2007 Linux Storage & Filesystem Workshop
February 12-13, 2007, San Jose, CA

DualFS: A New Journaling File System

for Linux

Juan Piernas <juan.piernascanovas@pnl.gov>

SDM Project

Pacific Northwest National Laboratory
http://www.pnl.gov

Sorin Faibish <sfaibish@emc.com>

EMC? Corporation
http://www.emc.com

Introduction

] Meta-data management is a key design issue
e Especially important for recovery after a system crash

 Traditional file systems:

e Write meta-data in a synchronous way
e Use fsck-like tools

3 Current approaches:

e Log of last meta-data updates (e.g. XFS, JFS)
e Asynchronous meta-data writes (e.g. Soft Updates)

- Current approaches treat data and meta-data

somewhat differently
e But they are completely different.

Introduction

J DualFS: aimed at providing both good performance
and fast consistency recovery through data and
meta-data separation

 This separation is not a new idea:
e Muller and Pasquale (SOSP’91)
e Cluster file systems (Lustre, PVFS)

 DualFS proves, for the first time, that the separation
can significantly improve file systems' performance
without requiring several storage devices.

J Experimental results show that DualFS is the fastest
file system in general (up to 98%)

Outline

 Introduction

 Rationale

 DualFS

 Experimental Methodology and Results

J Conclusions

Rationale

/0 Requests (%)

/O Time (%)

Workload Data (R/W) Meta-data (R/W) | Data | Meta-data
Root+Mail | 28.41 | (23.07/76.93) | 71.59| (6.45/93.55) |20.47 79.53
Web+FTP | 52.11 | (63.37/36.63) | 47.89| (23.45/76.55) | 50.64| 49.36
NFS |30.26| (63.06/36.94) | 69.74 | (27.14/72.86) | 57.87| 42.13
Backup |90.72](99.94/00.06)| 9.28|(71.08/28.92)|86.17| 13.83

Distribution of the Data and Metadata Traffic

for Different Workloads

Rationale

/0 Requests (%)

/O Time (%)

Workload Data (R/W) Meta-data (R/W) | Data | Meta-data
Root+Mail | 28.41 | (23.07/76.93) | 71.59 | (6.45/93.55) |20.47| 79.53
Web+FTP |52.11 | (63.37/36.63) | 47.89 | (23.45/76.55) | 50.64| 49.36
NFS 30.26 | (63.06/36.94) | 69.74 | (27.14/72.86) | 57.87 42.13
Backup |90.72|(99.94/00.06)| 9.28](71.08/28.92)|86.17| 13.83

Distribution of the Data and Metadata Traffic

for Different Workloads

Rationale

Same-type Requests Typeless Requests
Workload | pata (%) | Meta-data (%) | Data (%) | Meta-data (%)
Root+Mail 6.01 3.13 6.08 3.14
Web+FTP 42.48 6.43 43.10 7.01
NFS 11.25 10.86 11.47 10.89
Backup 77.25 1.20 79.92 25.14

Sequentiality of the Data and Metadata Requests
for Different Workloads

Rationale

] Our results confirm those obtained in previous works
(Muller y Pasquale [1991], Ruemmler y Wilkes [1993],
Vogels [1999])

] Our results also include disk 1/O time, and sequentiality
of data and meta-data requests

J Some conclusions about meta-data:

e Meta-data represents a high percentage of the total I1/O
time in many workloads

e \Writes are predominant
e Almost always, request are not sequential

Outline

 Introduction

] Rationale

d DualFS

 Experimental Methodology and Results

J Conclusions

Structure Overview

DISK

|

i DATA DEVICE oot META-DATA DEVICE o
|

Superblock | Superblock Writes in the 1og -

l | / . r{,—\
| []
I4mETEn R a—

GROUP O GROUP 1 GROUP 2 LR GROUP N-3 | GROUP N-2 | GROUP N-1 SEGMENT 0 SEGMENT 1| *ea SEGMENT K-1

Data Device

O Like Ext2 without meta-data blocks

 Groups:
e Grouping is performed in a per directory basis.
e Related blocks are kept together.
e File layout for optimizing sequential access.

e DualFS selects the emptiest group with least associated i-
nodes, in that order.

 Directory affinity:

e Select the Parent’s directory if the best one it is not good enough
(it does not have, at least, X% more free blocks)

] Data blocks are not written synchronously

e However, new data blocks are written before the corresponding
meta-data blocks (Ext3 “ordered” mode)

Meta-Data Device

J We understand meta-data as all these items:

e I-nodes, indirect blocks, directory “data” blocks, and
symbolic links

e bitmaps, superblock copies

J Organized as a log-structured file system
e Similar structure to that of BSD-LFS.

J Almost all the meta-data elements have the same

structure as that of their Ext2/Ext3 counterparts

e The main difference i1s how those elements are written to
disk!!!

Meta-Data Device Structure

T iR

(a
SEGMENT 2 SEGMENT J SEGMENT K
. i \ HIHEHE I P S
I 1 1 | I 1 1 1 1 1 *e e 1]] |
I I 1 1] I | I 1 I 1]] I
$s il PARTIAL SEGMENT [t A
PARTIAL META-DATA META-DATA | INODE INODE
SEGMENT BLOCK il BLOCK BLOCK oo BLOCK
DESCRIPTOR
 (©) SRl | |t '(d} DESCRIPTOR CHECKSUM
DESCRIPTOR PARTIAL SEGMENT CHECKSUM
HEADER NEXT SEGMENT POINTER
ENEol . CREATE TIME
FINFO 2 NUM OF DESCRIPTOR BLOCKS
FINFOS COUNT I-NODES COUNT
. | FLAGS
L]
-~~7"" | NUM OF FILE BLOCKS
FINFO N (@
I-NODE VERSION
I-NODE NUMBER 3l
g I-NODE NUMBER
I-NODE NUMBER |
. LOGICAL BLOCK 1
. e
:) :
N L]
I-NODE NUMBER | LOGICAL BLOCK M

Meta-data Device's Operation

Partial Segment Partial Segment

A
Y
A

|

File 2 File 3
=z
Z
]

File

=Z
Z
1

Sess .
= %E% ... another partial segment unused blocks ...

T =
g\

m
=/

)
X
A

SEGMENT SEGMENT
Partial Segment Partial Segment Partial Segment
File 1 File 3 File 1 File 3 File 4
S unused S : S
b e S3e3 aes ... another partial segment ... S3es aes ... unused blocks ...
v § SRS P == o
A ! L A , (I EEN
|
|
SEGMENT ' SEGMENT

partial segment .
i-nodes
descriptor

Changes in the meta-data device after modifying file 1, deleting file 2,
adding two blocks to file 3, and creating a new file (file 4).

DGBT

IFILE

SEGMENT 1

SEGMENT K

IFile

NUM LIVE BYTES

LAST MOD TIME

FLAGS

DESCRIPTOR 1

DESCRIPTOR N

START

END

NUM FREE DATABLOCKS

BITMAP 1

BITMAP N

I-NODE 1

[-NODE M

VERSION

DISK ADDRESS

OFFSET

FLAGS

FREE LIST POINTER

Meta-Data Prefetching

] A solution to the read problem

J Simple: when the required meta-data block B is not
In main memory, DualFS reads a group of
consecutive blocks, from B-j to B+i, from the meta-
data device

J Meta-data locality provided by “partial segments”:

e Temporal
e Spatial

J 1/O-time efficient

e |t does not produce further requests.
e |t takes advantage of the built-in disk cache.

On-Line Meta-Data Relocation

1 The meta-data prefetching efficiency may
deteriorate due to several reasons (changes in read
patterns, file system aging, etc)

] Solution: on-line relocation of meta-data blocks

e Every meta-data block which is read (from disk or main
memory) Is written again to the log.

] Relocation increases both spatial and temporal
locality.

1 More meta-data writes, but carried out efficiently

- Implicit relocation of i-nodes (atime updates)

Recoverny.

] DualFS is considered consistent when information
about meta-data is correct.

J We can recover the file system consistency very

qguickly from the last checkpoint.

e The length of time for recovery is proportional to the inter-
checkpoint interval.

] Recovering a DualFS file system means recovering
its IFile.

Outline

 Introduction
 DualFS
 Experimental Methodology and Results

J Conclusions

File Systems Compared

J Ext2, no special mount options

J Ext3, “-0 data=ordered” mount option

d XFS, “-o0 logbufs=8,o0syncisdsync” mount options
J JFS, no special mount options

J ReiserFS, “-o0 notail” mount option

J DualFS, with:
e meta-data prefetching (16 blocks)
e on-line meta-data relocation
e directory affinity (10%).

System Under Test

Linux Platform

Processor | Two 450 Mhz Pentium Il

Memory 256MB PC100 SDRAM

One 4 GB IDE 5,400 RPM Seagate ST34310A

Disk One 4 GB SCSI 10,000 RPM Fujitsu MAC3045SC
ISKS

SCSI disk: Operating system,swap and trace log.
IDE disk: test disk

oS Linux 2.4.19

Microbenchmarks

 Read-meta (r-m): find files larger than 2 KB in a directory tree.

] Read-data-meta (r-dm): read all the regular files in a directory
tree.

 Write-meta (w-m): create a directory tree with empty files
 Write-data-meta (w-dm): create a directory tree.

J Read-write-meta (rw-m): copy a directory tree with empty files
] Read-write-data-meta (rw-dm): copy a directory tree

J Delete (del): delete a directory tree

Normalized Application Time

Microbenchmark (1 process)

1 PROCESS

w-dm r-dm rw-dm W-T r-m rw-m del

benchmark

O Ext2

B Ext3
OXFS
=JFS

O ReiserFS
@ DualFs

Normalized Application Time

Microbenchmark (1 process)

1 PROCESS

r-dm rw-dm W-T r-m rw-m del

3
=%
3

benchmark

O Ext2

B Ext3
OXFS
=JFS

O ReiserFS
@ DualFs

Normalized Application Time

Microbenchmark (1 process)

1 PROCESS

w-dm r-dm rw-dm W-T r-m rw-m del

benchmark

O Ext2

B Ext3
OXFS
=JFS

O ReiserFS
@ DualFs

Normalized Application Time

Microbenchmark (1 process)

1 PROCESS

510

w-dm r-dm rw-dm W-T r-m rw-m del

benchmark

O Ext2

B Ext3
OXFS
=JFS

O ReiserFS
@ DualFs

Microbenchmark (1 process)

1 PROCESS

O Ext2

B Ext3
OXFS
=JFS

O ReiserFS
@ DualFs

Normalized Application Time

w-dm r-dm rw-dm W-T r-m rw-m del

benchmark

Microbenchmark (4 processes)

4 PROCESSES

OExt2
HExt3
OXFS
0JFS
OReiserFS
ODualFS

Normalized Application Time

w-dm r-dm rw-dm W-m r-m rw-m del

benchmark

Macrobenchmarks

J Compilation of the Linux kernel 2.4.19, for 1 and 4
processes

J Specweb99
J Postmark v1.5
J TPC-C

J All but Postmark are CPU-bound in our system.

Macrobenchmarks (Disk /O Time)

Nomarlized 1/0 Time

Macrobenchmarks (Disk /O Time)

Nomarlized 1/0 Time

Maintenance Tasks

Ratio vs DualFS

Relative Maintenance tasks performance for Linux FS

18
16
14
12
10
8
6 i
4
. - . r—l |
0
dualFS ext2 ext3 reiser JFS
@ mkfs 50 GB 4KB 1 9.0 9.4 0.8
m mkfs 50 GB 1KB 1 15.8 16.0 3.7
O fsck 88% 50 GB FS 1 6.9 7.2 1.4

Linux File System

Some Results with Linux 2.6.11

1 Process

8,0

7,0
£ F
~ 6,0
o . m DualFS
=
.S m Ext3
§ 4,0 L OXFS
= S 0 JFS
(O] 310 8 0 d .

(&)
N G o B ReiserFS
C_U =
£ 2.0 @ '-‘H’. ~)
o 5 ™ e} co
Z 1,0 ® -~ N
i
0,0
read-data-meta read-meta
Benchmark

Outline

 Introduction
J DualFS
J Experimental Methodology and Results

J Conclusions

Conclusions

 DualFS is a new journaling file system with:

e data and meta-data managed in very different ways
e one-copy meta-data blocks

e large meta-data requests

e quick consistency recovery

J Compared six journaling and non-journaling file

systems:

e DualFS is the best file system in most cases
e DualFS reduces total 1/0O time up to 98%

1 A new journaling file-system design based on data and
meta-data separation, and special meta-data
management, is desirable

Future work

 To improve the design and the implementation:

Deferred block allocation and extensions.

Better directory structure (B+ tree,).

Data and meta-data devices in the same patrtition.
Dealing with bad blocks.

Meta-data device as generic LFS.

] To explore new storage models:
e Object Storage Devices (OSD)

1 To complete port to Linux 2.6.x:

e This can not be the effort of just one man.
e DualFS is an open-source project now!!!

Questions?

DualFS: A New Journaling File System
for Linux

Juan Piernas, and Sorin Faibish
DualFS Documentation

Source Code

