
Fuzzy Clustering and Images Reduction ?A. F. G�omez-Skarmeta1, J. Piernas1 and M. Delgado21 Dept. Inform�atica y Sistemas. Universidad de Murcia, Spain2 Dept. Ciencias de la Computaci�on e I.A. Universidad de Granada, SpainAbstract. In this paper we present an e�cient method for estimatingthe signi�cant points of a gray level image by means of a fuzzy cluster-ing algorithm. This method can be used to reduce the resolution of theimage so it can be transmited and later reconstructed with the greatestreliability. We will show how using less than 0; 01 of the original inform-ation it is possible to reconstruct an image with a considerable level ofdetail.1 IntroductionClustering of numerical data forms the basis of many classi�cation and systemmodeling techniques. The purpose of clustering is to distill natural groupings ofdata from a large data set, producing a concise representation of the originalinformation. Fuzzy clustering in particular has shown excellents results, becauseit has a no restrictive interpretation of the membership of the data to the di�erentclusters. Within the fuzzy clustering algorithms, the Fuzzy C-means [1] has beenwidely studied and applied in di�erent environments [3] [4].In our case we are interested in the reduction of a gray level image replacingit by its more signi�cant points, so that in a later moment we can reconstructthe original image with the greatest precision, or in other words with the lessinformation loss. The number of points must be as small as possible in relationwith the points of the original image, but trying to preserve the more informationas possible of the original image, in order that the later reconstruction allows itsregeneration it with great reliability.In order to obtain these signi�cant points, we use the Mountain ClusteringAlgorithm. This is a fuzzy clustering algorithm developed by Yager and Filev [7]which can be used for estimating by means of a simple and e�ective algorithm,the number and location of fuzzy cluster centers . Their method is based ingriding the data space and computing a score value for each grid point based onits distance to the actual data points; a grid point with many data points nearbywill have a high potential value. The grid point with the highest potential valueis chosen as the �rst cluster center. Once a centroid is detected the potential ofall grid points is reduced according to their distance from the cluster center. Thisprocess is repeated until the potential of all grid points fall below a threshold.? This work has been partially supported by CICYT project TIC95-1019



This method is specially suitable for our problem, because we work withretinal or polar images. Images which griding try to simulate the eyes visionusing a radial griding over a circular image, having in this way a great resolu-tion near the central point of focus and with a smaller resolution as we moveaway from the focus. This is an important di�erence with other applications ofthe Mountain Clustering Algorithm [2]. In this context a natural alternative isto reduce the number of points in each radial axis or radii, searching for themost representative points corresponding to the original data set, producing inthis way a concise representation of the original information. As we have in-dicated, this is the main objective of clustering in general and fuzzy clusteringin particular. Furthermore, as the representation we have adopted in the imagetreatment is similar in comparison with the Mountain Clustering technique, thislatter is an excellent candidate as a clustering algorithm and an alternative toother proposals in the literature [5].Regardless of other possible applications of this technique as image com-pression or image storage, in our case it is part of a vision component of anautonomous system which main objective is to capture images and send themto a remote controller where the whole image is reconstructed to be processed,or just a partial zone where some object of interest could be located based onsome predictions is reconstructed.In the next section we present the basic ideas behind the Mountain ClusteringAlgorithm. Then in section 3 we show how we apply this technique in our imagereduction/reconstruction method using the centroids obtained by the MountainClustering algorithm. In section 4 we discuss the experimental results obtainedwith our method, and �nally in section 5 we indicate some future trends.2 Mountain Clustering Algorithm OverviewIn the following we shall brie
y explain the basis ideas of the Mountain Cluster-ing method (MC). For simplicity, we shall focus on two dimensional space, butthe generalisation of the result is straightforward.The MC can be seen to be a three step process. In the �rst step we discretizethe object space and in doing so generate the potential cluster centers. Thesecond step uses the observed data, the objects to be clustered, to construct themountain function. The third step generates the cluster centers by a iterativedestruction of the mountain function.First StepAssume the data consist of a set of q points (xk; yk) in the <2 space. Werestrict ourselves to the rectangular subspace X � Y of <2 containing the datapoints. The �rst step in the MC is to form a discretization of X � Y space bygriding X and Y with r1 and r2, respectively, equidistant lines (although this isnot obligatory). The intersection of these grid lines, called nodes, form out setof potential cluster centers. We shall denote this set as N , and an element in Nas Nij and with (Xi; Yj) indicating the node obtained by the intersection of thegrid lines passing through the lines at Xi and at Yj .



As we shall subsequently see the purpose of this discretization is to turn thecontinuos optimisation problem of �nding the centers into a �nite one.Second StepIn this step we shall construct the mountain function M , which is de�ned onthe space N of potential cluster centers:M : N �! <The mountain function M is constructed from the observed data by addingan amount to each node in N proportional to that nodes distances from the datapoint. More formally for each point Nij, (Xi; Yj), in NM (Nij) = qXk=1 e���d(Nij ;Ok)where Ok is the kth data point (xk; yk), � is a constant and d (Nij; Ok) is ameasure of distance between Nij and Ok typically, but not necessarily, measuredas d (Nij ; Ok) = (Xi � xk)2 + (Yj � yk)2Obviously the closer a data point is to a node the more it contributes tothe score at that node. It is evident from the construction of the mountainfunction that its value are approximations of the density of the data points inthe neighbourhood of each node. The higher the mountain function value at anode the larger is its potential to be a cluster center.Third StepThe third step in the MC is to use the mountain function to generatethe cluster center. Let the node N�1 be the grid point with maximal totalscore, the peak of the mountain function. We shall denote its score by M�1 =Maxij[M (Nij)]. If there are more than one maxima we select randomly one ofthem. We designate this node as the �rst cluster center and indicate its coordin-ates by N�1 = (x�1; y�1). We next must look for the next cluster center, so wemust eliminate the e�ect of the cluster center just identi�ed because usually thispeak is surrounded by a number of grid points that also have high scores. Thismeans that we must revise the mountain function for all the other nodes. Theprocess of revision can be seen as a destruction of the mountain function, and isrealised by subtracting from the total score of each node a value that is inverselyproportional to the distance of the node to the just identi�ed cluster center, aswell as being proportional to the score at this just identi�ed cluster center. Morespeci�cally, we form a revised mountain function M̂2 also de�ned on N such thatM̂2 (Nij) = M̂1 (Nij)�M�1 (Nij) � e���d(N�1 ;Nij )where M̂1 is the original mountain function M , � is a positive constant, N�1and M�1 are the location of and score at the just identi�ed cluster center andd (N�1 ; Nij) is a distance measure.



We now use the revised mountain function M̂2, to �nd the next cluster centerby �nding the location N�2 , and score M�2 , of its maximal value. N�2 becomesour second cluster center. We then revise our mountain function to obtain M̂3as M̂3 (Nij) = M̂3 (Nij)�M�3 (Nij) � e���d(N�2 ;Nij )and so on.This process, that can be seen as a destruction of the mountain function,ends when the score of the last found cluster center is less than a constant �.This means that there are only very few points around the last cluster centerand it can be omitted.The main advantage of this method is that it does not require a prede�nednumber of clusters. It determines the �rst m cluster centers that satisfy thestopping rule, starting from the most important ones which are characterisedwith maximal value of the mountain functions at nodes N�1 ; N�2 ; :::; N�m withcoordinates (x�1; y�1) ; (x�2; y�2) ; :::; (x�m; y�m).3 Image Reduction/Reconstruction3.1 Mountain Function AlternativesThe �rst question to address in the applicability of the Mountain ClusteringAlgorithm is the determination of the possible centroid candidate points. As wehave indicate in the introduction we are working with a retinal or polar visionwhere we transform a rectangular image obtained from a camara, in a circularone where the new image points are distributed in an equidistant way aroundconcentric circumferences with di�erent radii from a focal point.Although in this image treatment there are areas in the original image thatare not considered and which information is lost as can be seen in �gure 1, it hasshown good behaviour in machine vision though it let simpli�cate the originalimage and concentrate the vision in the objects around the focal point in asimilar way as human beings do.In our case we are going to trace r radii and s concentric circumferences,having in this way r�s+1 possible centroid candidates including the focal pointor centre of the image. Along each radial axis or radii, we will obtain C centroidsusing the Mountain Clustering Algorithm, thus �nally the original image will bereplaced by a collection of C � r + 1 centroids that will concentrate the moreimportant information representing the image and that will permit us later itsreconstruction.Once we have established the centroid candidates, the next step is to de�nethe mountain function to be aplied to each of them. In this point a criticaldecision appears that will determine the success of our method. What we meanby a centroid?. There are di�erent alternatives:{ A centroid will represent a weighted average of the di�erent gray levels ofthe points around it.



Fig. 1. Griding applied to the Image{ A centroid candidate will be more candidate as its gray level is equal orsimilar to the gray levels of the points that surround it.{ A centroid candidate will be more candidate as its gray level is di�erent tothe gray levels of the points that surround it.The �rst alternative leads to consider as centroids only the points that are inlight areas of the images, reducing the possibilities of the points in darker areas.The mountain function value for each candidate is calculated by means of thegray level sum of all the points around the candidate, weighting each gray levelby a distance exponential function.The second alternative indicate us that the centroids are those candidatepoints whose gray level is much similar to those points around it. The moun-tain function value for each candidate point is calculate as the inverse of theneighbourhood points' gray level sum, weighting each gray level by means of adistance exponential function to the candidate.The third alternative places the centroids in those zones where a uniformcolor does not exist. The mountain function value is calculate in a similar wayas in the second alternative, but without consider the inverse of the sum.Within the di�erent alternatives, the third one has shown the best results.The reasons are clear: from an image we are interested in the points that rep-resent the most signi�cant information, in order to use them in the later recon-struction. This reconstruction will be better as we can recognize the objects thatare present in the image. Thus, the points that contain the most representativeinformation will be those that are in the border between objects, small areasthat are characterized by signi�cant changes in the gray level of the points. Inthis way, the third alternative for the mountain function is the more adequatein order to represent this situation.In our case, the mountain function is de�ned using the expression:M (Nij) =Xk j(Gray(Nij)�Gray(Ok))j � e���d(Nij ;Ok)where Nij is a centroid candidate, Gray(�) is a function that returns the graylevel of the original image for each point, � is a constant, d(�) is the euclidian



distance and Ok is a point in the neighbourhood of Nij. We must remark thatin our method, during the mountain function evaluation in each point, we arenot going to consider all the possible image points as it is done in the originalMountain Clustering Algorithm. Instead we only take into acccount the originalimage points that are close to each centroid candidate, within certain contextusing ideas from [4] [6].Once we have obtained the c possible centroid candidate in each radii, andonce we have calculated the mountain function value in each of these points,what remains is to apply the Mountain Clustering Algorithm as indicated insection 2, in order to �nd the C centroids over each of the radii.3.2 Image Reconstruction from the CentroidsOnce we have found the C centroids over each of the radii, we need a method toreconstruct the original image starting from this reduced number of points. Wemust remark that we have obtained excellent results for real images of 450 � 350pixels, using 18 centroids for each of the 50 radius. In other words, with ourmethod we can reconstruct the image by means of only 900(= 18 �50) centroidsrepresenting just the 0; 0057 of the 157:500(= 450�350) points of the real image.In order to reconstruct the original image we must proceed in the followingway. We can consider the gray level of each point as the return value of a twovariables function, x and y which represents the coordinates of the point. Thegraphical representation of this function will be a "colour mountain" where thehills represent the light zones and the valleys the dark ones. The centroids rep-resent the points of this colour montain that will let us reconstruct it with minorinformation loss.
Fig. 2. Colour PlaneAs we can see in �gure 2, the centroids of each radius are paired with thecentroids of the next radius, so a quadrilateral is formed by the two centroidsof one radii and the two centroids of the other one. This quadrilateral will bedivided in two components with three points each and two of them in common.The objective of this operation is to characterize by means of the three points



just indicated the "colour plane", which equation lets us infer the correspondingcolour to any point within the triangle formed by the three points. Figure 2 showthese ideas.In this way and using all the quadrilaterals that the centroids generate, wecan reconstruct the original image.4 Experimental ResultsExperiments have been realized with real images and synthetic ones and severalinteresting conclusions have been obtained.
a b cFigure 3: Original Image / Reconstructed Image / Clusters Center and QuadrilateralsIn �gures 3.a and 3.b3 we can see the real image and its reconstruction afterapplying our methods with 2101 cluster centers in all. As it can be noted andin spite of the low number of cluster centers, the results are enough satisfactorynoticing clearly all the objects in the image although, evidently, without the sameresolution. An interesting event that is shown in Figure 3.c, where quadrilateralsconstituted by the cluster centers for the above image are shown up, is thatthe borders of the objects in the real image can been identi�ed. That is, thecluster centers have adapt theirselves to recognize those areas in which importantchanges of color take place and certainly among these areas are the object bordersbecause, otherwise, the human eye would not recognize the border either.It is important to emphasize that in spite of the image darkness, we haveobtained very similar results to the above ones with di�erent iluminations. Hencewe can conclude that our method is not much sensitive to image ligthing, beingthis a very interesting property.Figures 4.a 4.b and 4.c show the application of our method on a syntheticimage. In this case, we can note some anomalies in the reconstructed image thatdistort it. These anomalies arise because two adjacent radii cross very di�erentzones, so cluster centers do not uniformely distribute on each radius, but tends3 The reconstructed image has a little noise due to the reproduction process



a b cFigure 4: Original Image / Reconstructed Image / Clusters Center and Quadrilateralsto concentrate on certain radii parts. Moreover as the number of cluster cen-ters over both radius is the same and they match theirselves correlatively (the�rst with the �rst, the second with the second, and so on), it is posible thatsome quadrilaterals constituted by the cluster centers get longer longitudinallyfollowing radius direction, giving rise to the appearance of that "peaks" in thereconstructed image.There are several posibilities that can help us to alleviate these anomalies.One solution is to increase the number of radii. Another one is to draw a newradius between two existing radii when the cluster center behaviour is enoughdi�erent over both. One additional solution is to restrict cluster centers mobilityon a radii. In order to achieve this, we can divide the radius in several parts (likehaving concentric rings) and �xing the number of cluster centers for each part.In this way, we achieve an uniforme distribution of cluster centers along eachradius.5 Conclusion and Future TrendsIn this paper we have shown how the use of a fuzzy clustering technique like theMountain Clustering Algorithm allows the reduction of the information neededto be maintained/transmited, relative to a gray level image preserving the moreinformation about it, so later it can be reconstructed with greater reliability.The examples presented have shown that the method obtain good results eitherin the case of real images with adequate or slight ilumination, or in the case ofsynthetic images.Although the results obtained indicate the good performance of the methodproposed, there are some points that need further improving. Speci�cally themountain function evaluation is a computational expensive process. In order toimprove its evaluation it could be interesting to consider just a random collectionof points in the centroids' neighbourhood. Another important aspect to recon-sider is the way the centroid candidates are elected. Instead of assigning themto �xed positions over the radius, we could give them more movility, so theycould move to more signi�cant zones in relation to the �nal reconstruction ofthe image, although with an increase in the complexity of the algorithm.
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