
Analyzing the Performance of MPI in a Cluster

of Workstations based on Fast Ethernet ?

J. Piernas, A. Flores, J. M. Garc��a

Dept. de Inform�atica y Sistemas

University of Murcia

Campus de Espinardo, s/n 30080 Murcia (Spain)

email: fpiernas, a
ores, jmgarciag@dif.um.es

Abstract. Recent improvements in LANs make network of workstations

a good alternative to traditional parallel computers in some applications.

MPI (Message Passing Interface) standard library implementation for

network of workstation holds great promise in providing both portabil-

ity and performance. However, some authors point out if this hardware

improvements are not supported with a reduction of software overhead,

this overhead will dominate communication cost, and many applications

may no bene�t from the advancements in network hardware. In this pa-

per we present an exhaustive study of MPICH implementation of MPI

standard for this environment, analyzing added overhead of each layer.

Finally, we propose modi�cations to network interface to reduce the �xed

overhead of transmission.

1 Introduction

Research in parallel computing has traditionally focused on multicomputers and

shared memory multiprocessors. Currently, networks of workstations (NOWs)

are being considered as a good alternative to parallel computers. That is due

to there are high performance workstations with microprocessors that challenge

custom-made architectures. This class of workstations is widely available at rel-

atively low cost. Furthermore, these networks provide the wiring 
exibility, scal-

ability and incremental expansion capability required in this environment.

Nowadays, and following the principle of allowing the production of portable

software, NOWs are programmed using conventional imperative languages, en-

hanced with communication libraries such as PVM or MPI to implement mes-

sage passing and synchronization among processes. MPI [5] holds great promise

in providing both portability and, through a very rich model for inter-process

communication, performance e�ciency for application, library and compiler de-

velopers. The active participation of numerous vendors in the standardization

process and the appearance of both portable and platform-speci�c implementa-

tions of the library bode well for its success. In this environment, the e�ciency

? This work was supported in part by the Spanish CICYT under Grant TIC94-0510-

C02-02



of parallel applications is maximized when the workload is evenly distributed

among workstations and the overhead introduced in the parallelization process

is minimized: the cost of communication and synchronization operations must

be kept as low as possible. In order to achieve this, the interconnection subsys-

tem used to support the interchange of messages must be fast enough to avoid

becoming a bottleneck.

Communication performance at the application level depends on the collab-

oration of all components in the communication system, especially the network

interface hardware and the low-level communication software that bridges the

hardware and the application. Currently, there are new layers with reduced over-

heads (that is, on the scale of tens of instructions per message). Active Messages

[4] is one of this. Traditionally, latency and throughput are the two parame-

ters used to indicate the performance of an interconnection network. Although

these parameters are very related, it is easier to increase the peak throughput

-achievable for long messages-, but it is harder to reduce the latency -because

the software overhead-. Unfortunately, the performance of parallel applications

is very sensitive to latency when interchanging small messages among parallel

processes. In this paper, we report the experimental data obtained from run-

ning tests on a cluster of workstations based on a Fast Ethernet card. In the

past, benchmark results of MPI were carried out for workstation clusters for

both point-to-point and collective communication [7] [6]. Our paper has two

new approaches with respect these previous reports. By one hand, we analyze

the software overhead for MPICH subroutine among the di�erent levels that it

can be decomposed. In this way, we can �x the di�erent levels of software over-

head and try to reduce it. By other hand, we compare the performance between

the two current implementations of Ethernet: 10 Mbps and 100 Mbps. Our in-

vestigation suggests various ways to improve the performance of NOWs. This

will make NOWs a competitive approach to parallel distributed computation for

an important class of applications.

The rest of the paper is structured as follows. In the next section a brief in-

troduction to the MPI communication library is made. Then, we describe deeper

the main parameters to characterize the performance of a NOW. In section 4,

a description of the important MPICH layers is shown. The results of running

test programs are analyzed in section 5. Finally, some conclusions and ways of

future work are drawn.

2 MPI: A standard for parallel programming

In order to this paper be self-contained, we are going to introduce brie
y the

main concepts of MPI. Message Passing Interface (MPI) has become an emerg-

ing standard for implementing message-based parallel programs in distributed-

memory computing environments. One major goal of the MPI is to provide

a widely portable and ease-of-use programming library without sacri�cing the

performance. To establish an e�cient standard for many platforms, the MPI

provides several mechanisms to perform point-to-point and collective communi-



cations. The performance of these mechanisms may be varied depending on the

software implementation and the underlying hardware. Several other features,

such as derived datatype, persistent communication, and group concept, are also

introduced to improve the ease-of-use. However, if the MPI is not carefully im-

plemented, the communication cost can be so expensive that programs may not

gain any bene�t from parallel processing.

MPI is only a standard upon which many implementations exist. The one we

have used is MPICH that is a portable implementation of MPI developed jointly

by Argonne National Laboratory and Mississippi State University. MPICH con-

tains an abstract device interface (ADI) upon which a high-level message passing

application programmer interface such as MPI can be implemented. The ADI

performs four main functions: sending and receiving, data transfer, queuing, and

device-dependent functions.

In our case, we can di�erentiate four levels, each one provides support for

the next level: sockets, p4, ADI and MPICH.

3 Characterizing the Network Interface Performance

In this section we propose a point-to-point communication model for multilayer

network interface. Modeling a communication system require to measure a num-

ber of parameters enough to characterize the performance of the key resources.

Several authors have proposed models in order to achieve this goal.

In [2], authors de�ne the LogP model where a point-to-point message com-

munication is characterized by four parameters: L, the latency experienced in

each communication event; o, the total length of time that a processor is en-

gaged in the transmission or reception of each message; g, the minimum time

interval between consecutive sends or successive receives by a processor, and P,

the number of processor/memory modules.

In [6], authors propose other parameters to characterize a message transmis-

sion between two processes: tsend, the spend time to do the packet processing,

mainly message copying, packetizing, and checksum computing, tnet, the delay

in the communication channel, and ,trecv, the processing packet time in the

receiver.

Both models show problems in a multilayer communication system. For low

level communication systems, as active messages [4] and multiprocessor commu-

nication, an accurate parameter measurement is possible for the LogP model. In

a multilayer environment, the real overhead and latency is hidden to the upper

layer by the lower one. The splitting packet processing between all these layers

and the extensive using of queuing in each layer make di�cult an accuracy mea-

sure of L and o. In the second model, we only measure the overhead seen by the

upper level, the total overhead is hidden.

More than an accurate measure of temporal cost of each communication

stage, we are interesting in determine the di�erence between �xed temporal cost

and cost per byte in each message. So we propose a simpler model where each



point-to-point communication time is modeled as

t(n) = �send + � � n+ �recv (1)

where �send and �recv are the �xed temporal cost in the sender and receiver,

respectively, and � is the extra cost per byte. For convenience, we consider �send

equal to �recv . In this case, equation 1 follows as

t(n) = 2� �+ � � n (2)

As we have noted in the experimental results, this assumption is correct due

to linear behavior of temporal curves.

4 Software overhead in MPICH

As Local Area Networks improve the performance, their interfaces, resources,

organization, and integration into their host computer become increasingly im-

portant. Recent papers have pointed out that announced performance for such

as LANs could su�er a severe degradation due to overhead in communication

software. With the announcement of Ethernet Gigabit standard for this year,

bottlenecks study and alternative solutions become essential.

To make an exhaustive study software overhead, we will evaluate the commu-

nication channel performance at several layers in the protocol stack in order to

identi�cate bottlenecks. Using this technique we can measure the added overhead

of each layer, the total software overhead and the network congestion.

In order to measure the capability degradation in low latency LANs, probes

we are made in both Ethernet and Fast Ethernet environments. Comparing

results in both cases, we want to discover critical bottlenecks in order to achieve

a better network performance.

We have centered our study in the MPICH implementation of MPI standard

library. We can see an overview of MPICH software layers in �gure 1.

To measure the added overhead of MPICH implementation, we decided to

apply our model in the three main layers: MPICH layer, socket TCP layer, and

driver layer. Modeling the MPICH layer inform us about the whole overhead seen

by users programs. The socket layer parameters tell us about the optimizations

provided by the operating system. Finally, a driver layer characterization shows

the maximum performance achieved by the card. In order to evaluate this last

level, we have used the modi�ed version of active messages (AM) implemented

by the University of Genoa [1].

5 Result evaluation

5.1 Hardware and Software platforms

We have performed our tests on a cluster of workstations with Intel Pentium

200Mhz processor, 32 Mbytes main memory, 256KBytes cache memory, 1GByte

IDE hard disk and Fast Ethernet 3Com 905-network adapter.

The operating system used is Linux 2.0.27 and the MPI implementation is

MPICH 1.0.13.



MPI Routines

The Abstract Device
Interface (ADI)

Channel Interface (p4)

TCP

IP

Ethernet Card Driver

L
ay

er
s 

of
 M

PI
C

H
 I

m
pl

em
en

ta
tio

n
N

et
w

or
k 

Pr
ot

oc
ol

s 
St

ac
k

Physical Layer 10T/100FX

Fig. 1. MPICH Implementation Layers Overview. Broken arrows show layers chosen

to evaluate the implementation.

5.2 The test program

To evaluate � and � parameters, we make use of Ping-Pong test. This test

program is written in standard C. The best compiler option is always applied,

unless otherwise noted. The test Ping-Pong is a simple echo between two adjacent

nodes. A receiving node simply echoes back whatever it is sent, and the sending

node measures round-trip time. Times are collected for some number of iterations

(we have used 2000) over various messages sizes. Data rate, or bandwidth, is

calculated from the number of bytes sent divided by half the round-trip time.

The minimal time, the maximal time and the mean time from all processes are

collected. To interpret the results, we focus on the average time, because they are

more representatives of the performance the user can obtain from the machine.

5.3 Results

The results that we have obtained can be seen in the follow �gures. We have

di�erentiated between short messages (from 0 to 4192 bytes) and long messages

(from 6 Kbytes to 22 Kbytes). For AM, an overrun problem arises for messages

longer than 8 Kbytes. To avoid this problem we split long messages into chunks

shorter than 8 Kbytes that are sent consecutively. Another important fact is that

we have had to change from 3:5 to 5:3 the Rx:Tx RAM split parameter in the

network adapter in order to limit overrun problem due to receiver saturation.

This change has improved the network behavior.

Figure 2 shows us bandwidth achieved by MPICH for 10 and 100 Mbps Eth-

ernet. From these results, an important di�erent between 10Mbps and 100Mbps

networks arises. In 10 Mbps Ethernet performance is limited by network band-

width, while in Fast Ethernet software overhead becomes the bottleneck. This



Fig. 2. Comparison between 10 and 100 Mbps MPICH results.

overhead made bandwidth obtained to be less than a half of network hardware

bandwidth.

Fig. 3. Ping pong communication time.

Short messages.

Fig. 4. Ping pong bandwidth. Large mes-

sages.

Figures 3 and 4 show communication time for short messages and the band-

width achieved for large messages. As it can be noted, results with TCP and

AM are better than with MPICH, because the MPI implementation overhead is

removed.

5.4 Analysis of results

From �gures shown in previous section several interesting conclusions follow.

First of all, contrary to what it can be thought, MPICH overhead is mainly due

to socket layer. TCP layer software overhead represents from 75% to 81% of

MPICH overall time. Besides, the curve parallel behavior suggests this overhead

remains constant regardless message size.

Another interesting fact that can be noted is there are three zones of linear

behavior regard message size. Table 1 con�rms this fact. In this table we show



AM MPICH TCP

Interval � � � � � �

0-512 10.80 0.145 144.25 0.200 1.75 0.517

512-1024 18.50 0.115 120.00 0.295 61.25 0.285

1024-1536 32.50 0.088 99.00 0.336 41.25 0.324

1536-2048 20.50 0.104 219.75 0.179 196.5 0.122

2048-2560 26.50 0.098 250.75 0.148 193.5 0.125

2560-3072 21.50 0.102 168.25 0.213 104.75 0.194

3072-3584 15.50 0.105 211.75 0.185 224.75 0.116

3584-4096 12.00 0.107 245.00 0.166 189.75 0.136

4096-6144 33.00 0.097 170.50 0.202 146.75 0.157

6144-8192 28.50 0.099 202.00 0.192 197.75 0.140

8192-10240 76.50 0.124 198.00 0.193 138.75 0.155

10240-12288 29.75 0.103 255.50 0.182 248.75 0.133

12288-14336 73.25 0.096 240.50 0.184 175.25 0.145

14336-16384 104.00 0.099 1488.25 0.010 430.75 0.109

16384-18432 148.00 0.124 330.25 0.152 142.75 0.145

18432-20480 38.75 0.104 2.75 0.188 145.00 0.144

20480-22528 111.25 0.096 287.25 0.159 365.00 0.123

Table 1. Fixed overhead and cost per byte (in �secs) for main layers.

� and � parameters for each pair of points. First zone goes from 0 to 1536 bytes

where � (slope) is relatively high. Next zone goes from 1536 to 14336 bytes where

slope is 
atter. Finally, third zone begins at 16Kbytes where slope is even 
atter.

Table 2 shows � and � parameters of each zone obtained by linear regression

where r is the linear correlation coe�cient.

AM MPICH TCP

Interval � � r � � r � � r

0-1536 14.51 0.116 0.994 140.21 0.248 0.994 17.60 0.367 0.990

1536-14336 16.89 0.104 1.000 204.33 0.190 1.000 174.34 0.146 1.000

16384-22528 6.72 0.107 0.998 180.46 0.170 0.997 201.43 0.138 0.999

Table 2. Linear regression coe�cients and correlation coe�cient for main layers.

From both tables we note that � is usually much bigger than �. In some cases,

� is more than 1400 times �, so a future optimization approach must focus on

reducing communication constant factors. This problem is especially important

in short messages where the start-up time dominate the communication cost.

One approach to solve this is using active messages. Active messages reduce



both factors eliminating message bu�ering and providing a thin software layer be-

tween hardware and user applications. Another approach to reduce the software

overhead is to use a complementary solution named virtual circuit caching (VCC)

[3]. In this approach, the �xed communication cost, �, is amortized along several

messages allowing a reduction e�ective communication time per message. The

VCC model enables reduction in communication overheads by allocating com-

munication resources once (e.g., bu�ers, interface channels) and re-using them

for multiple messages to the same destinations. Currently, we have carried out

some tests based on this approach. Preliminary experiments with this technique

show hopeful results.

6 Conclusions and future work.

As we have shown in previous section, software overhead becomes the main

problem as increasing raw network performance. We have modeled this overhead

as a �xed cost per message, �, and a cost per transmitted byte, �. For MPICH

implementation, TCP layer software overhead range from 75% to 81% overall

time. We also have noted that � is usually much bigger than �, so a future

optimization approach must focus on reducing communication constant factors.

Now we are working with a new approach named Virtual Circuit Caching

(VCC). This technique is a complementary one to Active Messages. The VCC

model enables reduction in communication overheads by allocating communica-

tion resources once and re-using them for multiple messages to the same desti-

nations. Preliminary experiments with this technique show hopeful results.

References

1. G. Chiola and G. Ciaccio. GAMMA: a Low-cost Network of Workstations Based

on Active Messages. Procc. of 5th EUROMICRO WorkShop on Parallel and Dis-

tributed Processing. London, January 1997.

2. D.E. Culler et al. LogP: Towards a Realistic Model of Parallel Computation. Procc.

of the 4th ACM SIGPLAN Symp. on Principles and Practice of Parallel Program-

ming, May 1993.

3. B.V. Dao, S. Yalamanchili, and J. Duato. Architectural Support for Reducing Com-

munication Overhead in Multiprocessor Interconnection Networks. Procc. of the

Third Int. Symp. on High Performance Computer Architecture, February 1997.

4. T. Von Eicken et al. Active Messages: A Mechanism for Integrated Communication

and Computation. Procc. of the 19th ISCA, pp. 256-266, May 1992.

5. Message Passing Interface Forum. MPI: A Message Passing Interface Standard. Int.

J. of Supercomputer Applications and High Performance Computing, 8(3/4), 1994.

6. N. Nupairoj and L. Ni. Performance Evaluation of Some MPI Implementations on

Workstation Clusters. Procc. of the Scalable Parallel Libraries Conf., Oct. 1994.

7. A. Skjellum, P. Vaughan, C. Roberts. UNIFY: Interoperable MPI and PVM Pro-

gramming in a Workstation-Network Environment. MPI Developers Conference,

University of Notre-Dame, June 1995.

This article was processed using the LATEX macro package with LLNCS style


