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Abstract. In this paper we present an efficient method for estimating
the significant points of a gray level image by means of a fuzzy cluster-
ing algorithm. This method can be used to reduce the resolution of the
image so 1t can be transmited and later reconstructed with the greatest
reliability. We will show how using less than 0,01 of the original inform-
ation it is possible to reconstruct an image with a considerable level of
detail.

1 Introduction

Clustering of numerical data forms the basis of many classification and system
modeling techniques. The purpose of clustering is to distill natural groupings of
data from a large data set, producing a concise representation of the original
information. Fuzzy clustering in particular has shown excellents results, because
it has a no restrictive interpretation of the membership of the data to the different
clusters. Within the fuzzy clustering algorithms, the Fuzzy C-means [1] has been
widely studied and applied in different environments [3] [4].

In our case we are interested in the reduction of a gray level image replacing
it by its more significant points, so that in a later moment we can reconstruct
the original image with the greatest precision, or in other words with the less
information loss. The number of points must be as small as possible in relation
with the points of the original image, but trying to preserve the more information
as possible of the original image, in order that the later reconstruction allows its
regeneration it with great reliability.

In order to obtain these significant points, we use the Mountain Clustering
Algorithm. This is a fuzzy clustering algorithm developed by Yager and Filev [7]
which can be used for estimating by means of a simple and effective algorithm,
the number and location of fuzzy cluster centers . Their method is based in
griding the data space and computing a score value for each grid point based on
its distance to the actual data points; a grid point with many data points nearby
will have a high potential value. The grid point with the highest potential value
is chosen as the first cluster center. Once a centroid is detected the potential of
all grid points is reduced according to their distance from the cluster center. This
process is repeated until the potential of all grid points fall below a threshold.
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This method 1s specially suitable for our problem, because we work with
retinal or polar images. Images which griding try to simulate the eyes vision
using a radial griding over a circular image, having in this way a great resolu-
tion near the central point of focus and with a smaller resolution as we move
away from the focus. This is an important difference with other applications of
the Mountain Clustering Algorithm [2]. In this context a natural alternative is
to reduce the number of points in each radial axis or radii, searching for the
most representative points corresponding to the original data set, producing in
this way a concise representation of the original information. As we have in-
dicated, this 1s the main objective of clustering in general and fuzzy clustering
in particular. Furthermore, as the representation we have adopted in the image
treatment is similar in comparison with the Mountain Clustering technique, this
latter is an excellent candidate as a clustering algorithm and an alternative to
other proposals in the literature [5].

Regardless of other possible applications of this technique as image com-
pression or image storage, in our case it is part of a vision component of an
autonomous system which main objective is to capture images and send them
to a remote controller where the whole image is reconstructed to be processed,
or just a partial zone where some object of interest could be located based on
some predictions is reconstructed.

In the next section we present the basic ideas behind the Mountain Clustering
Algorithm. Then in section 3 we show how we apply this technique in our image
reduction /reconstruction method using the centroids obtained by the Mountain
Clustering algorithm. In section 4 we discuss the experimental results obtained
with our method, and finally in section 5 we indicate some future trends.

2 Mountain Clustering Algorithm Overview

In the following we shall briefly explain the basis ideas of the Mountain Cluster-
ing method (MC). For simplicity, we shall focus on two dimensional space, but
the generalisation of the result is straightforward.

The MC can be seen to be a three step process. In the first step we discretize
the object space and in doing so generate the potential cluster centers. The
second step uses the observed data, the objects to be clustered, to construct the
mountain function. The third step generates the cluster centers by a iterative
destruction of the mountain function.

First Step

Assume the data consist of a set of ¢ points (g, yx) in the R? space. We
restrict ourselves to the rectangular subspace X x Y of R? containing the data
points. The first step in the MC is to form a discretization of X x Y space by
griding X and Y with r; and ra, respectively, equidistant lines (although this is
not obligatory). The intersection of these grid lines, called nodes, form out set
of potential cluster centers. We shall denote this set as N, and an element in N
as N;; and with (X;,Y}) indicating the node obtained by the intersection of the
grid lines passing through the lines at X; and at Y;.



As we shall subsequently see the purpose of this discretization is to turn the
continuos optimisation problem of finding the centers into a finite one.

Second Step

In this step we shall construct the mountain function M, which is defined on
the space N of potential cluster centers:

M:N—®x

The mountain function M is constructed from the observed data by adding
an amount to each node in N proportional to that nodes distances from the data
point. More formally for each point Nj;, (X;,Y;), in N

M(Nij) = 3 em oo
k=1

where Oy is the kth data point (zk,yx), o is a constant and d (Nj;, Oy) is a
measure of distance between N;; and Oy typically, but not necessarily, measured
as

d(Nij, Or) = (Xi — )" + (V; — )’

Obviously the closer a data point is to a node the more it contributes to
the score at that node. It is evident from the construction of the mountain
function that its value are approximations of the density of the data points in
the neighbourhood of each node. The higher the mountain function value at a
node the larger 1s its potential to be a cluster center.

Third Step

The third step in the MC is to use the mountain function to generate
the cluster center. Let the node N{ be the grid point with maximal total
score, the peak of the mountain function. We shall denote its score by M7 =
Maa;;[M(N;;)]. If there are more than one maxima we select randomly one of
them. We designate this node as the first cluster center and indicate its coordin-
ates by Ni = (27, y7). We next must look for the next cluster center, so we
must eliminate the effect of the cluster center just identified because usually this
peak is surrounded by a number of grid points that also have high scores. This
means that we must revise the mountain function for all the other nodes. The
process of revision can be seen as a destruction of the mountain function, and is
realised by subtracting from the total score of each node a value that is inversely
proportional to the distance of the node to the just identified cluster center, as
well as being proportional to the score at this just identified cluster center. More
specifically, we form a revised mountain function M- also defined on N such that

Ma (Nij) = My (Nij) = M7 (Nyj) + em XA N)

where M is the original mountain function M, 3 is a positive constant, N7
and M7 are the location of and score at the just identified cluster center and
d (N7, N;;) is a distance measure.



We now use the revised mountain function Ms, to find the next cluster center
by finding the location N3 | and score M3 | of its maximal value. N3 becomes
our second cluster center. We then revise our mountain function to obtain Mg
as

Mz (Nij) = Ma (Nij) = M3 (Nij) x 772N M)

and so on.

This process, that can be seen as a destruction of the mountain function,
ends when the score of the last found cluster center is less than a constant §.
This means that there are only very few points around the last cluster center
and it can be omitted.

The main advantage of this method is that it does not require a predefined
number of clusters. It determines the first m cluster centers that satisfy the
stopping rule, starting from the most important ones which are characterised
with maximal value of the mountain functions at nodes Ny, N3, ..., N} with

3 Image Reduction/Reconstruction

3.1 Mountain Function Alternatives

The first question to address in the applicability of the Mountain Clustering
Algorithm is the determination of the possible centroid candidate points. As we
have indicate in the introduction we are working with a retinal or polar vision
where we transform a rectangular image obtained from a camara, in a circular
one where the new image points are distributed in an equidistant way around
concentric circumferences with different radii from a focal point.

Although in this image treatment there are areas in the original image that
are not considered and which information is lost as can be seen in figure 1, 1t has
shown good behaviour in machine vision though it let simplificate the original
image and concentrate the vision in the objects around the focal point in a
similar way as human beings do.

In our case we are going to trace r radii and s concentric circumferences,
having in this way 7+ s+ 1 possible centroid candidates including the focal point
or centre of the image. Along each radial axis or radii, we will obtain C' centroids
using the Mountain Clustering Algorithm, thus finally the original image will be
replaced by a collection of C' % r 4+ 1 centroids that will concentrate the more
important information representing the image and that will permit us later its
reconstruction.

Once we have established the centroid candidates, the next step is to define
the mountain function to be aplied to each of them. In this point a critical
decision appears that will determine the success of our method. What we mean
by a centroid?. There are different alternatives:

— A centroid will represent a weighted average of the different gray levels of
the points around it.
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Fig. 1. Griding applied to the Image

— A centroid candidate will be more candidate as its gray level is equal or
similar to the gray levels of the points that surround it.

— A centroid candidate will be more candidate as its gray level is different to
the gray levels of the points that surround it.

The first alternative leads to consider as centroids only the points that are in
light areas of the images, reducing the possibilities of the points in darker areas.
The mountain function value for each candidate is calculated by means of the
gray level sum of all the points around the candidate, weighting each gray level
by a distance exponential function.

The second alternative indicate us that the centroids are those candidate
points whose gray level is much similar to those points around it. The moun-
tain function value for each candidate point is calculate as the inverse of the
neighbourhood points’ gray level sum, weighting each gray level by means of a
distance exponential function to the candidate.

The third alternative places the centroids in those zones where a uniform
color does not exist. The mountain function value is calculate in a similar way
as in the second alternative, but without consider the inverse of the sum.

Within the different alternatives, the third one has shown the best results.
The reasons are clear: from an image we are interested in the points that rep-
resent the most significant information, in order to use them in the later recon-
struction. This reconstruction will be better as we can recognize the objects that
are present in the image. Thus, the points that contain the most representative
information will be those that are in the border between objects, small areas
that are characterized by significant changes in the gray level of the points. In
this way, the third alternative for the mountain function is the more adequate
in order to represent this situation.

In our case, the mountain function is defined using the expression:

M(Nij) = > |(Gray(Nij) = Gray(Oy))| e~ 00)
k

where Nj; is a centroid candidate, Gray(-) is a function that returns the gray
level of the original image for each point, « is a constant, d(-) is the euclidian



distance and Oy is a point in the neighbourhood of N;;. We must remark that
in our method, during the mountain function evaluation in each point, we are
not going to consider all the possible image points as it is done in the original
Mountain Clustering Algorithm. Instead we only take into acccount the original
image points that are close to each centroid candidate, within certain context
using ideas from [4] [6].

Once we have obtained the ¢ possible centroid candidate in each radii, and
once we have calculated the mountain function value in each of these points,
what remains is to apply the Mountain Clustering Algorithm as indicated in
section 2, in order to find the C' centroids over each of the radii.

3.2 Image Reconstruction from the Centroids

Once we have found the C' centroids over each of the radii, we need a method to
reconstruct the original image starting from this reduced number of points. We
must remark that we have obtained excellent results for real images of 450 % 350
pixels, using 18 centroids for each of the 50 radius. In other words, with our
method we can reconstruct the image by means of only 900(= 18 % 50) centroids
representing just the 0, 0057 of the 157.500(= 450 % 350) points of the real image.

In order to reconstruct the original image we must proceed in the following
way. We can consider the gray level of each point as the return value of a two
variables function, # and y which represents the coordinates of the point. The
graphical representation of this function will be a ”colour mountain” where the
hills represent the light zones and the valleys the dark ones. The centroids rep-
resent the points of this colour montain that will let us reconstruct it with minor
information loss.

Color plane

Cluster center

Fig. 2. Colour Plane

As we can see in figure 2, the centroids of each radius are paired with the
centroids of the next radius, so a quadrilateral is formed by the two centroids
of one radii and the two centroids of the other one. This quadrilateral will be
divided in two components with three points each and two of them in common.
The objective of this operation is to characterize by means of the three points



just indicated the ”colour plane”, which equation lets us infer the corresponding
colour to any point within the triangle formed by the three points. Figure 2 show
these 1deas.

In this way and using all the quadrilaterals that the centroids generate, we
can reconstruct the original image.

4 Experimental Results

Experiments have been realized with real images and synthetic ones and several
interesting conclusions have been obtained.

C

Figure 3: Original Image / Reconstructed Image / Clusters Center and Quadrilaterals

In figures 3.a and 3.b% we can see the real image and its reconstruction after
applying our methods with 2101 cluster centers in all. As it can be noted and
in spite of the low number of cluster centers, the results are enough satisfactory
noticing clearly all the objects in the image although, evidently, without the same
resolution. An interesting event that is shown in Figure 3.c, where quadrilaterals
constituted by the cluster centers for the above image are shown up, is that
the borders of the objects in the real image can been identified. That is, the
cluster centers have adapt theirselves to recognize those areas in which important
changes of color take place and certainly among these areas are the object borders
because, otherwise, the human eye would not recognize the border either.

It is important to emphasize that in spite of the image darkness, we have
obtained very similar results to the above ones with different 1luminations. Hence
we can conclude that our method is not much sensitive to image ligthing, being
this a very interesting property.

Figures 4.a 4.b and 4.c show the application of our method on a synthetic
image. In this case, we can note some anomalies in the reconstructed image that
distort it. These anomalies arise because two adjacent radii cross very different
zones, so cluster centers do not uniformely distribute on each radius, but tends

? The reconstructed image has a little noise due to the reproduction process
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Figure 4: Original Image / Reconstructed Image / Clusters Center and Quadrilaterals

to concentrate on certain radii parts. Moreover as the number of cluster cen-
ters over both radius is the same and they match theirselves correlatively (the
first with the first, the second with the second, and so on), it is posible that
some quadrilaterals constituted by the cluster centers get longer longitudinally
following radius direction, giving rise to the appearance of that ”"peaks” in the
reconstructed image.

There are several posibilities that can help us to alleviate these anomalies.
One solution is to increase the number of radii. Another one is to draw a new
radius between two existing radii when the cluster center behaviour is enough
different over both. One additional solution is to restrict cluster centers mobility
on a radii. In order to achieve this, we can divide the radius in several parts (like
having concentric rings) and fixing the number of cluster centers for each part.
In this way, we achieve an uniforme distribution of cluster centers along each
radius.

5 Conclusion and Future Trends

In this paper we have shown how the use of a fuzzy clustering technique like the
Mountain Clustering Algorithm allows the reduction of the information needed
to be maintained/transmited, relative to a gray level image preserving the more
information about it, so later it can be reconstructed with greater reliability.
The examples presented have shown that the method obtain good results either
in the case of real images with adequate or slight ilumination, or in the case of
synthetic images.

Although the results obtained indicate the good performance of the method
proposed, there are some points that need further improving. Specifically the
mountain function evaluation is a computational expensive process. In order to
improve its evaluation it could be interesting to consider just a random collection
of points in the centroids’ neighbourhood. Another important aspect to recon-
sider is the way the centroid candidates are elected. Instead of assigning them
to fixed positions over the radius, we could give them more movility, so they
could move to more significant zones in relation to the final reconstruction of
the image, although with an increase in the complexity of the algorithm.
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