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Abstract— Achieving high performance for out-of-core appli-
cations typically involves explicit management of the movement
of data between the disk and the physical memory. We are
developing a programming environment in which the different
levels of the memory hierarchy are handled efficiently in a
unified transparent framework. In this paper, we present our
experiences with implementing efficient non-collective I/O (GPC-
IO) as part of this framework. As a generalization of the
Remote Procedure Call (RPC) that was used as a foundation
for the Sun NFS system, we developed a global procedure call
(GPC) to invoke procedures on a remote node to handle non-
collective I/O. We consider alternative approaches that can be
employed in implementing this functionality. The approaches
are evaluated using a representative computation from quantum
chemistry. The results demonstrate that GPC-IO achieves better
absolute execution times, strong-scaling, and weak-scaling than
the alternatives considered.

I. INTRODUCTION

Out-of-core computations operate on data too large to fit in
the collective physical memories of a parallel system. Typi-
cal approaches to out-of-core programs in a parallel system
employ a collective approach, in which all the processes
collectively perform disk I/O. This enables efficient disk I/O
and communication schedules, such as optimized collective
MPI I/O routines [1] and Disk Resident Arrays [2], to be
employed to greatly reduce the disk I/O overhead and improve
its scalability. Although this approach is very efficient, it
requires the programmer to restructure the computation to
identify and create points in the execution at which large
aggregate amounts of data can be moved between disk and
main memory. This can be challenging and tedious, especially
for computations in which the disk I/O and computation
patterns cannot be determined in advance.

We are interested in dynamically structured computations
that employ dynamic computation partitioning and disk I/O
requirements. An in-memory computation with such charac-
teristics can be efficiently implemented by exploiting sup-
port for remote memory access provided by communication
libraries such as Aggregate Remote Memory Copy Interface

(ARMCI) [3]. Using this approach, each process can access
any block of data without synchronizing with other processes.

We are developing a programming framework, extended
global arrays (XGA) in which the different levels of the mem-
ory hierarchy are handled in a unified transparent framework.
In this framework, the data is assumed to be available in a
global address space that can be accessed by any process
without synchronization. A program written in this framework
is automatically translated to be an in-memory or out-of-core
computation as necessary. An integral part of this framework is
the ability to non-collectively access data in secondary storage.

In this paper, we present our experiences in developing
efficient non-collective disk I/O mechanisms for dynamically
structured parallel applications. We investigate various ap-
proaches to providing non-collective access to out-of-core
global data sets, in the same spirit as remote memory access.
We are interested in data distributed amongst the local disks
attached the processors in a cluster. While parallel systems
attached to clusters can provide support for large secondary
storage and efficient non-collective access to arbitrary data,
they are typically shared with other applications in a cluster
environment reducing the available throughput. In addition,
a parallel file system has limited scalability, while the band-
width available from local disks increases with the number of
compute nodes available at the application’s disposal.

Several applications can benefit from such a non-collective
disk I/O functionality. We discuss some potential applications
in Section II. The extended global arrays framework that
motivated our work is described in Section III. Some alter-
native approaches to providing non-collective I/O support are
considered in Section IV. A generalized mechanism (GPC)
to invoke procedures on a remote node are implemented,
which is then extended to handle non-collective I/O (GPC-
IO). The implementation of GPC-IO is detailed in Section V.
The approaches are evaluated using a candidate computation,
discussed in Section VI, from the quantum chemistry domain.
The experimental results are presented in Section VII. Sec-
tion VIII concludes the paper.
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Note that this work does not provide generalized file sys-
tem support and is not intended to replace the functionality
provided by parallel file systems. Our solution to the prob-
lem focuses on providing low-level solution to light-weight
management of out-of-core data sets on local disks.

II. APPLICATIONS

In this section, we present some candidate scenarios in
which support for efficient non-collective I/O can be beneficial.

Shared Files Shared Files [4] provides a logical file striped
across the local disks of processors. While similar to parallel
file systems in the support provided, the implementation
utilizes system specific support on the IBM SP [5] to avoid
daemons or server processes on the remote node. In addition,
unlike typical parallel file systems, the user needs to simply
link with the library to utilize the mechanisms provided,
avoiding complex installations. The library was used to effi-
ciently implement a large scale multi-reference configuration
interaction (MRCI) calculation [4]. A portable yet efficient
implementation of Shared Files requires efficient support for
manipulating data on non-local disks.

Non-Collective Disk Resident Arrays Disk Resident
Arrays (DRA) [2] provides a global multi-dimensional view of
data on a parallel file system or on the local disks of nodes in
a cluster. Collective operations are provided to move arbitrary
multi-dimensional regions of data between global memory and
secondary storage. Non-collective I/O support for disk resident
arrays can extend the ease of out-of-core programming enabled
by DRA, while opening up additional avenues of optimization.
For example, when subsets of computation need access to
disks, process groups can be created. The disk bandwidth
available can be allocated to the process groups independent of
the allocation of the computation. This would enable both finer
control over disk resource management and better utilization
by utilizing all available disks. Note that this can be done
with a greater level of control than fixed striping of all
files across all disks. Non-collective I/O also supports on-
demand disk I/O, allowing data to be read just when required
and written immediately after production. This can enable
efficient memory management by eliminating buffers required
to read all required data and write all produced data at global
synchronization points.

Checkpointing Since a node failure also cuts off access
to the disk on that node, checkpointing a computation re-
quires state on a node that needs to be written to disk on
other processes. This is typically accomplished by a global
barrier that enables the checkpointing of the global state. The
increasing number of nodes modern clusters has resulted in
applications partitioning the computation into logical sections
each of which maintain relatively independent computation
state. Such applications can benefit from providing capabilities
for a process group to non-collectively access and checkpoint
their state on a set of remote disks on another process group.

III. MOTIVATION: EXTENDED GLOBAL ARRAYS

Our primary motivation is the development of abstractions
that integrates the three layers of the memory hierarchy –
distributed main memory, shared memory on the SMP node of
a cluster, and secondary storage – under a single programming
interface.

A. Global Arrays

The Global Arrays toolkit (GA) [6] presents to the appli-
cation developer a distributed data structure as a single object
and allows access as if it resided in shared memory. These
features help the developer raise the level of composition and
increase code reuse. A higher level of composition reduces
the amount of code that must be written and enables scientists
to program in terms of physically meaningful concepts rather
than low-level manipulation of distributed data and explicit
communication. Thus, it makes scientists more productive
and permits more time to be spent optimizing performance-
critical algorithms and application kernels. GA programming
model includes as a subset message passing; in particular, the
programmer can use full MPI functionality on both GA and
non-GA data. The library can be used in C, C++, Fortran 77,
Fortran 90 and Python programs. GA implements a shared-
memory programming model in which data locality is man-
aged by the programmer through explicit calls to functions
that transfer data between a global address space (a distributed
array) and local storage. In this respect, the GA model has
similarities to distributed shared-memory (DSM) models that
provide an explicit acquire/release protocol. However, GA
acknowledges that remote data is slower to access than is
local data and therefore allows data locality to be explicitly
specified and hence managed. Another advantage is that GA,
by optimizing and moving only the data requested by the
user, avoids issues such as false sharing or redundant data
transfers present in some DSM solutions. The GA model
exposes to the programmer the hierarchical memory of modern
high-performance computer systems, and by recognizing the
communication overhead for remote data transfer, it promotes
data reuse and locality of reference. The GA toolkit provides
extensive support for controlling array distribution and access-
ing locality information. Both task-parallel and data-parallel
programming styles are possible. Task parallelism is supported
through the one-sided (non-collective) copy operations that
transfer data between global memory (distributed/shared array)
and local memory. In addition, each process is able to access
directly data held in a section of a global array that is logically
assigned to that process. Atomic operations are provided
that can be used to implement synchronization and ensure
correctness of updates of overlapping array sections. The
data parallel computing model is supported through the set
of collectively called functions that operate on either entire
arrays or sections of global arrays. The set includes BLAS-
like operations interfaces to the parallel linear algebra libraries
such as Scalapack as well as the TAO optimization toolkit [7].
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B. Disk Resident Arrays

The disk resident arrays (DRA) [2] model extends the
GA model to another level in the storage hierarchy, namely,
secondary storage. It introduces the concept of a disk resident
array - a disk-based representation of an array. It provides
functions for transferring blocks of data between global arrays
and disk arrays. Hence, it allows programmers to access data
located on disk via a simple interface expressed in terms
of arrays rather than files. The benefits of global arrays (in
particular, the absence of complex index calculations and the
use of optimized array communication) can be extended to
programs that operate on arrays that are too large to fit into
memory. By providing distinct interfaces for accessing objects
located in main memory (local and remote) and on the disk,
GA and DRA render visible the different levels of the memory
hierarchy in which objects are stored. Hence, programs can
take advantage of the performance characteristics associated
with access to these levels.

C. SMP Arrays

So-called SMP Arrays (SA) can be used as a shared memory
cache for latency sensitive distributed arrays in cluster environ-
ments based on collection of Symmetric Multiprocessor (SMP)
nodes. Due to its cost effectiveness, SMP systems are used as
building blocks for both commodity clusters as well as custom
architectures (e.g., IBM SP, SGI Altix, NEC SX, Cray X1).
SA arrays resemble global arrays except their scope is limited
to an SMP node rather than entire parallel job running on a
cluster. SA are related to the mirrored arrays, that were initially
introduced as an extension to Global Array model in context of
wide-area-network grid computing environments [8]–[10] and
recently proposed for reducing communication overhead on
cluster [11]. In the latter context, shared memory mirroring
is used to cache entire global arrays on every SMP node.
The arrays are replicated across cluster nodes and distributed
within each node. The goal is to take performance advantage
of the shared memory, which constitutes the fastest inter-
processor communication protocol, and use it as replacement
for more expensive network communication. In the mirrored
approach, the user is responsible for managing consistency
of the cached data and collective operations on arrays are
globally synchronized. The SA arrays do not involve global
synchronization in collective operations and are created and
managed independently on each SMP node.

D. Integrated Programming Framework

The evolution of programming models is driven by the
fundamental trade-offs between high productivity and per-
formance requirements in context of evolving scalable archi-
tectures. On one hand, high productivity demands high-level
of abstractions that insulate the programmer from specificity
of the underlying hardware details and allows description of
the underlying mathematical model in terms of collection of
algorithms and appropriate data structures. However, achieving
high performance and scalability is difficult if the essential
characteristics of the hardware, in particular the memory

hierarchy, are ignored. Intelligent and automated management
of data movement is a fundamental and unifying theme for
the Extended Global Array interface we are developing. The
goal is to have a single interface for managing data and high
level representation of the mathematical algorithms operating
on multidimensional arrays while the details on the underlying
data movement between secondary storage, distributed mem-
ory, shared memory, and local memory are handled by the
XGA implementation. XGA attempts to address this problem
while relying on three elements:

• Compiler analysis and code transformation
• Performance model for GA, SA, DRA operations
• Information on resource availability and configuration

(disk space, memory, processor affinity).

The basic idea is to translate XGA programs into
SA/GA/DRA code while orchestrating data movement,
caching, and redistribution so that the performance is max-
imized while satisfying the constraints on the available re-
sources. XGA would allow from a single source to generate
in-core and out-of-core codes while reducing the programmer
effort and maintenance costs. Data locality is improved by
incorporating locality in the data structure to minimize data
movement costs [12].

An XGA programming model that is as convenient to
program as a shared memory system cannot require all data
movement operations to be collective in nature. On the other
hand, automatic translation of non-collective data movement
operations to be collective operations for arbitrary XGA pro-
grams is a challenging task. Thus support for efficient non-
collective operations on out-of-core data accessed by XGA
programs is critical to the widespread applicability of the XGA
programming model.

IV. NON-COLLECTIVE I/O: APPROACHES

In this section, we discuss two possible approaches to
implementing non-collective I/O.

A. Replication-Based Approach

In this approach, all processes create files to hold all the
blocks. The input arrays are replicated. Each process can then
access the blocks of the input arrays without synchronizing
with other processes. Note that different blocks of the output
array are computed by distinct processes, requiring a replica-
tion of the result before it can subsequently be used as an input.
No communication cost is incurred during the computation.
But the replication cost is inherently non-scalable, and incurs
an increasing fraction of the total computation time with an
increase in the number of processes.

We observe another limitation that inhibits scalability. In a
collective I/O operation, each process reads/writes data from
its local disk. This results in a block residing in the operating
system buffer cache of the process reading/writing that block,
resulting in faster response times on subsequent accesses to
the same block of data. The collective buffer cache in the
system increases with increase in the number of processors.
Since each block of data is accessed from the disk by only
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one process, the number of distinct blocks of data stored in the
buffer cache increases linearly with the number of processors.
In a replicated computation, the same block of data can end
up residing in the buffer cache of multiple processors. This
results in an inefficient utilization of the system buffer cache,
inhibiting scalability.

B. Parallel File System Based Approach

Alternatively, a parallel file system, such as Lustre [13] or
PVFS [14], [15], can be mounted on the local disks of the
processes. Each process creates a distinct file to store the
blocks of data alloted to it. Since these files are created on
the mounted parallel file system, all processes can access the
files. This enables non-collective access to any block of data
without explicit replication.

But the application of a parallel file system comes with
some disadvantages. The dynamic installation of a parallel
file system on a subset of nodes allocated to the application
is not always straightforward. In addition, the limited user
interface restricts explicit control of data distribution. The
files can potentially be striped across the disks. This is
useful for sequential programs that would like to implicitly
take advantage of the parallelism while handling disk I/O
movement. In addition, applications that cannot benefit from
specialized handling of data distribution can be satisfied with
striped files. We are interested in a complementary scenario
in which the programmer handles the parallelism and hence
data distribution, while the disk I/O is potentially implicit. In
general, striping results in multiple requests for proportionally
smaller data units. This results in lesser locality of access at
the disk level, interfering with disk prefetch optimization and
increasing disk seek times. We further explain our observations
in Section VII.

Note that non-collective MPI I/O [1] routines utilize a
parallel file system underneath when operate on data on local
disks. Hence, they would exhibit the characteristics of the
underlying parallel file system.

V. GPC-IO: DESIGN AND IMPLEMENTATION

An earlier implementation [5] of non-collective I/O utilized
LAPI [16], a commercial Active Messages [17] implementa-
tion on IBM SP. While it demonstrated good performance, it
was limited in its applicability. We are interested in a portable
implementation that achieves high performance on a variety
of platforms. In addition, the implementation strategy should
not require an extensive installation procedure to draw upon
its capabilities. For example, Lustre file system [13] provides
extensive support, through a rich set of primitives, for I/O on
disks attached to the nodes in a cluster. While I/O nodes that
contain the file system are typically separated from the nodes
performing the computation, it can be configured to operate
on the subset of the cluster nodes allocated to a particular
computation. This requires configuring Lustre at the start of
each job.

We have developed a non-collective I/O mechanism, GPC-
IO, within the GA/DRA framework. The non-collective I/O

functionality was layered on top of Global Procedure Calls
(GPC). Global procedure calls are invocations of pre-registered
procedures at a remote node. A global procedure handle is
obtained by collective registration of a procedure. The handle
can then be used to invoke the registered procedure at a
remote node. The Global Procedure Call can be considered as
a generalization of the Remote Procedure Call (RPC) mecha-
nism adopted to cluster environments with high-performance
networks.

The design of the global procedure call mechanism was
guided by the following objectives:

Extensibility The implementation should be usable in a va-
riety of contexts. In particular, it should allow the manipulation
of data at a remote node before returning a result. This can
enable optimizing functions such as non-collective reductions.
A GPC call can be used to reduce the data (such as finding the
sum, minimum, maximum, etc.) at the remote node and only
communicate the reduced result, lowering the communication
volume.

Semantic simplicity The implementation, while being pow-
erful, should not complicate programming of such applica-
tions. For example, allowing the global procedure call to ac-
cess the remote process context would require the programmer
to handle data sharing and mutual exclusion issue between
the GPC and the main flow of the control at the remote
process. This would in turn require the user to handle all
the complexities of a full-blown multi-threaded programming
model. On the other hand, denying access to data at the remote
node will preclude optimization such as remote reductions.
A parallel programming model based on remote memory
access requires the programmer to handle concurrent access
to portions of global data. We employ similar semantics – a
GPC can access portion of the global data that is resident on
the remote node. This ensures a powerful mechanism without
making it any more complex than remote memory access.

Low overhead A GPC call cost should be as close to that
of a remote access operation. This would help in its utilization
in a wide variety of scenarios.

Implementation portability We implemented the GPC
mechanism within the Global Arrays framework. ARMCI
provides a rich set of highly optimized communication prim-
itives that are portable across a wide variety of platforms. We
leveraged this implementation to provide the global procedure
call functionality on a variety of platforms.

The Remote Procedure Call (RPC) technique was originally
proposed in 1976 by White [18]. The first popular implemen-
tation of RPC on Unix was Sun’s RPC (now called ONC
RPC [19]), used as the foundation of Sun’s NFS [20]. RPC
is a mechanism to build distributed client–server based appli-
cations. It is based on extending the concept of conventional,
local procedure calls, in such a way that a called procedure
does not need to exist in the same address space (i.e., in the
same process) as the calling procedure. The processes which
run both procedures can be on the same system, or they
can be on different systems connected by a network. Like
a regular or local procedure call, an RPC is a synchronous
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Fig. 1. Illustration of non-collective operation

operation requiring the requesting process to be suspended
until the results of the remote procedure are returned. By
using RPC, programmers avoid the details of the network
interface. The transport independence of RPC also isolates
the application from the physical and logical elements of the
network, and allows the application to use different transports.
Finally, RPC, along with the external data representation
(XDR) abstraction, make it possible to communicate processes
running on machines of different type.

Comparing to the original RPC, the GPC mechanism has
several characteristics that in make it more suitable for imple-
menting one-sided I/O in high-performance applications. For
example, the GPC interface is nonblocking which enables the
user to issue a GPC call and then perform computations while
the GPC call is execting remotely. A wait call is provided
to block the calling process until the execution of GPC is
completed. The GPC implementation is not based on polling
in the remote server process but it is rather based on the
interrupts that can be generated by the low-level network
protocols on high-speed networks such as Infiniband, Myrinet,
or Quadrics. GPC, by its integration with ARMCI, can be
used in combination with high-performance put/get calls that
on modern networks are implemented as zero-copy RDMA
calls. GPCs have been optimized to avoid unnecessary memory
copies and minimize the latency. The performance results for
GPC and RPC are presented in Section VII.

A. Illustration

The implementation of global procedure calls is illustrated
using the call sequence involved in a typical GPC invocation.

Figure 1 shows the data structures and data movements in
a GPC call. Each of the steps involved are denoted by circled
numbers. The process initiating a GPC call passes the header
and data for the GPC request that are carried through to the
GPC callback function on the remote process that will be
executing this GPC. This is indicated in the figure as step 1.
Along with the request header and data, the process also passes
pointers to the response header and response data if a response
is expected. For example, a remote disk write request will
contain data that needs to be written. A remote read request
will have empty request information and a buffer to copy
the response data upon the completion of the operation. This
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Fig. 2. Latency of GPC and RPC copy implementation as compared to
optimized ARMCI put/get primitives. Message size (in bytes) is shown along
x-axis, and time in microseconds along y-axis.

request is sent to the remote process (step 2) and upon arrival
at the remote process, it is processed by the data server process
(show in the Figure as step 3). The data server executes the
previously registered callback function and passes the request
header and data on to the callback function. This is shown as
step 4 in the figure. The callback function is executed and the
header and data from the response are sent back by the remote
process to the process that initiated the GPC (steps 5 and 6).
The process initiating the GPC call has 2 options. It can either
block on the GPC call or issue it and check for completion
using the GPC non-blocking handle.

The non-collective read and write operations are imple-
mented as lightweight wrappers over the GPC calls that utilize
appropriate callback functions that read and write from the
local disk at the node on which the they are invoked.

VI. TENSOR CONTRACTIONS IN QUANTUM CHEMISTRY

We evaluated our approach on tensor contractions encoun-
tered in certain quantum chemistry calculations.

Ab Initio quantum chemistry models such as Coupled
Cluster methods [21] involve computations expressible as
a sequence of tensor contractions. Each tensor contraction
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expression is comprised of a collection of multi-dimensional
summations of products of several block-sparse input arrays.
Consider the following tensor contraction from the domain of
quantum chemistry:

p1, p2, p3, p4 : O
h1 : V
i0[p1, p2] += t[p1, p3, p4, h1] ∗ i1[p3, p4, h1, p3]

where indices p3, p4, and h1 are contracted out. Here O is the
number of occupied orbitals, and V is the number of virtual
orbitals. O and V are divided into segments. This segmenting
of the dimensions forms a cartesian grid that divides the multi-
dimensional array into blocks. An operation on the indices of
the segments that form a block determines if that block is
non-zero.

Despite being a variant of matrix-matrix multiply, the block-
sparsity in tensor contractions leads to irregular data access
patterns that are not easily tractable. An efficient implementa-
tion of the tensor contractions uses a data structure in which
the non-zero regions of the tensors are blocked. This enables
the use of efficient BLAS kernels to optimize the sequential
computation of a block, while enabling good load-balancing
by partitioning the work in terms of the blocks.

The sizes of O and V are such that the arrays are too
large into fit into the collective physical memory of a parallel
system. The arrays are usually stored on the local disks
attached to the compute nodes in a cluster, to achieve scalable
I/O.

In the above example, the non-zero blocks of tensor i0 are
computed by the processors, with each block being computed
by a separate processor. Consider a partitioning of the input
arrays t and i1 amongst the local disks attached to the
processor. A block of the input arrays is typically involved
in the computation of multiple blocks of the output array. Due
to this data reuse relationship in the computation, it is not
feasible to achieve a load-balanced partitioning of the tensor
contraction such that all the input data blocks required for the
computation of blocks assigned to a processor can be located
in that processor. The variation in the block sizes, together
with the variation in the data movement costs incurred, makes
a simple static partitioning scheme unattractive. A dynamic
partitioning scheme is typically employed to better balance the
load and ensure that all processors are actively contributing to
useful work.

The dynamic nature of the computations also precludes the
use of collective operations to read and write bricks, which
would lead to excessive load-imbalance and severe perfor-
mance degradation. The different approaches to non-collective
I/O, including GPC-IO, were implemented to access the blocks
of the input tensors dynamically without synchronization.

VII. EXPERIMENTAL RESULTS

We evaluated the design space for the implementation of
non-collective I/O on the Colony2a cluster at the Pacific
Northwest National Laboratory. Each node in the cluster is
a dual 1 GHz Itanium-2 system, with 6GB physical memory,
80GB hard drive and a Myrinet interconnection network. All

k #procs
2 4 8 16

1 500 558 560 809
2 1045 1279 1228 1990
4 2246 2455 2511 2721

TABLE I

COST, IN SECONDS, OF REPLICATING THE INPUT ARRAYS
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the experiments were performed by utilizing one processor per
node.

We began with an evaluation of the RPC mechanism.
Figure 2 shows the results of our latency micro-benchmark
for GPC and RPC, together with that of efficient ARMCI
primitives. The latency was measured for various message
sizes. GPC and RPC effectively take a message of the specified
as an argument to the copied into a buffer on the remote node
memory. Note that logarithmic scale on both the axes. The
GPC call latency is less than twice the latency of the optimized
ARMCI get primitive. On the other hand, the RPC mechanism
incurs a much higher latency. The latency incurred increases
drastically with the message size and is worse by more than
a factor of 10 for a message size of 2048 bytes. Beyond a
message size of 4096 bytes, the RPC mechanism switches
to using the TCP/IP protocol, resulting in latencies worse by
a factor of 400 as compared to GPC. While RPC is well-
suited for a distributed environment, the overheads incurred
can be severe for high-performance cluster environments.
Note that optimized TCP/IP implementations can improve the
performance of RPC. But such optimizations are typically not
available on clusters commonly employed in high performance
computing environments, making any performance improve-
ments obtained non-portable. Given such a severe performance
degradation incurred by RPC, we restricted our subsequent
evaluation to non-RPC based approaches.

We evaluated the three approaches to non-collective I/O –
file replication, employing a parallel file system, and GPC-
IO. The execution times for the tensor expression described in
Section VI were measured. The occupied orbitals (O), was set
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to consist of four segments – 100, 60, 40, and 30, respectively.
The virtual orbitals segments (V ) were set to be a multiple of
the occupied orbital segments (V = k × O).

We measured the execution times for the replication-based
approach with and without considering the cost of file repli-
cation. This comparison should bring out the difference in
performance of the core algorithm without considering the
replication costs, which could potentially be amortized when
input arrays are used in more than one contraction. Table I
shows the cost of replicating the input arrays t and i1 for
different problem sizes, determined by k, and number of
processors. As noted in the algorithm, the results demon-
strate that the replication operation is not scalable, and the
replication cost increases with the number of processors.
Note that the implementation does not overlap disk I/O with
communication, which can reduce the replication cost by up
to a factor of two. We define the “optimal” replication cost
to be half the cost shown in Table I. To ensure fairness, all
comparisons will be made using the “optimal” replication costs
instead of the actual ones.

In the parallel file system experiments, every compute node
is also a storage node (OST) of a Lustre 1.6beta5 file system.
There is also an additional node, other than the nodes used to
perform the computation, which is used as meta-data server
(MDS) only. We evaluate the tensor contractions without
striping and with 128KB striping across the OSTs. All the
compute nodes mount the parallel file system, which stores
the files required by the application. Each process creates a
distinct file to store the data blocks alloted to it. Since these
files are created on the Lustre file system, all processes can
access any file.

Figure 3 and Figure 4 show the execution times of the three
schemes for different values of k. GPC-IO is consistently bet-
ter than the other alternative approaches. The observed super-
linear speed-ups can be attributed to the efficient utilization
of the collective system buffer caches and the increase in the
available disk bandwidth. Note that the implementation can be

improved further by overlapping computation with disk I/O
and employing a client-side cache to reduce data movement
costs.

The replication-based approach performs worse than GPC-
IO, even without taking the cost of replication into account.
The factor of degradation as compared to GPC-IO reaches
more than 5. The factor of degradation when including the
replication cost is more than 10. The degradation is due to the
poorer exploitation of locality. A brick cached in the disk cache
of a processor can serve all incoming requests for that brick
without going to disk. In the GPC-IO scheme, disk I/O for any
given data brick happens in at most one processor, with other
processors obtaining that brick through communication. This
results in each brick being in at most one disk cache. Thus
increase in the number of processors increases exploitation of
reuse in the distributed buffer caches.

The Lustre file system based scheme does not scale well
either. The speed-up improves with larger problem sizes and
larger number of processors, reaching 7.9 for k = 4 for 16
processors.

Lustre implements client-side caching, which has an effect
similar to replication in reducing the communication costs. On
the other hand, the limited server-side caching in Lustre causes
multiple I/O requests for the same block of data from different
processes resulting in redundant I/O. In addition, the approach
suffers from a lack of finer control over data distribution. In
the non-striped evaluation, each file is fully created in one
of the OSTs, not necessarily in the local disk of the creating
process. In the striped evaluation, the stripe size is fixed for
the entire file and can result in a block being split into multiple
smaller pieces. This results in an increase in the effective time
spent in disk seeks on all the local disks, reducing the overall
bandwidth available. An increase in the number of processors
results in a decrease in the number of tasks, and the data
requested, by each process. For larger number of processors,
the reduction in total data requested by each process coupled
with aggressive client-side caching results in a reduction in
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(b) Lustre striped
Fig. 5. Weak scaling of the approaches based on Lustre for different starting problem sizes. A linear scaling would correspond to a perfect horizontal line.

the disk bandwidth penalty incurred.
Figure 6 shows the weak-scaling measurements of the con-

traction for larger problem sizes for GPC-IO and replication-
based schemes. Figure 5 shows the weak-scaling measure-
ments for the Lustre-based approach. Three problem size
classes are considered – l=1,2, and 4. The actual problem size
for a given data point is determined as k = l × p, where p
is the number of processors. The graphs plot the number of
processors along the x-axis and the execution time along the
y-axis. Linear weak-scaling will be observed in the graphs as
a horizontal line parallel to the x-axis. All graphs are plotted
on the same scale to ease comparison across graphs.

We observe that GPC-IO achieves super-linear weak scaling
and better execution times than other approaches. The increase
in disk bandwidth and computation capacity with increase
in the number of nodes facilitates linear weak scaling. The
increase in the physical memory available supports better
exploitation of locality in the computation, resulting in the
observed super-linear weak-scaling. When no further locality
can be exploited in the computation we observe linear scaling.

For the replication-based approach, the cost of replication
is not included. Larger problem sizes could not be evaluated
for the replication-based scheme, due to the limited local disk
space (<80GB) available on the cluster.

The Lustre-based approach suffers from severe performance
degradation for larger numbers of processors due to limited
control over data distribution and hence data movement pat-
terns.

VIII. CONCLUSIONS

In this paper we presented an efficient non-collective I/O
(GPC-IO) mechanism. The results demonstrated that GPC-IO
achieves better absolute execution times, strong-scaling, and
weak-scaling than the alternatives evaluated on representative
computations from quantum chemistry. We intend to inves-
tigate the design of a unified memory hierarchy model with
automated data movement by leveraging this implementation.
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