
The RAM Enhanced Disk Cache Project (REDCAP)

Pilar González-Férez
Universidad de Murcia

pilar@ditec.um.es

Juan Piernas
Universidad de Murcia
piernas@ditec.um.es

Toni Cortes
U. Politècnica de Catalunya

and Barcelona Supercomp. Center
toni@ac.upc.es

Abstract

This paper presents the RAM Enhanced Disk Cache
Project, REDCAP, a new cache of disk blocks which re-
duces the read I/O time by using a small portion of the
main memory. The essential ideas behind REDCAP are to
enlarge the built–in cache of the disk drive, imitate its be-
havior, and take advantage of its read–ahead mechanism
by prefetching disk blocks. REDCAP is intended to be I/O–
time efficient, and implements an activation–deactivation
algorithm which turns its cache on and off dynamically de-
pending on the I/O time improvement achieved. REDCAP
has been implemented in the Linux kernel. The experimen-
tal results show that our proposal reduces the application
time by up to 80% for workloads which exhibit some spatial
locality, while it has the same performance as a traditional
system for those workloads which have a random access
pattern, or perform large sequential reads.

1. Introduction

Nowadays, all disk drives have a built–in cache (called
in the rest of this paper disk cache) that acts both as a
speed–matching buffer and as a block cache. In all modern
computers, this cache plays a crucial role in the I/O subsys-
tem, because it reduces to a large extent the bottleneck that
means the secondary storage of many systems.

The size is one of the most important aspect in the de-
sign of a disk cache. Although the manufactures tend to in-
tegrate larger caches, their sizes don’t meet the system de-
signers’ recommendations (0.1%–0.3% of the disk capac-
ity [6], or even up to 1% [4]). For instance, a current disk of
500 GB usually has 16 MB of cache, i.e., only 0.003% of its
capacity. The main reasons of this small size are a tradeoff
between cache size and cost, and space limitations.

Since it is expected that the larger the disk cache, the
better the performance achieved, the potential benefits of
using a small part of the main memory to enlarge the disk
cache should be considered. The aim of this paper is to

present the RAM Enhanced Disk Cache Project (RED-
CAP), which is a new cache of disk blocks. The funda-
mental ideas behind our proposal are to use the new cache
as an extension, in main memory, of the small disk cache,
to imitate its behavior, and to take advantage of its read–
ahead mechanism by prefetching some disk blocks, with
the purpose of improving the I/O time, specially the read
I/O time. To extend the disk cache, a new level in the cache
hierarchy, referred to as REDCAP cache, is introduced just
between the page cache and the disk cache (see Figure 1).
In order to emulate the behavior of the disk cache, and to
make use of its prefetching, our technique also prefetches
consecutive disk blocks that could be served to a new read
I/O request later. The I/O performance will be improved
whenever a read operation can be satisfied from the RED-
CAP cache, without sending it to disk.

One might also consider the enlargement of the page
cache provided by the operating system as a way to ob-
tain a similar behavior. However, REDCAP is based on a
prefetching policy which is completely different from that
of the page cache. REDCAP prefetches blocks which are
adjacent on disk, while the page cache usually reads in ad-
vance data blocks of the same file, which can be fragmented
on disk. As our results will prove, even with a small use of
main memory, REDCAP is able to obtain a performance
which is much better than that obtained by the usual poli-
cies of the page cache.

Furthermore, our technique implements an activation–
deactivation algorithm which studies the improvement
achieved by its cache all the time and turns it on and off
depending on this improvement.

We have implemented REDCAP in the Linux Kernel
2.6.14. The resulting implementation has been evaluated
by using several benchmarks, and its results has been com-
pared with that obtained by an original system without
modifications. For some benchmarks, the application time
has been greatly reduced and improvements of up to 80%
have been achieved. For those benchmarks with random
reads, or large sequential read accesses, REDCAP has a
similar behavior to a traditional system.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Figure 1. REDCAP cache hierarchy

The rest of the paper is organized as follows. Section 2
contains a brief description of previous work related to our
proposed technique. REDCAP’s design and implementa-
tion are discussed in section 3. A comparison of our results
with respect to a traditional system is performed in section
4. Finally, some conclusions and an outlook for future work
are provided in section 5.

2. Related Work

Since Maurice Wilkes proposed the cache concept [13],
there has been an extensive and rich research in improving
computing systems’ performance by using several types of
cache hierarchies. We will consider only work related to
disk caches or techniques that take advantage of them.

Ruemmler and Wilkes [9] present a good summary of
the disk characteristics and its operation. Shriver [10] gives
an extensive description of disk caches, their parameters
and their behavior. Karedla et al. [6] examine the use
of caching as a means of decreasing the system response
time and improving the data throughput of the disk system.
Hsu and Smith [4] analyze the performance impact of vari-
ous I/O optimization techniques and suggest that a reliable
means of improving performance is to use larger caches.

Worthington et al. [15] propose two algorithms that
use the contents of the disk cache, Shortest Positioning
(w/Cache) Time First (SPCTF) and Aged Shortest Position-
ing (w/Cache) Time First (ASPCTF). However, their results
are not conclusive [14, 3], because they depend on both the
workloads and the type of system model used.

Operating systems also incorporate some kind of
caching and prefetching in their file systems. Linux im-
plements a simple mechanism which prefetches file blocks
when it detects a sequential access to a file. Other mecha-
nisms are also possible, like the method which prefetches
entire files by taking into account the file access pat-

terns [7]. Note that our technique is independent of the
prefetching of the operating system and/or application.

Finally, a disk cache that turns itself on and off dynam-
ically depending on the performance achieved was sug-
gested by Smith [11], but the idea was not tested, and no
algorithm was developed to manage the cache state. RED-
CAP, however, implements a real mechanism to turn the
cache on and off dynamically. Smith also suggests the pos-
sibility of using the main memory for the disk cache, elim-
inating the cache of the controller. Nevertheless, our cache
does not replace the disk cache of the drive but instead takes
advantage of it.

3. Design and Implementation

REDCAP consists of three parts: its cache, a prefetch-
ing technique to manage it, and an activation–deactivation
algorithm to control the performance achieved.

The REDCAP cache is a cache of prefetched disk
blocks. It is stored in RAM and has a fixed size of C blocks.
The new cache, just like a disk cache, is split into N seg-
ments which are managed independently of each other and
have a size of S blocks (where C = N × S). A REDCAP
segment is a group of consecutive disk blocks and is the
transfer unit used by the prefetching technique.

When all the segments are in use, the REDCAP cache
uses a Least Recently Used (LRU) replacement algorithm
to determine which segment should be freed.

REDCAP sees the disk as a contiguous sequence of
blocks, referenced by their logical block numbers, which
is split into segments of the same size as the REDCAP seg-
ments. The first disk segment begins at disk block 0 and
finishes at disk block S − 1, the second one is from S to
2S− 1, and so on. Every REDCAP segment will have a
disk segment, i.e., S consecutive disk blocks.

The prefetching technique implemented can be consid-
ered as a variant of the read–ahead of the disk cache.
Prefetching is performed only when a read operation takes
places and a cache miss occurs. It is not performed during
write requests or on a cache hit. The prefetching technique
itself is quite simple yet effective, and it is applicable to any
operating system, any file system or any storage device.

In a normal system, when an I/O request arrives to the
block device layer, it is inserted into the request queue of
the I/O scheduler. However, in a REDCAP system, it will
be managed by REDCAP in the first place.

When a read I/O request arrives, we calculate the
amount of affected disk segments and then look for them
in the REDCAP cache. If the desired disk blocks are found
in a REDCAP segment, a cache hit occurs, and they are
serviced from the cache and no reads are performed.

However, a cache miss occurs if the data is not in the
REDCAP cache. In this case, all the blocks of the corre-

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

sponding disk segment will be read from disk. Note that
some blocks will be those requested by the original read
operation, while the others, read to complete the segment,
will be the prefetched ones. Therefore, the amount of data
to prefetch always depends on the size of both the request
and the REDCAP segment. Our method exploits the prin-
ciple of locality of reference: if a block is referenced, then
nearby blocks will also soon be accessed.

It is interesting to note that when all the segments are
busy attending to the ongoing requests, subsequent requests
that cause a cache miss are sent to disk directly without
cache intervention. In this way, REDCAP does not become
a bottleneck when there are more requests than segments.

One important characteristic of REDCAP is the
activation–deactivation algorithm. This algorithm watches
the read disk requests, and estimates the time needed to
process those requests with and without cache, activating
and deactivating the REDCAP cache accordingly.

The REDCAP cache works in two states: active and in-
active. In the active state, the REDCAP cache dispatches
read requests. If the algorithm detects that the access time
is getting worse with than without cache, it moves RED-
CAP to the inactive state. In the inactive state, the cache
does not process requests and no prefetching is performed.
However, the algorithm keeps studying the possible suc-
cess of the cache. This study assumes that the cache is still
working, and records the hits and misses on each read re-
quest. When the algorithm detects that the cache could be
efficient, moves it to the active state again.

When the cache is active, REDCAP calculates, for each
request, the “cache time” as the time needed to copy data
from its cache to the original request plus the time needed
to prefetch segments plus the time waiting on disk blocks to
arrive from disk. REDCAP also estimates the time needed
to read from disk the blocks served by the cache, if the
cache would be inactive.

The algorithm says that if the time needed by the cache
is less than or equal to the estimated time to read from disk
the blocks served by the cache, the cache is been effective
and does not have to be inactive.

If REDCAP is inactive, the algorithm uses the same con-
dition to determine whether the cache has to be active again
o not. But in that state, the cache time has to be estimated
by using values stored during the active state, while the
time of reading each request is now exactly calculated.

REDCAP does not take part in writes. It only updates
its own cache by invalidating the appropriated disk blocks,
and sends write requests to disk without any modifications.

4. Experimental Results

In order to study the behavior of the new cache, RED-
CAP has been implemented on the block device layer of

the Linux kernel 2.6.14, under the page cache and just over
the request queue of the I/O scheduler. We have run sev-
eral benchmarks and compared the results obtained in our
REDCAP Kernel (Linux Kernel 2.6.14 modified with our
proposal) and in the vanilla Linux Kernel 2.6.14 (the Orig-
inal Kernel without REDCAP).

Our experiments are conducted on an 800 MHZ
Pentium–III system with 640 MB of main memory and two
disks. The first one is the system disk, with the Fedora Core
4 operating system, and is used to collect the traces for a
later study. The second one is the test disk and is a WD
Caviar WD1200BB disk. The test disk has a capacity of
120 GB and a 2 MB built–in cache. It has one disk par-
tition and the file system used is Ext3 [12] with a logical
block size of 4 KB.

In order to perform the study, the REDCAP cache size
has been set up with 8 MB, which is four times as large
as the cache of the test disk, although its memory utiliza-
tion is less than 1.5% of the main memory. The tests have
been carried out with four different configurations of the
REDCAP Kernel: 256x32KB (256 segments of 32 KB),
128x64KB, 64x128KB and 32x256KB. The initial state of
REDCAP is active.

In order to trace disk I/O activity, all the kernels record
when a request starts and finishes, and when it arrives to
the request queue. The REDCAP kernels also record infor-
mation about the behavior of its cache, such as the hits and
misses, and the time needed to copy the data on a cache hit.

Two I/O schedulers have been used in all the experi-
ments: the Complete Fair Queuing (CFQ) scheduler [8]
and the Anticipatory (AS) scheduler [5]. Since the results
obtained for both schedulers are similar, we will focus on
those obtained by CFQ. It is interesting to note that the
CFQ scheduler is the default I/O scheduler in the latest “of-
ficial” versions of the Linux Kernel, and even many distri-
butions have been used it for a long time.

4.1. Results

We have performed five runs for every benchmark and
system configuration. The average results are showed. The
confidence intervals for the means, for a 95% confidence
level, are also included as error bars. The computer is
restarted after every run, hence all benchmarks have been
performed with a cold page cache and a cold REDCAP
cache. The figures show the application time improvement
achieved by REDCAP with respect to the Original Kernel.

4.1.1. Linux Kernel Read This benchmark reads the
sources of the Linux Kernel 2.6.17 by using the command:

find -type f -exec cat {} > /dev/null \;

In the test disk, there are 32 copies of the kernel files.
This test is executed for 1, 2, 4, 8, 16, and 32 processes,

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Linux Kernel Read. Disk scheduler: CFQ

-5,00

20,00

45,00

70,00

256x32KB 128x64KB 64x128KB 32x256KB

REDCAP Configuration (Nº of Segments x Segment Size)

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

IOR Read. Disk scheduler: CFQ

-10,00

-5,00

0,00

5,00

10,00

256x32KB 128x64KB 64x128KB 32x256KB

REDCAP Configuration (Nº of Segments x Segment Size)

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

TAC. Disk scheduler: CFQ

0,00

20,00

40,00

256x32KB 128x64KB 64x128KB 32x256KB

REDCAP Configuration (Nº of Segments x Segment Size)

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

a) b) c)
4 KB Strided Read. Disk scheduler: CFQ

0,00

20,00

40,00

256x32KB 128x64KB 64x128KB 32x256KB

REDCAP Configuration (Nº of Segments x Segment Size)

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

512 KB Strided Read. Disk scheduler: CFQ

-10,00

-5,00

0,00

5,00

10,00

256x32KB 128x64KB 64x128KB 32x256KB

REDCAP Configuration (Nº of Segments x Segment Size)

Im
p

ro
ve

m
en

t
in

 A
p

p
lic

at
io

n
 T

im
e

A
ch

ie
ve

d
 b

y
R

E
D

C
A

P
 (

%
)

1 proc.
2 procs.
4 procs.
8 procs.
16 procs.
32 procs.

Kernel Compilation. Disk scheduler: CFQ

0,00

5,00

10,00

15,00

256x32KB 128x64KB 64x128KB 32x256KB

REDCAP Configuration (Nº of Segments x Segment Size)

Im
p

ro
ve

m
en

t
in

 I/
O

 T
im

e
A

ch
ie

ve
d

 b
y

R
E

D
C

A
P

 (
%

)

1 proc.

d) e) f)

Figure 2. Improvements achieved by the REDCAP Kernel as compared to the Original Kernel.

each working on one of the copies of the Linux source tree.
The corresponding results can be seen in Figure 2.a.

The REDCAP results are always better than the Orig-
inal Kernel ones, and the improvement increases with the
number of processes. The 64x128KB configuration shows
the best performance for 1, 16 and 32 processes, whereas
for 2, 4 and 8 process this is achieved by 32x256KB. Al-
though the 256x32KB configuration presents the smallest
improvements, it is still clearly better than the Original
Kernel for 8 or more processes, reducing the application
time by 54% for 32 processes. For 1, 2, and 4 processes,
REDCAP and the Original Kernel statistically get the same
results. The application time reduction achieved by RED-
CAP ranges from 1% (2 processes and the 256x32KB con-
figuration) to 79% (32 processes and 64x128KB).

The REDCAP behavior strongly depends on the seg-
ment size (prefetching size), and the time reduction in-
creases with it.

An explanation for these good results can be found in
the way this test reads the large amount of small files of a
Linux kernel source tree. The reading process is performed
directory by directory. In an Ext3 file system, the regu-
lar files of the same directory are stored together in disk
in the group assigned to the directory (or in nearby groups
if the corresponding group is full) [12]. The Original Ker-
nel is not able to notice this pattern of close disk accesses
nor does it perform a prefetching of files because they are
small. However, REDCAP exploits the principle of locality

of reference, so almost all the blocks prefetched are taken
advantage of, and our cache is almost always active.

4.1.2. IOR Read The IOR benchmark (version
2.9.1) [1] have been used for testing the behavior of
REDCAP in large sequential reads. We have used the
POSIX API for I/O, and one file per process. The file size
is 1 GB, and 64 KB is the size to be transferred in a single
I/O call. This test is run for 1, 2, . . . , and 32 tasks, each
one reading its own file. Figure 2.b depicts the results.

The behavior of REDCAP is very similar to the Origi-
nal Kernel one, and even small improvements are achieved
by REDCAP. The exceptions are in the 32x256KB config-
uration with 1 and 2 processes, where the REDCAP per-
formance is slightly worse than that of the Original Kernel.
In these cases, the activation–deactivation algorithm turns
the REDCAP cache on and off several times, when the best
performance is achieved by an inactive cache. The problem
is that sometimes, when REDCAP is inactive, it receives
series of small requests (caused by meta–data reads) which
turn the cache on before the algorithm realizes that the sub-
sequent requests advice to keep the cache off.

This benchmark has a sequential access pattern, and the
prefetching techniques of both the Original Kernel and the
disk cache are optimized for this kind of pattern. There-
fore, the contribution of our method is rather small, so the
activation–deactivation algorithm detects this behavior, and
the cache is turned off and is inactive almost all the time.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

4.1.3. TAC This benchmark reads backward files with
the command tac. The test is executed for 1, 2, . . . , and
32 processes. Each process reads its own file. The files are
the same as those used by the IOR–Read benchmark. The
results are displayed in Figure 2.c.

The 32x256KB and 64x128KB configurations, which
greatly improve the application time, show a qualitatively
similar but quantitatively different behavior, which strongly
depends on its configuration, i.e., the segment size.

The best performance is achieved by the 32x256KB
configuration, with improvements of up to 40% for 4, 8
and 16 processes. The cache is always active.

Respecting to the 64x128KB configuration, REDCAP
decreases the application time with respect to the Original
Kernel in all the tests. The best performance is achieved
with 4 and 16 processes, with a 16% of reduction. The
cache is almost always active and is rarely turned off.

The reason why these benefits are achieved by these two
configurations is that the Ext3 file system tries to allocate
all the data blocks of a regular file together in disk, in such a
way that the sequential access is optimized [12]. This block
allocation benefits the REDCAP prefetching. However, the
Original Kernel is not able to detect the backward access
pattern, so it does not perform any prefetching.

On the other hand, for the 256x32KB and 128x64KB
configurations, the results achieved by REDCAP are sim-
ilar to those obtained by the Original Kernel. Since the
tac command reads backward the file with requests of 64
KB, and because of the segment size of both configura-
tions, the prefetching performed is very small, and does not
contribute any benefit, so its cache is inactive all the time.

4.1.4. 4 KB Strided Read This benchmark reads a file
with a strided access pattern (reads a first block of 4 KB at
offset 0, skips a block of 4 KB, reads the next 4 KB block,
skips another block, and so on). Again, the test is executed
for 1, 2, . . . , and 32 processes, and uses the same files of the
benchmarks IOR–Read and TAC. This benchmark has been
written in C, and uses the POSIX read and lseek functions.
The results are shown in Figure 2.d.

The REDCAP behavior strongly depends on its configu-
ration and on the number of processes. For the 128x64KB,
64x128KB and 32x256KB configurations, our proposal
performs always better than the Original Kernel. The best
results are achieved for 1 process with reductions of 45%,
40% and 33% for each configuration. Although the im-
provements of the 64x128KB and 32x256KB configura-
tions decrease with the number of processes, the time for
32 processes is reduced by 13% and 4,7%, respectively.
For the 128x64KB configuration, the worst performance is
achieved for 8 processes, being still better than the Original
Kernel with a 5% of reduction.

For the 256x32KB configuration and for 1, 2 and 32
processes our results improve the Original Kernel ones,
whereas for 4, 8 and 16 processes they are similar to those
obtained by the Original Kernel and no further improve-
ments are achieved.

Since in this benchmark the algorithm is not able to de-
cide the proper state, the REDCAP cache is active–inactive
many times. The problem, which only appears in this case,
can be easily explained. When the REDCAP cache is ac-
tive, the disk drive detects a sequential access pattern, and
activates its read–ahead mechanism. Then, the original re-
quests take a small time so the algorithm decides that the
cache cost is greater than directly reading the data from
disk, and the cache becomes inactive. However, since in
that state the requests are not sequential, the disk does
not activate its read–ahead mechanism, and the original re-
quests take more time. The algorithm decides that it is bet-
ter to turn the cache on again. This state switch is succes-
sively repeated. Therefore, the results obtained do not show
a systematic behavior as in previous cases. We are working
on this issue in order to improve the algorithm and solve
this problem in the near future.

It is also interesting to note that the Original Kernel does
not detect this behavior nor does it implement any tech-
nique to enhance the performance under this type of access.

4.1.5. 512 KB Strided Read This test is similar to the
previous one, but uses a different access pattern. In this
case, every process reads 4 KB, skips 512 KB, reads 4 KB
again, skips 512 KB, and so. When the end of the file is
reached, a new read with the same access pattern starts
again at a different offset. There are four read series. The
first one begins at offset 0, the second at offset 4 KB, the
third at 8 KB, and the fourth series at 12 KB. Once again,
the test is executed for 1, 2, . . . , and 32 processes by using
the same files of the previous benchmarks. The results can
be seen in Figure 2.e.

REDCAP has a quantitative similar behavior for all the
configurations, but it does not perform better than the Orig-
inal Kernel. The worst results are achieved for 1 and 2 pro-
cesses, where the application time is rather small and al-
though the REDCAP cache is all the time inactive, the time
initially lost when the cache is still active can not be recov-
ered later. For 4, 8, 16 and 32 processes the loss can be con-
sider negligible, and it is mainly due to the time employed
to simulate the behavior of the cache when it is inactive.

Again, the Original Kernel does not implement any
prefetching technique for this access pattern.

4.1.6. Kernel Compilation for 4 processes This test
compiles the vanilla Linux Kernel 2.6.17 with 4 processes
(make –j 4) with the configuration of the 2.6.17–1.2142 ker-
nel used by the Fedora Core 4 distribution. The “–j 4” op-

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

tion is used to saturate the CPU and send to disk as many
requests as possible. The results can be seen in Figure 2.f,
which shows the improvement with respect to the I/O time,
since this benchmark is CPU–bound in our system.

The REDCAP results are always better than the Original
Kernel ones. The best performance, 4,4% of improvement,
is provided by the 128x64KB configuration, whereas the
32x256KB gives the smallest improvement, 3,5%. During
the test, the cache is turned on and off several times. The
number of requests served by the REDCAP cache when it
is active ranges from 5% for the 256x32KB configuration
to 43% for the 64x128KB and 32x256KB configurations.

Note that, during the kernel compilation, files from dif-
ferent directories are used at the same time, and not all the
files of a directory are read consecutively, so the spatial lo-
cality, that exists in the Linux Kernel Read benchmark, is
partly lost in this test. Hence, the results can not be com-
pared to those obtained by the Linux Kernel Read test.

4.1.7. TPCC TPCC–UVa (version 1.2.3) is a free
open–source implementation of the TPC–C Benchmark de-
veloped at the University of Valladolid (Spain) [2]. We
have used 10 warehouses and 10 terminals. The bench-
mark is run with an initial 20 minutes warm–up stage and
a subsequent measure time of 2 hours.

The behavior of REDCAP is very similar to the Original
Kernel one and statistically gets the same results. TPCC
has a random read pattern, which causes our cache not to
be effective and it is inactive for long time in all the tests.

5. Conclusions and Future Work

In this paper we have introduced REDCAP, a RAM–
based disk cache which is able to greatly reduce the I/O
time of the disk read requests by using a small portion of
the main memory. With segments as large as the maxi-
mum request size allowed by the operating systems (128
KB), REDCAP can improve the performance up to 80%
for some workloads, while achieves similar results to that
obtained by a vanilla Linux kernel for workloads where an
improvement in the I/O is hard to obtain.

REDCAP has several features which make it unique.
First, it is I/O–time efficient, since takes advantage of the
disk read requests issued by the application in order to
prefetch adjacent disk blocks. Second, it converts work-
loads with thousands of small requests into workloads with
disk–optimal large sequential requests. Third, it imple-
ments an activation–deactivation algorithm which makes
it dynamic. The algorithm is quite simple, although has
proved to be very effective for a wide range of workloads.
And fourth, REDCAP is independent of the underlying de-
vice. The activation–deactivation algorithm does not take

into account any of the physical characteristics of the disk,
it only uses the times obtained experimentally.

As future work, we plan to study the impact of the file
system on REDCAP, the performance obtained by larger
REDCAP caches and the possibility of reconfiguring RED-
CAP dynamically, changing both the segment size and the
amount of segments.

Acknowledgments

This work has been jointly supported by the Spanish
MEC and European Comission FEDER funds under grants
“Consolider Ingenio–2010 CSD2006–00046”, “TIN2006–
15516–C04–03” and “TIN2004–07739–C02–01”.

References

[1] IOR Benchmark, http://www.llnl.gov/icc/lc/
siop/downloads/download.html.

[2] Tpcc-uva, http://www.infor.uva.es/∼diego/
tpcc-uva.html.

[3] G. R. Ganger. System-Oriented Evaluation of I/O Subsys-
tem Performance. PhD thesis, 1995.

[4] W. W. Hsu and A. J. Smith. The performance impact of
I/O optimizations and disk improvements. IBM Journal of
Research and Development, 48(2):255–289, 2004.

[5] S. Iyer and P. Druschel. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O. In Symposium on Operating Systems
Principles, pages 117–130, 2001.

[6] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies
to improve disk system performance. Computer, 27(3):38–
46, 1994.

[7] H. Lei and D. Duchamp. An analytical approach to file
prefetching. In 1997 USENIX Annual Tech. Conf.

[8] R. Love. Linux Kernel Development. Second edition. Nov-
ell, 2005. ISBN 0–672–32720–1.

[9] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. Computer, 27(3):17–28, 1994.

[10] E. Shriver. Performance modeling for realistic storage de-
vices. PhD thesis, 1997.

[11] A. J. Smith. Disk cache–miss ratio analysis and design con-
siderations. ACM Trans. on Computer Systems, 3:161–203,
1985.

[12] S. Tweedie. Journaling the Linux ext2fs filesystem. In Lin-
uxExpo’98. 1998.

[13] M. V. Wilkes. Slave memories and dynamic storage allo-
cation. IEEE Tran. on Electronic Com., EC-14:270–271,
1965.

[14] B. L. Worthington. Aggressive Centralized and Distributed
Scheduling of Disk Requests. PhD thesis, 1996.

[15] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling
algorithms for modern disk drives. In Proceedings of the
1994 ACM SIGMETRICS Conf., pages 241–251.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

