiently implemented in an OSD+-based metadata cluster.

Thanks to the use of OSD+s devices, FPFS can provide

better performance for hugedirs accessed by thousands of

clients than other parallel file systems.

III. ARCHITECTURE OF FPFS

Generally, current parallel file systems have three main

components: clients, metadata servers and data servers. Data

servers are usually OSD [18] devices that export an object

interface, and manage the disk data layout.

FPFS [14], however, merges data and metadata servers

into a single type of server (see Figure 1) by using a new

enhanced OSD that we call OSD+. OSD+s are capable

not only of managing data as a common OSD does, but

also of handling metadata. By using OSD+s, we increase

Figure 1. FPFS architecture.

the metadata cluster capacity (becoming as large as the

data cluster), performance and scalability. The new devices

simplify the storage system since no difference between two

kind of servers is made.

A. OSD+

Besides the low-level block allocation functions, tradi-

tional OSDs can take advantage of their device intelligence

by implementing more complex tasks [10], [19]. OSD+s

take this approach a step further by also delegating metadata

management to storage devices.

Traditional OSDs are only able to deal with data objects,

that support operations like creating and removing objects,

and reading from and writting to a specific position in an

object. Our design, however, extends this interface to define

directory objects capable of managing directories. They

support metadata operations like creating and removing

directories and files, or getting directory entries.

Currently, there exist no commodity OSD-based disks, so

mainstream computers, exporting an OSD-based interface,

are deployed. Internally, a local file system is used for storing

objects. We take advantage of this fact by directly mapping
directory operations in FPFS to directory operations in the

local file system. Thus, we export many features of the

local to the parallel file system, such as concurrency and

atomicity, when a metadata operation involves one directory

(one OSD+). When it involves more than one OSD+ (e.g,

a rename), the participating OSD+s deal with concurrency

and atomicity by themselves, without client involvement.

Note that OSD+s are substantially different from the

modified OSD devices proposed by Ali et al. [20]. These

authors explore the use of OSD devices for storing and

partially managing directories. Their proposal saves direc-

tory entries as attributes of empty objects, and introduces

a new OSD operation to make attribute changes atomic.

However, despite this operation, OSDs are basically passive

with respect to metadata operations, which are performed

by a small cluster of dedicated metadata servers. Unlike this

approach, in FPFS, all the OSD+s actively participate in the
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storage and management of a complete directory hierarchy

by means of the directory objects.

B. Metadata Distribution

FPFS distributes the directory objects (and, therefore, the

file-system namespace) across the metadata cluster to make

metadata operations scalable with the number of OSD+s, and

to provide a high performance metadata service. In the cur-

rent implementation, distribution is based on CRUSH [10],

a deterministic pseudo-random function that guarantees a

probabilistically balanced distribution.

Hash partition strategies present different scalability

problems during cluster resizing, renames and permission

changes. In FPFS, cluster resizing problems are addressed by

CRUSH, which minimizes metadata migrations and imbal-

ances due to the addition and removal of devices. Renames

and permission changes are managed in FPFS by means of

lazy techniques [21]. Note that, in our case, renames and

permission changes only affect directories.

C. Directory Objects

Internally, a directory object is implemented as a regular

directory whose pathname is its directory pathname in FPFS.

Therefore, the directory hierarchy of the parallel file system

is imported within the OSD+s by partially replicating the

global namespace. Thus, the directory hierarchy is main-

tained, allowing FPFS to provide standard directory seman-

tics, and to obtain file and directory access permissions.

To preserve the hierarchy, directory objects maintain an

entry for every file and subdirectory they have by creating

empty files and directories in the local file system.

D. Clients

In order to obtain the layout of a file, an FPFS client

first contacts the OSD+ that contains the object of the

parent directory of the target file. Once the file layout

information is found, the FPFS client communicates with the

OSD+s storing the data objects, similarly to other parallel

file systems.

IV. HUGE DIRECTORIES

So far, we have assumed that a directory object is man-

aged by a single OSD+. This is probably the most effi-

cient approach for small directories; striping across multiple

servers would lead to an inefficient resource utilization,

particularly for directory scans that would incur disk-seek

latencies on all servers only to read tiny portions [2].

However, huge directories (or hugedirs for short) are also

common for some HPC applications, and new mechanisms

are necessary to deal with them, specially when thousands

of clients work concurrently on the same hugedir.

A. Design

FPFS dynamically distributes hugedirs among several

OSD+s, considering a directory is huge when it stores more

than a given number of files. Once the threshold is exceeded,

the directory is distributed along a subset of OSD+s. In doing

so, the directory’s workload is shared out among several

OSD+s, avoiding an OSD+ to become a bottleneck.

There are a primary and several secondary OSD+s sup-

porting a hugedir. The former has the primary directory
object, which is the object that a client would usually

contact if the directory was not distributed (i.e., directory

objects for small directories are also their primary directory

objects). The latter store secondary directory objects, which

are contacted by clients aware of the directory’s distribution.

A client unaware of the distribution of a hugedir contacts

its primary object as any other regular directory object,

obtaining the OSD+ id (oid) through the following function:

oid = CRUSH(hash(dirname))% osd count. (1)

As reply, the client gets a distribution list containing the

primary and secondary OSD+ ids. The client stores this list

in memory, and uses it for calculating the location of the

hugedir’s entries. Once aware, the client changes from the

directory-level to a “local” file-level distribution, used for

allocating new entries, and looking up existing ones, in the

hugedir:

oid = osd set[(hash(filename)%osd set count)]. (2)

osd set is the distribution list; as index, the value returned

by a hash function applied on a file name is used.

Once distributed, new files in the hugedir are created

following Equation 2. Note, however, that files created

before the directory was identified as huge, should be redis-

tributed to follow Equation 2 too. Due to this redistribution,

a directory can be found in three different states: “non-

distributed”, “distributing”, and “distributed”. The first is

the most common state, where all directories storing less

entries than the threshold belong to. The second lasts as

long as the redistribution of existing entries does. During

this state no requests can be performed on the hugedir, and

clients are informed of the new distributed state. Finally, the

“distributed” state is set once redistribution finishes.

B. Huge directory renames

In the aforementioned Equation 2, we get rid of the

directory’s name and include the distribution list. With this

approach, we avoid migrating all the directory objects of a

hugedir on a rename and, usually, only the location of its

primary object will change.

Two rename scenarios arise. When the OSD+ storing

the new primary object is already in the distribution list,

no migration is done, only a change of roles between two
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Figure 2. Hugedir rename where the new primary OSD+ is already in the
distribution list.
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Figure 3. Hugedir rename where the new primary OSD+ was not in the
distribution list.

OSD+s takes place (see Figure 2). However, when the OSD+

storing the new primary object is different from those in

the distribution list (see Figure 3), apart from changing the

primary object location, a migration is also needed. All

entries in the previous primary object are moved to the new

primary object, just like a small directory rename works [14].

C. Clients

OSD+s decide when a directory is distributed, but clients

are not aware of that distribution until they perform a regular

operation on the directory. At that moment, OSD+s reply

informing it is distributed and attach its distribution list.

Then, clients cache this list and apply the corresponding

function (see Equation 2) to find the directory’s entries.

Eventually, this cached information may be out of date

due to a rename or deletion of a hugedir. Hence, some

inconsistent scenarios can happen given that the clients’ side

is only updated when they send a request to a directory.

To keep coherency, each directory object stores a times-
tamp with its creation time, and includes it in any message

sent by the object. In turn, clients cache that information to

later check whether a hugedir has changed.

Two coherency problems can happen. Firstly, after a

hugedir rename, a client sends a request to an old secondary

OSD+. Secondly, a hugedir is removed and created again,

and the client sends a request to an OSD+ storing the new

directory object. In the former case, the OSD+ does not

store that hugedir anymore, so replies that the directory does

not exist. In the later, the OSD+ replies affirmatively, but

the client will note timestamps differ. In both cases, the

client cleans up the cached information for the directory, and

retries the operation following Equation 1. After retrying, the

client receives a new distribution list if the directory is huge.

D. Implementation

In the current implementation, FPFS distributes a direc-

tory when its size is bigger than a given size, because

stat does not return the number of files in a directory.

The distribution is dynamic: initially, a directory is managed

by a single OSD+ which stores the directory object. As

soon as the directory is identified as huge, a distribution

process reallocates directory entries. This process is led by

the primary OSD+, which sends the reallocated entries to

the secondary OSD+s in parallel, following Equation 2.

To assure clients do not get an inconsistent view of the

directory, every OSD+ records its directories activity through

an AVL tree. If a directory is non-distributed, clients access-

ing it are monitored until the state changes into distributing.

Then, the tree is used for blocking any new request and

for controlling when outstanding requests on the directory

finish. Once the latter requests are done, distribution takes

place. All requests received during the process are returned

to the clients together with the distribution list, so they can

forward those requests to the appropriate OSD+s.

Relocated entries are not erased from the primary objects

during distribution due to the remove operation’s poor per-

formance on local file systems (see Section V). However,

this may result in inconsistent scenarios, for instance, dur-

ing hugedirs scans, where each OSD+ returns the entries

contained in its primary or secondary object (depending

on its role). Not having those entries removed from the

primary object can cause incoherent results (e.g., duplicated

entries). To avoid that, the primary object checks whether

it is responsible for an entry before sending it to a client.

Checking is performed on-the-fly by using Equation 2.

This is far quicker than deleting files or marking them as

“deleted” with extended attributes. Thanks to this approach,

we have sped up the distribution process by one order of

magnitude.

Hugedir’s directory objects are internally marked as either

primary or secondary through extended attributes, as well as

directory states and distribution lists. To get a faster access,

a directory’s state is also recorded in the AVL tree the first

time is accessed.

V. EXPERIMENTAL RESULTS

This section analyzes performance and scalability

achieved by FPFS for hugedirs. We have built a skeleton

file system for FPFS where both OSD+s and clients are

completely implemented in user-space [14]. Since we are fo-

cused on metadata, the version used only supports directories

and some related operations. Metadata logs are committed

to disk every 5 seconds, as in other file systems [22].

The tested system is a cluster made up of 12 compute

and 1 frontend nodes. Each compute node has two 2.50 GHz

Intel Xeon E5420 Quad-core CPUs, 4 GB of RAM, and two

Seagate ST3250310NS disks of 250 GB. On each node, the

system disk has a 64-bit Fedora Core 11, and the test disk is
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exported as an FPFS OSD+. The interconnect is a Gigabit

network with a D-Link DGS-1248T switch.

For clients, 1 to 4 nodes are used depending on the test.

For FPFS, configurations varying the number of OSD+s (1,

2, 4 and 8), and backend (Ext4 or ReiserFS) are set up.

Metadata performance depends on the options used for

formatting and mounting a file system. Specifically,

an Ext4 file system is formatted with options -J
size=400 -i 4096 -I 512 -O dir_index,
extents, uninit_groups, and a ReiserFS one

with --journal-size 32749. Mount options are,

for Ext4, user_xattr, noatime, nodiratime and

data=writeback, while, for ReiserFS, user_xattr,

notail, noatime and nodiratime.

We have analyzed two different aspects of the FPFS

support for hugedirs: (a) throughput and scalability for a

single shared directory, and (b) performance when several

shared and non-shared hugedirs are accessed at the same

time.

Three benchmarks (create, stat and unlink) have been

used for creating, stating, and deleting empty files1. In all

the benchmarks, operations on files in a hugedir are evenly

distributed among the clients accessing the directory.

Results are the average of, at least, five runs of each test.

Confidence intervals are shown as error bars, for a 95%

confidence level. Test disks are formatted between runs for

create, and unmounted/remounted between tests for the rest.

A. Baseline Performance

We start with a baseline for the performance of various

file systems with the create benchmark. We compare results

obtained by running this test locally on Ext4 and ReiserFS to

those obtained by running the same test on a separate single

client and single server instance of FPFS, OrangeFS [13],

HadoopFS [17], and NFSv3 (we also tried Ceph [10], but

several bugs prevented us from succeeding). Except in FPFS,

that uses Ext4 and ReiserFS, the other cases use Ext4 as

backend.

For FPFS, the create benchmark is linked with the FPFS

library that implements POSIX-equivalent file operations. A

similar approach is used for OrangeFS and HadoopFS. Local

file systems, and the NFSv3 client, perform file operations

through system calls.

Table I shows the baseline performance. As we can

see, local file systems deliver high directory insert rates,

with ReiserFS surpassing Ext4 by 24%. Any networked file

system achieves a modest performance, being FPFS the file

system which obtains the best results among them.

A reason of the low performance achieved by networked

file systems, compared with that reached by local ones, is

network overhead, specially for FPFS. For instance, FPFS

1Note that similar tests can be performed by means of well-known
benchmarks such as metarates and mdtest.

Table I
FILE CREATE RATE IN A SINGLE DIRECTORY ON A SINGLE SERVER AND

400000 FILES IN TOTAL.

File system File creates (ops/s)
in one directory

FPFS (library API)
Ext4 3,648
ReiserFS 3,859

Local file systems
Ext4 18,023
ReiserFS 22,324

Networked file systems
NFSv3 filer 1,479
HadoopFS 262
OrangeFS 253

takes 109.64s to create 400,000 files on Ext4 (this time

yields 3,648 creates per second, as shown in Table I).

Exchanging 1,600,000 messages of 64 bytes each between

two cluster nodes (this is roughly the same network traffic

produced by FPFS in this test) takes 80.66s. Considering

that Ext4 needs 22.19s to locally create 400,000 files, we can

conclude that FPFS’s overhead is small (109.64 − 80.66 −
22.19 = 6.79s), and its limiting factor is the interconnect.

B. Single shared directory

This section shows results obtained when a single shared

directory is accessed by hundreds of processes at the same

time to create, get the status of and delete files. There

are 256 clients, spread across 4 cluster nodes, that work

on equally-sized disjoint subsets of the files. In total, the

shared directory contains 200, 000 × N , 400, 000 × N , or

800, 000×N files, where N is the number of OSD+s. Since

files are uniformly distributed among the OSD+s, directory

objects, containing the files of the hugedir, are of equal size.

Figure 4 depicts performance obtained by FPFS, in trans-

actions per second, when a hugedir is distributed. Results

achieved by Ext4 and ReiserFS are compared. While Reis-

erFS gets better results during create and unlink operations,

Ext4 is better during stats.

As we can see, directory size determines the performance

obtained by FPFS with Ext4 to a large extent, achieving

better results for smaller directory objects. Note that clusters

of hundreds or thousands of OSD+s are expected, so a

hugedir distributed among many OSD+s will typically use

small directory objects. Performance hardly depends on the

directory objects’ size with ReiserFS as backend system.

These good results have been obtained with a dynamic

distribution. The time taken by this distribution is usually

small (< 2 s). A directory is identified as huge when its size

is greater than 244 kB. Given the lengths of the file names,

this is equivalent to distribute a directory when it has more

than 8,000 files. This threshold is based on the observation

that 99.99% of directories contain less than 8,000 files [2].

Note that the threshold’s size affects only the create

benchmark, because the distribution of a directory only takes

place when its size increases. Neither the stat nor the unlink
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Figure 4. Operations per second obtained by FPFS with Ext4 (three first graphs) and ReiserFS (three second graphs) for the create, stat and unlink
benchmarks, when using one shared directory.

benchmarks are affected by the threshold, since the directory

is already distributed when the test is run.

Impact of directory size on performance also determines

the scalability reached by Ext4 and ReiserFS (Figure 5

shows results for Ext4; results for ReiserFS have been

omitted due to space restrictions). Speedup is computed by

comparing the performance obtained when not distributing

and when distributing the files in a single shared directory.

As the number of OSD+s increases, we get outstanding

results, specially for Ext4, achieving a superlinear scalability

in all the tests. Note that scalability cannot be calculated

from Figure 4 since the number of files varies with the

number of OSD+s, and we have to compare directories of

equal size.

Superlinear scalability when using Ext4 as backend is

mainly due to the fact that Ext4 performance gets worse

as the number of entries in a directory grows, as already

explained. Hence, by distributing the management of a direc-

tory, we are not only sharing out the workload among various

servers, but also creating smaller secondary directory objects

on the local file systems. With ReiserFS, performance also

decreases with the directory size, but the downgrade is much

softer. Only when a directory is really huge (millions of

files), the downgrade is noticeable and ReiserFS can achieve

a superlinear scalability too. Some experiments carried out

(also omitted due to space constraints) have showed that

performances of Ext4 and ReiserFS vary over the course of

the time for the create test. But, while Ext4 performance

decreases from roughly 95,000 ops/s at the beginning to

45,000 ops/s at the end of the create test (with 800,000 files

per directory object and 8 OSD+s), ReiserFS gets a quite

sustained rate of ops/s, and its performance only decreases

from roughly 145,000 ops/s to 115,000 ops/s.

C. Multiple huge directories

As previous section shows, distribution is beneficial for a

hugedir accessed by hundreds or thousands of clients at the

same time. However, results can be rather different when

several hugedirs are concurrently accessed by a few clients.

Table II shows performance obtained by FPFS on Ext4

when the number of clients per hugedir varies. There are 8

directories, each containing 320,000 files (2,560,000 files in

total). Directories are distributed: never, dynamically (when

a directory roughly exceeds 8,000 files), and always (i.e.,

when threshold is 0). Note that 1 client per directory is an

example for non-shared directories, and that, with 32 clients

per directory, there are 256 clients altogether.

Given a benchmark and number of processes per direc-

tory, since workload is always balanced, we should expect

roughly the same throughput for the three distribution con-

figurations at least. However, results say that distribution

downgrades performance for non-shared hugedirs (1 client

per directory). When there are 16 or 32 clients per directory,

distribution slightly improves performance in some cases,

but downgrades it in other cases, for instance, in create.

The main reason is that distribution makes disk accesses
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Figure 5. Scalability obtained by FPFS with Ext4 and a single directory: (a) create; (b) stat; (c) unlink.

Table II
PERFORMANCE OBTAINED BY FPFS ON EXT4 WHEN THE NUMBER OF CLIENTS PER HUGEDIR VARIES. THE 8 EXISTING DIRECTORIES ARE

DISTRIBUTED: NEVER, DYNAMICALLY (WHEN A DIRECTORY ROUGHLY EXCEEDS 8,000 FILES), AND ALWAYS (I.E., WHEN THRESHOLD IS 0).
BENCHMARK NAMES APPEAR BOLD-FACED. CONFIDENCE INTERVALS (NOT SHOWED) ARE SMALLER THAN 10% OF THE MEAN.

create 1 client/directory 16 clients/directory 32 clients/directory

# OSD+ Never Dynamic Always Never Dynamic Always Never Dynamic Always

1 215.27 217.66 212.75 152.48 152.21 152.20 154.98 154.14 154.28
2 150.67 198.90 197.40 60.48 86.03 86.55 63.06 84.23 83.44
4 106.87 164.34 160.30 33.53 52.49 45.61 34.27 49.74 43.06
8 92.75 140.15 137.74 21.29 38.05 36.09 21.59 31.70 30.34

stat 1 client/directory 16 clients/directory 32 clients/directory

# OSD+ Never Dynamic Always Never Dynamic Always Never Dynamic Always

1 243.18 240.60 243.37 203.00 203.79 207.18 207.79 206.79 206.75
2 126.56 136.51 134.37 77.01 80.36 77.17 77.62 79.61 76.90
4 76.60 85.14 83.29 24.06 26.76 25.38 23.73 26.97 24.97
8 68.98 77.87 77.09 12.63 14.68 14.09 11.91 15.26 14.64

unlink 1 client/directory 16 clients/directory 32 clients/directory

# OSD+ Never Dynamic Always Never Dynamic Always Never Dynamic Always

1 512.57 511.49 507.72 1099.27 1217.70 1118.20 1522.21 1366.19 1438.73
2 163.31 230.08 226.24 258.33 398.13 381.33 280.84 455.29 448.77
4 85.97 143.52 137.06 80.67 164.19 103.50 95.90 202.02 147.50
8 63.67 114.10 111.41 21.49 79.17 77.79 22.02 81.55 51.02

less efficient because there are always 8 directory objects

per server that are accessed almost at the same time. Since

directory objects are spread over the disk, this increases head

seeks and trashes disk caches. It also limits the scalability

achieved. Without distribution, however, directories and re-

quests are evenly distributed across the servers, making the

number of directory objects per server smaller (8/N , where

N is the number of OSD+s). Less directory objects means

less head seeks and, hence, better performance.

We have carried out the same tests using ReiserFS as

backend. Results obtained (not shown here due to space

restrictions) are quite similar, although there exist more

cases where distribution improves performance over non-

distributed directories. The reason is again related to the

head-seek overhead. Since ReiserFS does not divide a disk

into block groups, it puts directory objects close on disk.

This produces shorter seeks, and reduces seek times.

The above results question directory distributions purely

based on directory sizes. More important than the size are

the number of processes accessing a directory, and the

availability of resources in the servers. A problem is that

both things can vary quickly, and continuously changing the

servers a directory is split into seems inefficient. However,

distribution is important for hugedirs, as we have also seen.

Therefore, we need to find better ways to split directories.

Since a problem seems to be the relative poor performance

of the hard disks for random accesses, the use of SSD

devices for metadata could be a solution. These devices does

not suffer the head-seek overhead problem, so we assume

that an increase in the number of directory objects and

requests per OSD+, caused by the distribution of hugedirs,

should not downgrade servers’ throughput.
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VI. CONCLUSIONS AND FUTURE WORK

An OSD+-based technique for FPFS to deal with huge

directories accessed by thousands of clients at the same time

has been presented. This proposal uses the directory objects

provided by the OSD+ devices to dynamically distribute

a huge directory among several servers. Directory objects

work independently, achieving good performance and scal-

ability. Moreover, we have optimized the redistribution of

existing directory entries, and avoided massive metadata

migrations when a huge directory is renamed.

Results show that FPFS exceeds today’s requirements of

HPC applications regarding huge directories (a billion files

per directory, more than 40,000 files created per second, etc).

By using just 8 OSD+s and ReiserFS, FPFS is able to create,

stat and delete more than 118,000, 97,000 and 67,000 files

per second, respectively. Scalability is also very good, being

superlinear in some cases.

Experiments, however, have produced unexpected results

too. While distribution is beneficial when a huge directory

is accessed by many clients, it can also downgrade the

performance when several huge directories are concurrently

accessed by a few clients. A limiting factor here is the small

number of IOPS supported by current hard drives. As future

work, we plan to experiment with SSD devices to confirm

our hypothesis.
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