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Abstract We present the design and implementation of both an enhanced new type

of OSD device, the OSD+ device, and a metadata cluster based on it. The new OSD+

devices support data objects and directory objects. Unlike “data” objects, present

in a traditional OSD, directory objects store file names and attributes, and support

metadata–related operations. By using OSD+ devices, we show how the metadata

cluster of the Fusion Parallel File System (FPFS) can effectively be managed by all

the servers in a system, improving the performance, scalability and availability of

the metadata service. We also describe how a directory with millions of files, and

accessed by thousands of clients at the same time, is efficiently distributed across

several servers to provide high IOPS rates. The performance of our metadata cluster

based on OSD+s has been evaluated and compared with that achieved by Lustre. The

results show that our proposal obtains a better throughput than Lustre when both use

a single metadata server, easily getting improvements of more than 60–80%, and that

the performance scales with the number of OSD+s. They also show that FPFS is able

to provide a sustained throughput of more than 70,000 creates per second, and more

than 120,000 stats per second, for huge directories on a cluster with just 8 OSD+s.
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1 Introduction

The avoidance of bottlenecks is critical in modern distributed storage systems to

achieve the desired features of high performance and scalability. Considering that

these systems have to deal not only with a large volume of data but also with an in-

creasing number of files, an efficient metadata management becomes a fundamental

aspect of a system’s storage architecture to prevent such bottlenecks [1,2].

Although metadata is usually less than 10% of the overall storage capacity of a

file system, its operations represent 50%–80% of all the requests [3]. Metadata op-

erations are also very CPU consuming, and a single metadata server can easily be

overloaded by a few clients in a parallel file system. Hence, to improve the perfor-

mance and scalability of metadata operations, a cluster of servers is needed. PVFS [4]

and Ceph [5], for instance, use a small set of dedicated servers as metadata cluster,

and Lustre expects to provide a similar production–ready service for version 2.2 [6].

With respect to data, many modern cluster file systems [4,5,7] use hundreds or

thousands of Object Storage Device (OSD) [8], or conceptually equivalent devices,

to store information and to achieve a high performance. Because there are no com-

modity OSD-based disks available yet, these devices are implemented by mainstream

computers which export an OSD-based interface, and internally use a regular local

file system to store objects.

By taking into account the design and implementation of the current OSD de-

vices, this paper explores the use of such devices as metadata servers to implement

the metadata cluster. This way, both data and metadata will be distributed over and

managed by thousands of nodes. In order to deal with metadata, we propose to extend

the type of objects and operations an OSD supports. Specifically, our new devices,

that we call OSD+, support directory objects. Unlike objects found in a traditional

OSD device (referred here as data objects), directory objects store file names and

attributes, and support metadata–related operations, such as the creation and deletion

of regular files and directories.

Although our OSD+s are basically independent and operate in an autonomous

manner, they should be able to collaborate to provide a full-fledged metadata service.

For instance, there exist metadata operations (e.g., a directory creation) that involve

two or more directory objects, which can be managed by different OSD+s.

Since our software-based OSD+ devices also use an internal local file system

to store data objects, we propose to take advantage of this fact by directly mapping

directory–object operations to operations in the underlying file system. This approach

produces several benefits: (a) many features (atomicity, POSIX semantics, etc.) and

optimizations present in the local file system are directly exported to the parallel

file system for metadata operations which involve a single directory; (b) resource

utilization in the storage nodes (CPU, memory, secondary storage, etc.) is increased;

and (c), since we leverage the directory implementation in the local file system, the

software layer which creates the OSD+ interface is thin and simple, producing a small

overhead and hopefully improving the overall metadata service performance.

Our OSD+ devices allow us to design a new parallel file system, called Fusion

Parallel File System (FPFS), which combines data and metadata servers into a single

type of server capable of processing all I/O operations. An FPFS metadata cluster will
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be as large as its corresponding data cluster, effectively distributing metadata requests

among as many nodes as OSD+s comprising the system, and improving the metadata

performance and scalability. Metadata availability will also be increased because the

temporal failure of a node will only affect a small portion of the directory hierarchy.

Note that OSD+s reduce administration costs too, due to the deployment of a single

type of server.

Although OSD+s manage any file system operation, they can be seen as members

of two separate clusters: a data and a metadata cluster. Since modern file systems

already have a good data performance and failure recovery, FPFS’s data cluster works

as and borrows ideas from them. For the metadata cluster, however, our goal is to

provide a better service than that produced by existing file systems. Therefore, this

paper only focuses on the design and implementation of the FPFS metadata cluster.

Note that, in order to build a high–performance and scalable metadata service

based on OSD+ devices, two main problems must be addressed: (a) distribution of

the directory objects among the storage devices to balance workload, and (b) atom-

icity of operations which involve more than one storage device to ensure file system

consistency. Both problems will be addressed in the present work.

Huge directories, with millions of entries, which are accessed and modified at the

same time by thousands of clients, are also common for some HPC applications [2,

9,10]. FPFS also handles this scenario by dynamically distributing huge directories

among several OSD+s. In doing so, a huge directory’s workload is shared out among

several OSD+s, avoiding an OSD+ to become a bottleneck.

We have evaluated our metadata cluster and compared its performance with Lus-

tre’s [7]. The experimental results show that a single OSD+ can easily improve the

throughput of a Lustre metadata server by more than 60–80%. They also show that

the performance of our metadata cluster scales with the number of OSD+s, proving

that even a small metadata cluster can provide a good performance. They also show

FPFS achieves a high performance and super–linear scalability when managing huge

directories, making FPFS fulfill the tough requirements of many HPC environments.

To sum up, the main contributions of this paper are: (a) the design and imple-

mentation of the OSD+ devices (focused on the support of directory objects), (b) the

design and implementation of a metadata cluster using OSD+s, (c) the proposal of

a new parallel file system based on OSD+s, (d) the design and implementation of

mechanisms to manage huge directories by means of OSD+s, and (e) the evaluation

of the performance achieved by the resulting metadata cluster.

The rest of the paper is organized as follows. Section 2 shows the architecture

of FPFS, a parallel file system based on OSD+s. Section 3 describes the design of a

metadata cluster which uses OSD+s as metadata servers. The OSD+ implementation

details are discussed in Section 4. Experimental results are presented in Section 5.

The related work is described in Section 6. Finally, Section 7 concludes the paper.

2 Architecture of FPFS: an OSD+–Based Parallel File System

Generally, parallel file systems have three main components: clients, metadata servers

and data servers. This architecture, based on two types of servers, improves perfor-
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Fig. 1 FPFS architecture.

mance by allowing metadata and data requests to be attended in parallel. Usually,

data servers are OSD [8] devices which export an object interface, and intelligently

manage the disk data layout (that has traditionally been responsibility of the metadata

servers). OSDs also improve data sharing and permit to set object–specific security

policies.

Unlike current parallel file systems, OSD+–based Fusion Parallel File System

(FPFS) merges data and metadata servers into a single type of server by using a

new enhanced OSD device that we call OSD+. The new OSD+ devices are capable

not only of managing data as a common OSD does, but also of handling metadata

requests. Thus, the metadata cluster increases its capacity becoming as large as the

data cluster. System’s scalability and capacity are increased too. The new devices

simplify the complexity of the system because no difference between two kind of

servers is made. Figure 1 shows the two basic components of FPFS (clients and the

OSD+ cluster), which are briefly described below.

2.1 Clients

Clients of a parallel file system such as Lustre [7], PVFS [4], PansFS [11] or pNFS

[12] behave in the same way when accessing files. First, in order to locate the data ob-

jects of a file in the OSD cluster, they contact a known metadata server that provides

the location information. Then, they communicate with the given OSDs to access the

data objects.

Similarly, in order to obtain the layout of a file, an FPFS client contacts an OSD+

whose id is obtained by applying a hash function on the pathname of the parent

directory of the target file. Once the file layout information is found, the FPFS client

will be able to communicate with the OSD+ storing the corresponding data objects.
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2.2 OSD+

Besides the low–level block allocation functions, traditional OSDs can take advan-

tage of their device intelligence by implementing more complex tasks, such as RA-

DOS in Ceph [5], or Elliptics [13] in POHMELFS [14]. RADOS, for example, facil-

itates serialization, replication, and detection and recovery from failures in a semi–

autonomous manner for the OSDs in the data cluster. OSD+s also leverage the intel-

ligence present in the OSD devices, but take the approach a step further, delegating

the metadata management to the storage devices as well.

Traditional OSDs are only able of dealing with data objects. Typical operations

on these objects are: creating and removing objects, and reading from and writing

to a specific position in an object. Our design, however, extends this object interface

in order to define directory objects capable of managing directories. They support

metadata–related operations such as creating and removing directories and files, get-

ting directory entries, retrieving file attributes, etc. Besides the usual operations on

directories, the OSD+ implementation also provides functions to deal with metadata

operations which may involve the collaboration of several OSD+s, such as directory

renames, directory permission changes, and links.

It is important to realize that, currently, there are no commodity OSD–based disks

available, so mainstream computers exporting an OSD–based interface by running

emulators [15], or other software applications, are usually used. Internally, an ordi-

nary local file system stores objects. We do take advantage of this fact by directly

mapping directory operations in FPFS to directory operations in the local file system.

In this way, we export many features of the local to the parallel file system, such as

concurrency and atomicity, when a metadata operation involves only one directory

(and, hence, only one OSD+). When a metadata operation involves more than one

OSD+ (e.g, a rename), the participating OSD+s deal with concurrency and atomicity

by themselves, without client involvement (note that a client issuing a metadata op-

eration only contacts with the OSD+ containing the object of the parent directory of

the target file).

Similarly to Ceph [5], every client and every OSD+ has a copy of a cluster map

which describes the underlying physical organization of the cluster, and its current

state. As Section 3 explains, this map, along with a companion hash function, is used

for distributing data and directory objects across the cluster.

Apart from the OSD+ cluster, there is also a small cluster of monitors (not shown)

which stores the master copy of the cluster map, and whose principal task is to keep

a consistent and coherent view of the cluster. Each time a client joins the system,

it receives the current cluster map from the monitors. Since monitors interact with

clients and OSD+s only when changes in the cluster occur, their overhead is small,

and can also be run in any of the OSD+s.

3 The Metadata Cluster: Design

The metadata cluster of FPFS uses OSD+ devices to provide a high performance

and scalable metadata service. It also profits the enhanced intelligence of the OSD+s
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to tackle with directory renames, links and permission changes, in a consistent and

atomic manner.

3.1 Metadata Distribution

FPFS distributes the directory objects (and, therefore, the file–system namespace)

across the metadata cluster to make metadata operations scalable with the num-

ber of OSD+s. The distribution is based on CRUSH [5], a deterministic pseudo–

random function that guarantees a probabilistically balanced distribution of objects

through the system. Nevertheless, any other distribution function could be used, such

as RUSH [16] (a family of algorithms from which CRUSH is based on), to distribute

the objects along the cluster.

Given a directory, CRUSH outputs its placement group (PG), a list of devices

made up of a primary node and a set of replicas. These devices are chosen accord-

ing to weights and placement rules that restrict the replica selection across failure

domains, avoiding, in this way, potential sources of failures and load imbalance. As

input, CRUSH receives an integer which, in our metadata cluster, results from hash-

ing the directory’s full pathname. Since CRUSH only needs a cluster map to compute

the result, and given that this map is available for all the nodes in the cluster, any party

in the system is able to independently calculate the location of any directory object.

Hash partition strategies present different scalability problems during cluster re-

sizing, renames and permission changes. In FPFS, cluster resizing problems are ad-

dressed by CRUSH, which minimizes metadata migrations and imbalances due to

the addition and removal of devices. Renames and permission changes are managed

in FPFS by means of lazy techniques [17]. Nevertheless, it is important to note that,

in our case, renames and permission changes only affect directories. The experimen-

tal results will show that these operations are infrequent for directories (similar re-

sults have recently been obtained by other authors [17,18]). This fact, along with the

mentioned lazy techniques and CRUSH, will further minimize the impact of these

operations on the metadata cluster performance.

Although directory objects are scattered across the cluster, the directory hierarchy

of the parallel file system is maintained to provide standard directory semantics (e.g.,

when listing a directory), and to determine file and directory access permissions (note

they are determined from the root directory). The directory hierarchy is maintained

by storing, in each directory object, an entry for every subdirectory which it contains,

if any (see Section 4 for details).

3.2 Huge directories

Although every directory object is managed by a single OSD+, this is probably the

most efficient approach for small directories. Studies of large file systems have found

that 99.99% of the directories contain less than 8,000 files [2]. Striping small direc-

tories across multiple servers would lead to an inefficient resource utilization, partic-

ularly for directory scans that would incur disk-seek latencies on all servers only to

read tiny portions.
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However, huge directories are also common for some HPC applications, and new

mechanisms are necessary to deal with them, specially when thousands of clients

work on the same huge directory at the same time.

FPFS distributes huge directories among several OSD+s. We consider a direc-

tory is huge when it stores more than a given number of files. Once the threshold is

exceeded, the directory is dynamically distributed along a subset of OSD+s in the

cluster. In doing so, the directory’s workload is shared out among several OSD+s,

avoiding an OSD+ to become a bottleneck.

A subset of OSD+s supporting a huge directory contains a primary OSD+ and

several secondary OSD+s. The primary OSD+ has the primary directory object of

a huge directory. This is the object that a client usually would contact with if the

directory was not distributed (i.e., directory objects for small directories are also their

primary directory objects). The secondary OSD+s store secondary directory objects,

which are contacted by clients aware of the directory’s distribution.

Clients do not know which directories are distributed in advance. When a client

sends a request to a distributed directory, it receives a response indicating that the

directory is managed by several objects. Then, the client marks the directory as dis-

tributed and sends any subsequent request to the appropriate primary or secondary

OSD+. The latter is done by changing the distribution function from a directory–level

hash function:

osd id =CRUSH(hash(parent dirname)) (1)

to a file–level hash function, so as to allocate the files in different OSD+s (% is the

module operation and osd count is the total number of OSD+ in the cluster):

osd id = (CRUSH(hash(parent dirname))+ hash(filename))% osd count. (2)

Note that, thanks to this function, if a directory is renamed, its primary and sec-

ondary directory objects are migrated as a whole (i.e., files do not have to be redis-

tributed among the directory objects).

3.3 Directory Renames

If a directory name changes, so does its location and the location of any directory

underneath in the hierarchy. This can incur a massive migration of metadata. To min-

imize this problem, lazy policies, similar to those used by LH [17], are applied to

move the relocated metadata. Unlike LH, file renames do not produce metadata mi-

grations in FPFS because their locations do not depend on their pathnames.

Rename requests are sent to the parent directories of the corresponding target di-

rectories. When the rename of a directory occurs, the OSD+ of its parent directory

broadcasts the rename to inform the other OSD+s in the cluster, which maintain a

metadata log for renames and other metadata operations (note that, as an optimiza-

tion, the rename message could be sent only to those nodes affected by the renamed

path). Thanks to the broadcast, when an OSD+ receives an operation on a directory
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Fig. 2 Directory object migration.

whose object is missing but that, according to the new directory’s pathname, should

not be, the OSD+ migrates the object to carry out the operation instead of returning

an error which an nonexistent object would normally produce.

Figure 2 shows this migration process. First, after obtaining the list of servers

which contain the directory object (steps 1 and 2), the client contacts the primary

OSD+ (step 3) which is supposed to have the directory object. Then, the failed request

forces the OSD+ to migrate the object by looking for the corresponding rename in the

log, and contacting the source OSD+ (step 4). Once the migration is done (step 5),

the initial operation is carried out and the result is returned to the client (step 6). Due

to a previous rename, the source OSD+ may not contain the directory object either.

The process is then repeated recursively, moving backwards until the directory object

is found and migrated.

3.4 Permission Changes

In order to directly determine access permissions and avoid directory traversals, dual–

entry ACLs are used [17]. Given a directory, one entry of its ACL contains its per-

missions, whereas the other one represents its path permissions (these are the inter-

section of the directory’s own permissions and its parent’s path permissions). Unlike

LH, only directories have dual–entry ACLs in FPFS. A file’s permissions are derived

from its ACL, and its parent directory’s dual–entry ACL.

When checking permissions, the OSD+ containing the target directory object

searches in its metadata log for invalidations along the requested object’s path. If

they exist, the parent directory is accessed (applying the placement function over

the parent’s path) to get its dual–entry ACL. Once path permissions of the target

directory are updated, the requested ACL is calculated and returned. Since parent’s

permissions might also be out-of-date, this process is repeated recursively until the
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Fig. 3 Access to a directory containing a symbolic link. Striped cylinders represent OSD+s which “have”

directories objects whose pathnames contain symbolic links (note that objects are actually stored in other

OSD+s).

directory whose permissions have changed, or an updated directory, is reached. In this

way, permissions are updated in a lazy fashion, minimizing the part of the hierarchy

which is traversed.

3.5 Links

Our design makes the implementation of hard links (which are only possible between

regular files) straightforward. The directory entry of a regular file comprises the name

of the file and the id of the object containing the file’s permissions. The object’s id is

a sort of i–node number which makes the creation of hard links direct: the directory

entry for a hard link merely stores the new file name and the same object id of the

source file.

However, more complex scenarios appear with symbolic links, since they can

happen between directories. Any access to the subtree underneath a linked directory

will fail, like an access to a renamed directory whose object has not been migrated yet.

LH [17] proposes the creation of shortcuts to deal with files whose pathnames contain

symbolic links. A shortcut to one of these files is created the first time the file is

accessed by traversing the directory hierarchy. Any subsequent access to the the same

file will use the shortcut, avoiding the hierarchy traversal. This approach, however,

presents two problems: (a) shortcuts take up space and, (b) when a file access fails,

there is no way to know if the failure is due to a missing file or a symbolic link in the

name. The ambiguity in (b) produces the traversal of the directory hierarchy up to the

root directory when accessing to any missing file.

Our proposal to tackle with symbolic links is simpler, and does not suffer the

missing file problem of LH. In FPFS, a symbolic link is treated as a directory re-

name. The differences are: any access to a directory containing a symbolic link never
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produces the directory’s migration, and a client accessing one of these directories

receives the resolved path to contact with the original OSD+ (see Figure 3).

3.6 Atomicity

An important aspect is that all the metadata operations must be atomic to provide

a consistent parallel file system. When a metadata operation is performed by a sin-

gle OSD+ (e.g., create, unlink, etc.), the backend file system itself guarantees

the atomicity and POSIX semantics of the operation. However, operations such as

rename, mkdir or rmdir, usually involve two OSD+s. Now, atomicity is jointly

guaranteed by means of the backend file system, and a three–phase commit protocol

(3PC) [19], where one node acts as the coordinator directing the remaining nodes or

participants.

The three-phase commit protocol proceeds as follows. In the first phase, the co-

ordinator checks whether the operation can be performed or not by asking the partic-

ipants. Next, the coordinator verifies all the nodes are ready to commit the operation.

In case all are prepared, the coordinator finalizes the protocol sending a commit mes-

sage. After this last step, the transaction will not be aborted. Although the participants

should acknowledge the commit message, the operation will be committed anyway.

4 The Metadata Cluster: Implementation

A prototype of the metadata cluster has been built on Linux. Each OSD+ is a user–

space multithreaded process, running on a mainstream computer, which uses a con-

ventional file system as backend (see Figure 4). The Linux syscall interface is used

to access the local file system, which must be POSIX–compliant (remember that we

want to export some characteristics of the underlying system to the parallel file sys-

tem), and support extended attributes (used by our implementation; see Section 4.4).

For every new established connection from a client or another OSD+, a thread is

launched in the target OSD+. The thread lasts as long as the communication channel

remains open; hence, performance is improved due to the absence of connection es-

tablishments and termination handshakes per message. In the current implementation,

TCP/IP and UDP/IP protocols are used.

In order to evaluate FPFS on metadata workloads, we have built a skeleton file

system; that is, we have not yet implemented data operations, data striping, fault

detection, recovery and other amenities, which are adequately implemented in many

cluster file systems and can be borrowed from them.

4.1 Directory Objects

Internally, a directory object is implemented as a regular directory whose pathname

is its directory pathname in the parallel file system. Thus, the directory hierarchy is

imported within each OSD+ by replicating a partial namespace of the global hierar-

chy.
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Fig. 4 Layers composing the OSD+.

In order to preserve the hierarchy, directory objects maintain an entry for every

file and subdirectory they contain. These entries are implemented as empty files and

directories, respectively, in the local file system. As we can see, an OSD+ can inter-

nally use several directories in the local file system for different purposes. Altogether,

there are four types of directories, differentiated through extended attributes: a first

type to implement directory objects; a second one to maintain the hierarchy (e.g., the

subdirectories); a third to internally construct the paths of the directory objects; and

finally, temporary directories to keep renamed metadata which has not been migrated

yet.

Figure 5 shows how an FPFS’s directory hierarchy is mapped to a four–OSD+

cluster. There are one regular file (info.pdf) and six directories: /, home, usr1,

usr2, usr3 and docs. Directory objects (marked with o) are stored in OSD+s 0, 1,

1, 3, 0 and 2, respectively. Realize that a directory object and its corresponding par-

ent’s directory object are usually placed in different OSD+s, except for /home/usr1,

where both meet, by chance, in the same OSD+. Directories used for maintaining the

hierarchy are identified by h. Their names will appear as subdirectories during a di-

rectory object’s scan, along with the names of the regular files in the directory object.

Finally, directories used internally for constructing the paths of directory objects, do

not possess any extended attribute (for instance, /home and /home/usr2 in OSD+

2 are used for supporting the directory object of /home/usr2/docs). Note that the

figure does not show any temporary directory (marked with t), because no rename

has occurred.

As depicted in Figure 5, some directory can have extended attributes h and o set

at the same time. This is the case for /home/usr1, since its directory object is in

OSD+ 1 (hence the o), and because it is a subdirectory of /home, whose directory

object is also in OSD+ 1 (hence the h).
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Fig. 5 Implementation of the parallel file system hierarchy in the OSD+ devices.

4.2 Huge directories

In the current implementation, FPFS distributes a directory when its size is bigger

than 244 kB. The distribution is dynamic: initially, a directory is managed by a single

OSD+ and directory object; as soon as a directory is identified as huge, a distribution

process moves its directory entries from the primary OSD+ to the secondary OSD+s.

All the directory entries are moved except those that belong to the primary OSD+,

according to the file–level hash function (see Equation 2).

During a directory redistribution, no requests on the affected directory are at-

tended in the primary OSD+ until the redistribution finishes. Requests received dur-

ing the process will be returned to the clients informing them that the directory is

now distributed, and that they should send their requests again taking into account

the file–level hash function.

A directory can be in three different states (internally marked with extended at-

tributes): not distributed, migrating, and distributed. The first state is the most com-

mon; all the directories smaller than 244 kB belong to this state. The second state

lasts as long as the redistribution process does, and indicates that no requests can be

performed on the directory. The third state is set once the redistribution process fin-

ishes; it also says that clients should be informed of the new distributed state of the

directory.

Finally, realize that all the secondary directory objects, that store entries of huge

directories, are also marked as “secondary” inside every OSD+.

4.3 Client–OSD+ Interaction

Communications between clients and OSD+s are established via TCP/IP connections

and request/reply messages. Each OSD+ will launch one thread for attending the

requests of a client, and for performing the operations on the local disk on behalf of

the client. This way, the workload generated by the clients is reflected on the servers,

which can be configured accordingly. Note that file systems like Lustre limit the

number of threads on the metadata server [20], and that this number is usually much

smaller than the number of clients; this decision distorts the clients’ workload that

the server sees.
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As requests, FPFS supports the most frequently used metadata operations (see Ta-

ble 1): mkdir, rmdir, opendir, readdir, create, unlink, open, close, lookup,

stat, utime and rename.

A client request is usually sent to the OSD+ storing the parent’s directory object.

For instance, if a client opens /home/usr2/docs/info.pdf, it sends a message to

the OSD+ containing the directory object of /home/usr2/docs. One exception to

this rule is opendir, where the target OSD+ is that corresponding to the pathname

given as argument to the operation. Another particular case is rename, which receives

two pathnames (an old path and a new one). In this case, the request is sent to the

OSD+ containing the object of the new path.

When an operation involves several OSD+s, the OSD+ contacted by a client

carries out the operation collaborating with other OSD+s. For example, to create

/home/usr2 (see Figure 5), OSD+ 1, which contains /homeo, initially creates the

directory entry /home/usr2h. If the creation is successful, OSD+ 2 completes the

request creating the directory object /home/usr2o.

4.4 Files and Data Objects

An FPFS file’s metadata is initially stored as metadata of an empty file (basically, an

i–node) in its parent directory. This improves operations like stat, since the directory

entry and its metadata are in the same OSD+. This also exports file attributes in the

local file system to the parallel file systems, so clients are able to see all the usual

attributes (timestamps, mode, etc.) and extended attributes stored in the empty file.

Despite that we are only interested in metadata operations, to make a fair com-

parison with Lustre (see Section 5), FPFS also creates data objects for files. They are

implemented as regular files in the OSD+s. Each data object has an id, called OID,

which is stored as an extended attribute in its corresponding FPFS file’s metadata. An

OID is made up of two values: an object name (a random number; also used for the

name of the internal regular file storing the data), and an OSD+ number (where the

data object is stored).

Two different policies can be used to select the OSD+ where a data object is cre-

ated: same OSD+ and random OSD+. The former (used for obtaining the experimen-

tal results showed in Section 5) stores a data object in the OSD+ of its file’s directory,

thus reducing the network traffic during file creations because no other OSD+s par-

ticipate in the operation. The latter chooses a random OSD+ instead. This second

approach achieves a better use of resources, by keeping a more balanced workload,

although it increases the network traffic during creations.

Although data operations have not been implemented yet, realize that clients will

be able to access data objects through OIDs stored in files’ metadata. An OID indi-

cates the destination OSD+ and the assigned object name of a file’s data object, so

clients can directly send data requests to the given OSD+.
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4.5 Logs

Lazy techniques require each OSD+ to store a metadata log with permission changes

and directory renames. All the incoming requests are first checked against this log

to provide a coherent and consistent reply to clients accessing metadata that may not

have been updated yet.

Aside from the metadata log, the three–phase commit protocol (see Section 3.6)

employs another log to rollback in case of failure. Both logs are sync’ed to disk every

5 seconds, which is the time usually used by file systems like Ext3 [21]/Ext4 [22] to

commit their metadata.

4.6 Security

File systems must also prevent clients from doing malicious operations on the system.

The current implementation entirely runs in user–space for fast prototyping and eval-

uation. However in a production system, the client side of the file system should be

implemented inside the kernel, and applications should access the cluster file system

through the VFS interface.

Authentication of clients against servers should occur at mount time. To this end,

mechanisms as Kerberos [23], or that described in the OSD standard [24], can be

used.

5 Experimental Results

The performance of the FPFS’s metadata cluster has been evaluated and compared

with Lustre’s. We have also analyzed its scalability, and its throughput for huge di-

rectories. This second section describes the system under test, the benchmarks run,

and the experimental results achieved.

5.1 System under Test

The testbed system is a cluster made up of 16 compute and 1 frontend nodes. Each

compute node has two Intel Xeon E5420 Quad-core CPUs at 2.50 GHz, 4 GB of

RAM, and two Seagate ST3250310NS disks of 250 GB. On each node, the system

disk has a 64-bit Fedora Core 11 distribution which also supports Lustre 1.8.2. The

other disk, used as test disk, is exported as either an FPFS OSD+ or a Lustre MDS–

MGS/OST server. The interconnect is a Gigabit network with a D-Link DGS-1248T

switch.

Experiments use up to 12 out of the 16 nodes. For FPFS, several configurations

are set up, each with a different number of OSD+s or backend file system. For Lustre,

only one configuration is set up with just one node running all the Lustre services

(MGS/MDS, and one OST), which is equivalent to an FPFS configuration with only

one OSD+.
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For clients, 1 to 4 nodes are used depending on the test. Since we have not de-

tected either a CPU or network bottleneck in the clients during the experiments, sev-

eral processes are run per CPU and core (up to 256 altogether) to analyze the servers’

performance under heavy workloads.

Since the ldiskfs file system, used by Lustre, can be considered as something

between Ext3 and Ext4 [22], FPFS has been evaluated using both file systems as

backend to make a fair comparison with Lustre. This way, we will show that the

improvements achieved by FPFS over Lustre are due, in many cases, to the smaller

overhead and better performance provided by OSD+s and the metadata cluster im-

plementation in FPFS. The use of different file systems will also show that each file

system works better for different workloads, and that FPFS can easily be configured

to use the proper file system for a given workload.

Metadata performance also depends on the options used for formatting a file sys-

tem. Therefore, for the sake of comparison, the Ext3 and Ext4 file systems, used

by FPFS, have been formatted with the same options as Lustre uses in ldiskfs. Other

configuration issues, that may affect the performance of Lustre, have been considered

too, following the recommendations in the Lustre operations manual [20].

Several issues regarding Lustre should be remarked. Lustre 2.0 includes new

functionality to support a metadata cluster, but a production–ready service will not

be available until version 2.2 [6]. We have not found information to set up the service

either. Lustre 2.0 has also been modified to support several file systems as backend,

although, to date, only a customized Ext3 file system (“ldiskfs”) is fully supported.

Finally, we run the tests on version 2.0.0.1, but the results were generally worse than

on version 1.8.2. Therefore, we have discarded this version of Lustre and its results

are not presented here.

Finally, we have also tried to evaluate the latest version of the Ceph’s metadata

cluster [5], but different problems have prevented us from succeeding: an excessive

memory use which produces swapping for some workloads, frequent kernel panics,

and a poor performance in many cases.

5.2 Benchmarks

Through the experiments, we have analyzed three different aspects. First, we have

evaluated and compared the performance of FPFS and Lustre. This has been done

by using the HP Trace, creation/traversal of directories, and metarates benchmarks.

Second, we have evaluated FPFS’s scalability by using those same benchmarks.

And third, we have also tested FPFS’s throughput for huge directories, by using the

hugedirs micro-benchmark. The benchmarks used are the following:

– HP Trace: this benchmarks replays a 21-hour trace collected in 2002 which is,

in turn, a subset of a 10-day trace of all file system accesses done by a medium-

sized workgroup using a 4-way HP-UX time-sharing server attached to several

disk arrays and a total of 500 GB of storage space [25].

The selected period, one of the most active, covers from 6am on the fifth trace

day to 3am on the next day. Table 1 shows an overview of the metadata requests
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Table 1 Overview of the 21-hour HP trace.

Operation type Count Operation type Count

Lookup 13908189 File rename 7683

Stat 2827387 Mkdir 7389

Open 2572124 Rmdir 6973

Unlink 67883 Directory rename 5

Create 41755

in the trace. Since we are only interested in metadata operations, data operations

(mainly, read, write and mmap), present in the trace, are omitted.

The trace is replayed by a multithreaded program that simulates a system with

concurrent metadata operations. The program takes into account dependencies

between operations (e.g., a file can not be created before the directory containing

the file is created).

– Creation/traversal of directories: this benchmark is made up of two tests: the

first one creates directory hierarchies with empty regular files, and the second

one traverses those hierarchies. Each directory hierarchy is created by a single

process by uncompressing a Linux kernel 2.6.32.9 source tree whose files have

been truncated to zero bytes. Each process also traverses its own Linux source

tree.

– Metarates: this program [26] evaluates the rate at which metadata transactions

are performed. It measures aggregate transaction rates when multiple processes

(coordinated by MPI) read or write metadata concurrently. We use 640,000 files

in total, distributed into as many directories as processes. The program tests the

performance achieved by each system for three types of metadata transactions1:

create–close, stat, and utime calls, which basically generate a write–only, read–

only and read–write metadata workload, respectively.

– Hugedirs: it is a microbenchmark made up of three different tests. The first one

creates a fixed number of files on a single directory. That number depends on the

number of OSD+s. For each OSD+, 400,000 files are created, so there are 400,000

files with 1 OSD+, 800,000 files with 2 OSD+s, and so on. The second test per-

forms a stat operation on each of those files. Lastly, the third test performs an

unlink operation on the directory’s files. Operations are performed distributing

and not distributing the directory in order to compare the distribution’s perfor-

mance.

5.3 Results

The results shown for every system configuration are the average of five runs of each

benchmark. Confidence intervals are also shown as error bars, for a 95% confidence

level. Test disks are formatted between runs for the HP Trace and metarates bench-

marks, and unmounted/remounted between the directory tree creation and traversal

1 Note that the same create–close and stat metadata workloads can be generated by more up–to–date

benchmarks like mdtest [27]. However, unlike mdtest, metarates also supports utime operations, which

read and write the same metadata element (an i–node in our case) in each transaction.
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Fig. 6 Improvement obtained by FPFS 1OSD+ over Lustre: (a) HP Trace; (b) Creation of directories;

(c) Traversal of directories; (d) Metarates: create-close transactions; (e) Metarates: stat transactions; (f)

Metarates: utime transactions. Note the different Y–axis scales.

tests, and between the create, stat and unlink tests of hugedirs. The number of client

processes per benchmark varies from 1 to 256 processes, in powers of two, except for

the hugedirs benchmark that is set to 256 clients.

The results in the hugedirs benchmark are calculated by distributing and not dis-

tributing the huge directory, and for 1, 2, 4 and 8 OSD+s. For the remaining bench-

marks and FPFS, results are obtained by using 1 and 4 OSD+s. Finally, FPFS’s and

Lustre’s performances are compared by using only one node. which acts either as an

FPFS OSD+ device or as a Lustre server, containing both the MDS/MGS service and

one OST.

In Figure 6 we present FPFS’s improvement over Lustre for HP Trace, cre-

ation/traversal of directories, and metarates benchmarks. Figure 7 shows, for the
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Fig. 7 Scalability for FPFS 1 OSD+ and 4 OSD+s configurations: (a) HP Trace; (b) Creation of direc-

tories; (c) Traversal of directories; (d) Metarates: create-close transactions; (e) Metarates: stat transactions;

(f) Metarates: utime transactions. Note the different Y–axis scales.

same benchmarks, the scalability for FPFS with 1 OSD+ and 4 OSD+s. Finally, Fig-

ure 8 depicts the throughput and scalability for the hugedirs benchmark.

5.3.1 HP Trace

Figure 6.(a) compares the performance obtained by FPFS and Lustre in the HP Trace

benchmark, when the number of threads varies from 1 to 256 in the program which

replays the trace. For Ext4 and one thread, our proposal is 64% better than Lustre,

and the percentage increases with the number of threads, reaching an improvement

of 82% from 16 threads on.
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It is worth remarking that, although Lustre is a full-fledged parallel file system and

FPFS only implements an incomplete metadata service, both file systems roughly per-

form the same operations. This fact, along with the large performance differences in

this test, ensures that FPFS represents a significant improvement over Lustre in time-

sharing environments. Moreover, FPFS outperforms Lustre regardless of the backend

file system used, mainly due to the thin layer FPFS adds on top of the backend file

system, which directly translates FPFS requests into backend file system requests.

Instead, Lustre adds several abstraction layers which increase the service time.

FPFS’s scalability, shown in Figure 7.(a), reaches 3.04 for Ext4, and 3.70 for

Ext3, when there are 256 threads. This value is smaller than the ideal 4, due to the

dependencies between the operations in the trace, which limit the parallel execution

of operations. However, as the number of threads increases, so does the number of

possible ongoing metadata operations. Accordingly, scalability is better for a large

number of threads, showing that FPFS can properly deal with large time-sharing sys-

tems.

5.3.2 Creation/Traversal of Directories

Like HP Trace, this benchmark creates/traverses thousands of files and directories

(the Linux source tree used by each process has around 14,000 directories and 50,000

regular files). However, unlike the previous one, there are not dependencies between

metadata operations carried out by different processes. Another difference is that not

all the file system operations are needed (specifically, only the create, opendir,

close, mkdir and getdents metadata operations are used).

Figures 6.(b) and 6.(c) show, respectively, that FPFS’s improvement over Lustre

can reach 86% during directory tree creations, and more than 90% for directory tree

traversals, although the results greatly depend on the file system used and the number

of processes.

The different behavior of Ext3 and Ext4 is due to an exclusive Ext4’s option,

flex bg, used by default when the file system is created. This flag improves the cre-

ation of directories, but downgrades directory traversals for more than 64 processes.

However, when flex bg is unset (lines labeled “Ext4 -O ˆflex bg” in the figures), Ext4

roughly behaves as Ext3. Note that file–system configurations that provide good per-

formance for directory tree creation and traversal are different, and you cannot get

good results (with respect to Lustre) on both tests at the same time. Hence, in these

tests, the underlying file system and formatting options can be decisive. Due to its

flexibility, FPFS can easily be set up to get the best performance depending on the

workload.

Figures 7.(b) and 7.(c) plot the scalability for directory tree creation and traversal

for Ext4 and Ext3, each using its default value for flex bg. In both tests, the scalability

achieved for Ext4 increases with the number of clients. For the creation test, it is even

larger than 4, which can be explained by looking at Figure 6.(b): with 256 clients and

4 OSD+s, every OSD+s is serving around 64 clients, and the performance of 1 OSD+

for 64 clients is much better than for 256 clients.
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In the case of Ext3, the scalability is also quite good for the directory tree cre-

ation, but results for the traversal test are rather bad. We have not found a plausible

explanation yet.

5.3.3 Metarates

Performance results of metarates transactions are shown in Figures 6.(d)-(f). FPFS

over Ext4 noticeably outperforms Lustre for all types of transactions and number of

processes. FPFS over Ext3 has the same behavior as over Ext4 in the stat benchmark,

and also achieves good results in the utime test, but it performs badly in the create–

close benchmark, where the results are consistent with those obtained by Ext3 in the

creation of a directory tree (see Figure 6.(b)).

The good results obtained by FPFS in the stat and utime tests are because these

tests first create the files, and then perform the corresponding operations. Accord-

ingly, thousands of i–nodes and directory entries are already in the operating sys-

tem’s caches when the stat and utime operations start. Hence, the performance is

limited by CPU and network bandwidth, and not by hard disks or directory sizes.

Lustre’s abstraction layers, however, introduce a larger overhead which downgrade

its performance.

Figures 7.(d) and 7.(f) show the scalability achieved by FPFS in the create–close

and utime tests. The super–linear scalability achieved can be explained by the use

of the operating system’s caches in the OSD+s, and the number of processes itself.

Since the operating system uses write-back caches, metadata writes are delayed a few

seconds (typically, 5 seconds in Linux) in main memory before being written to disk.

When having more processes, the increase of OSD+s reduces the application time,

and this, in turn, reduces the number of write operations to disk during the run of the

tests. Also, as the total cache size grows, so does the amount of metadata in main

memory that has to be written to disk after the test has finished. The completion of

these last pending metadata writes, hence, does not impact the application time of the

benchmarks. All this explains the big confidence intervals for utime too, because the

amount of metadata written to disk significantly varies from run to run, and so does

the application time.

The larger total cache size provided by four OSD+s also decreases the number of

metadata reads from disk. As explained before, metarates creates the files required

for the stat and utime benchmarks just before running them, leaving thousands of

i–nodes and directory entries in main memory that do not have to be read from disk.

With four OSD+s, the amount of metadata in main memory just after creating the

files is four times larger than with only one OSD+, which accordingly reduces the

amount of metadata read from disks. Stat and utime transactions benefit from this

fact.

Finally, in the stat case, we can see that the scalability slightly increases with the

number of clients, although it is clear from Figure 6.(e) that clients already achieve

the maximum possible performance with a single OSD+. Therefore, the use of four

OSD+s can hardly reduce the application time.
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Fig. 8 (a) Operations per second achieved by FPFS when distributing a huge directory. The size of the

directory is N*400,000 files, where N is the number of OSD+s. (b) Scalability achieved by FPFS when

distributing a huge directory with 400,000 files. Each OSD+s receives 400,00/N files, where N is also the

number of OSD+s.

5.3.4 Huge directories

Figure 8.(a) depicts the rates at which operations are performed when we distribute a

huge directory. As we can see, FPFS is able to create around 70,000 files per second,

and to stat more than 120,000 files per second, with just 8 OSD+s. These numbers ex-

ceed today’s requirement for 40,000 files creates per second in a single directory [28],

and prepare FPFS for the Exascale–era.

Figure 8.(b) shows the scalability for FPFS using the hugedirs benchmark. The

speedup is computed by comparing the performance obtained when not distributing

and when distributing the files of the single created directory. Accordingly, for one

OSD+, the speedup is 1 because no distribution is possible. As the number of OSD+s

increases, we obtain an outstanding performance, achieving a super–linear scalability

for all tests.

That super–linear scalability is mainly due to the local file system used in the

OSD+s. For this benchmark, we used the Ext4 file system, whose performance gets

slightly worse as the number of entries in a directory grows. Hence, by distributing

the management of a directory, we are not only sharing out the workload among

various servers, but also creating smaller directories (e.g., smaller secondary directory

objects) on the local file systems, and thus improving their local performance.

The above good results have been obtained with a dynamic distribution of the

huge directory. As we have previously explained (see Section 4.2), a directory is

initially managed by a single OSD+ and directory object; as soon as a directory is

identified as huge (i.e., its size is greater than 244 kB), a distribution process starts

to move directory entries from the primary OSD+ to the secondary OSD+s. We have

measure the time taken by this migration and it is usually small (less than 2 seconds),

so it does not hurt FPFS performance.

Finally, note that, given the lengths of the file pathnames in this hugedirs bench-

mark, the threshold of 244 kB, which decides when a directory is “huge”, is equiv-

alent to distribute directories when they contain more than 8,000 files. This is the

same threshold as that used by GIGA+ [2] to decide when to split a partition, and it is
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based on the observation that 99.99% of the directories contain less than 8,000 files

(see Section 3.2).

6 Related Work

An important issue regarding the metadata management in a parallel file system is

where to store metadata. Lustre [7] and Hadoop [9] store metadata in a single meta-

data server, while PVFS [4] uses one or more servers to store metadata. Ceph [5],

however, stores metadata in objects located in the OSDs, although the management

is performed by a small set of servers which form the metadata cluster and contact

the OSDs to read and write metadata.

Ali et al. [15] also explore the use of OSD devices to store and partially manage

directories. They save directory entries as attributes of empty objects, and enhances

the OSD standard with a new compare–and-swap operation to make attribute changes

atomic. Note that, despite this operation, OSDs are basically passive in their approach

with respect to the metadata management, which has to be done by a small set of

dedicated servers, as in Ceph. Other issues which are important to provide a complete

metadata services, such as directory distribution, renames and permission changes,

atomicity of operations involving several OSDs, etc., are not discussed in their work

either.

In FPFS, unlike the above approaches, all the OSD+s actively participate in the

storage and management of a complete directory hierarchy. OSD+s also profit the

features of the underlying local file systems, avoiding the insertion of many new data

structures and thick software layers.

The namespace distribution across the metadata servers is another important sub-

ject which is crucial to balance the use of resources, and to achieve a good per-

formance. The namespace distribution may also determine some scalability prob-

lems, related to certain metadata operations or changes in the cluster due to addi-

tions, removals or failures of servers. Static Subtree Partition (used by Coda [29],

AFS [30], etc.) statically assigns portions of the file hierarchy to metadata servers.

This preserves the directory locality, but is vulnerable to distribution imbalances as

the file system and workload change. A variant is Dynamic Subtree Partition, used

by Ceph [31], which delegates authority for directory subtrees to different metadata

servers. Periodically, busy servers transfer subtrees to non–busy servers.

In order to improve the metadata distribution, either file [17,32,33] or direc-

tory [34] hashing approaches can be used. These schemes, however, present several

drawbacks, such as the loss of the directory locality and massive data migrations due

to, for example, a cluster size change or a rename. Lazy Hybrid (LH) [17] mitigates

the migration problem with a global metadata look–up table (MLT) and several lazy

policies. The MLT maps hash value ranges to server ids. When a new server is added

or removed, the MLT is updated to reflect the new hash–range distribution, but no

migration is performed. Lazy policies defer migrations until the affected data is ac-

cessed again. Since LH hashes files, it also includes a dual–entry access control list

(ACL) to avoid expensive directory traversals when checking permissions.
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Features introduced by LH have been widely borrowed by other approaches, such

as Dynamic Hashing (DH) [32], DOIDFH [33], and MHS [34], which modify the

way LH works to circumvent some of its shortcomings. DH combines lazy policies

and an MLT with several new strategies to dynamically adjust the metadata distribu-

tion. MHS is a directory hashing scheme that use LH’s access control mechanisms

to avoid directory traversals; it removes data migrations, due to rename operations,

by assigning, to every directory, a globally unique id which never changes. Directory

ids are created by a single metadata server, which may become a bottleneck. There is

also a global bucket index table that may need to be updated as new directories are

created or deleted. DOIDFH is similar to MHS in that it assigns a globally unique id

to every directory too. DOIDFH, however, keeps the complete directory hierarchy in

every metadata server. This prevents metadata servers from becoming hot–spots, be-

cause a client can contact any server to obtain a directory’s id. Another difference is

that DOIDFH uniformly distributes file metadata across metadata servers by hashing

<file name, parent directory’s id> pairs. Realize that a metadata–intensive workload

that frequently modifies the hierarchy can easily saturate a system deploying any of

these approaches.

FPFS also adopts LH’s techniques like pathname hashing, dual–entry ACLs, and

lazy migrations, although they are only applied to directories. This is an important

difference because a rename does not produce a massive migration of file data, only

directory objects are migrated. Permission changes do not produce a massive update

of files’ ACLs either, because a file’s permissions are directly derived from its own

ACL and its parent directory’s ACL. FPFS also uses a different hashing function [35],

which minimizes metadata migration on cluster changes, and handles links in a more

straightforward and efficient way.

The management of directories with millions of files, accessed by thousands of

clients at the same time, is a problem recently identified in HPC systems by differ-

ent authors [2,9,10,36,37]. To deal with this problem, several approaches have been

proposed. Patil and Gibson [2], for example, introduce a POSIX–compliant scalable

directory design, called GIGA+, that distributes directory entries over a cluster of

server nodes. GIGA+ incrementally hashes a directory into a growing number of

partitions, which are migrated among metadata servers for load balancing. Migra-

tions are individually performed by the servers, without a system–wide serialization,

synchronization or notification. Ceph [31] uses dynamic sub–tree partitioning of the

namespace and hashes individual directories when they get too big or experience too

many accesses. Finally, there also exists a proposal to provide Lustre with a clustered

metadata service [6] where directories can be statically striped over several MDTs as

files over several OSTs.

Our proposal for managing huge directories in FPFS is similar to that proposed

for Lustre, although, unlike Lustre’s, it is dynamic because new directories are not ini-

tially distributed, and only directories which grow too large get distributed. Our focus,

however, is not on proposing new mechanisms for huge directories but on showing

that distributed directories can be efficiently implemented in an OSD+–based meta-

data cluster.
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7 Conclusions and Future Work

In this paper, we have introduced OSD+, a new type of OSD device which handles

not only data but also metadata requests. OSD+s support directory objects, that store

file names and attributes, and support metadata–related operations. As in a traditional

OSD, data in an OSD+ is stored in data objects, which mainly support read and

write data operations.

Our new OSD+ devices profit the existence of a local file system in the storage

nodes. OSD+s directly map directory–object operations to directory operations in

the underlying file system, hence exporting many features of the local file system

to the cluster file system, and achieving a significant flexibility, simplicity and small

overhead.

We have also presented the architecture of the FPFS parallel file system, based

on OSD+s, and particularly the design and implementation of its metadata cluster.

Thanks to the OSD+s, metadata is managed by all the servers in the cluster, improv-

ing the performance, scalability and availability of the metadata service. In such large

metadata clusters, issues like directory distribution for load balancing, and atomic-

ity of metadata operations with several participating OSD+s are important. We face

them by uniformly distributing the directory objects among all the servers, and co-

ordinating OSD+s through a network–commit protocol, respectively. Atomicity of

metadata operations which involve a single directory are independently handled by

every OSD+.

The performance of our metadata cluster based on OSD+s has been compared

with Lustre’s. The results show that an FPFS metadata cluster with a single OSD+ can

improve the throughput of a Lustre metadata server by more than 60–80%. Scalability

of our proposal has also been evaluated, and the results confirm that it scales with the

number of OSD+s.

Lastly, we have also included in FPFS the management of huge directories, which

are common in some HPC applications. A huge directory has millions of entries that

are accessed and modified by thousands of clients at the same time. FPFS dynami-

cally distributes a directory among several OSD+s when it surpasses a given number

of files, thereby distributing its workload.

The evaluation shows that FPFS achieves a high throughput of more than 70,000

creates per second, and more than 120,000 stats per second, for huge directories on

a cluster with just 8 OSD+s, and a super–linear scalability as the number of OSD+s

increases. These numbers exceed today’s requirements, and prepare FPFS for the

Exascale–era.

As work in progress, we are currently analyzing which modifications have to be

done in the OSD standard [24] to support directory objects.
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