
An Algorithm for Dynamic Reconfiguration of a Multicomputer
Network

 J. M. García J. Duato
 Departamento de Informática Facultad de Informática
 Universidad de Castilla-La Mancha Universidad Politécnica de Valencia
 Albacete, SPAIN 02071 Valencia, SPAIN 46071

Abstract
The dynamic reconfiguration of the

interconnection network is an advanced feature
of some multicomputers to reduce the
communication overhead. In this paper we
present an algorithm for the dynamic
reconfiguration of the network. Reconfiguration is
limited, preserving the original topology. Long
distance message passing is minimized by
positioning communication partners close to each
other. That algorithm is transparent to the
application programmer and is not restricted to a
particular class of applications, being very well
suited for parallel applications whose
communication pattern varies over time. The
paper also presents some simulation results,
showing the benefits from the new
reconfiguration algorithm.

1. Introduction

The increasing demand of larger processing
power in computers has led to the development
of several parallel architectures, usually
belonging to the SIMD or MIMD classes
according to the classification proposed by
Flynn [1]. Among the broad spectrum of parallel
architectures, MIMD systems with distributed
memory are especially promising. Mostly based
on standard VLSI components they offer a very
good price/performance ratio. Furthermore, the
lack of global resources, which usually are a
potential bottleneck, makes them easily
expandable up to a large number (hundreds or
thousands) of nodes.

Usually, a MIMD computer with distributed
memory is called a multicomputer. A

multicomputer is formed by several processing
nodes, where each processing node consists of a
(standard) microprocessor (plus eventually a
numerical coprocessor), local memory and
communication links to other nodes in the
system. The interconnection network between
nodes and the internode communication
strategies play a major role because the
internode communication is the bottleneck for
this architecture. Therefore, the ratio
computation/ communication must be high. As
a full interconnection is impractical for a large
number of processors, topologies with a
restricted number of neighbours like rings,
trees, meshes, pyramids or hypercubes have
been proposed. Hypercubes have become very
popular and are used for several commercial
machines, i.e., Intel iPSC, Ncube or Ametek [2].

In current machines the communication
between neighbours is rather fast while
communications between non-neighbours has
to be implemented by some routing scheme via
intermediate nodes. The two most important
techniques are store-and-forward and wormhole
routing [3]. In store-and-forward routing a
message is completely buffered in an
intermediate node before it is forwarded to the
next one. This causes a considerable message
latency, proportional to internode distance. In
wormhole routing, especial routing hardware
forwards a message as soon as the head of the
message containing the routing information has
arrived, i.e. a message is spread over several
nodes, leading to a very short latency even for
long communication paths. Unfortunately, the
link protocol of some wide spread processors
like current transputers [4] does not support
wormhole routing. However, this has been

announced to be changed for the next
generation, the T9000 [5].

Especially if store-and-forward routing has to
be used, mapping schemes must be employed
which try to map application tasks to nodes in
such a way that not only load balancing is
achieved but also the overhead due to non-
neighbour communication is minimized [6]. For
wormhole routing this point is no longer of that
importance, but minimization of network traffic
is still desirable to keep the blocking probability
of messages small in the intermediate nodes,
thus increasing throughput and reducing
message delay for heavily loaded networks. Of
course, it is possible to use adaptive algorithms
to avoid congested regions of the network. In [7]
we have proposed a very powerful theory for the
design of adaptive routing algorithms for both
store-and-forward and wormhole routing.

An alternative approach to support the
mapping of different application problems on a
distributed memory machine is dynamic
remapping, i.e., moving the processes from a
processor to another in order to minimize the
cost of the communications. References to this
solution can be found in [8].

Another possible solution is to make the
interconnection topology reconfigurable. Under
this assumption, the architecture of these
machines can be classified as follows:
! Static topologies: Fixed point-to-point links

between neighbour nodes which are either hard-
wired or at best can be replugged by hand.
Examples for this kind of systems are simple
transputer systems or most hypercube
machines.
! Quasy-static topologies: A switching network

allows to establish a topology specified by the
application program before its execution starts.
During program execution the topology remains
unchanged.
! Dynamic topologies: The network topology

can change almost arbitrarily at runtime, i.e. it
can be easily matched to the communication
requirements of the application program.
Another advantage is the potential for fault-
tolerance: faulty nodes or links can easily be
bypassed and spare nodes be switched in. The
Esprit P1085 Supernode [9], the DAMP System
[10] and multistage networks [11] belong to this
category.

Basically, the main difference between quasy-
static and dynamic topologies is the time needed
to reconfigurate the network. Also, dynamic

topologies usually offer the possibility to perform
a partial network reconfiguration, this operation
being faster than overall reconfiguration.
However the dynamic reconfiguration of the
network implies a cost, not being possible to
reconfigurate each time a message [10] is sent,
since then we would obtain no improvement.

In this paper we present an algorithm for the
dynamic reconfiguration of the network. The
algorithm decides when the reconfiguration will
take place. Reconfiguration is limited, allowing
processors to swap places with their neighbours
and preserving the original topology. In this
way, routing algorithms remain unaltered. A
simple node renumbering is required. The
algorithm evaluates the communication cost
and decides when the reconfiguration is more
favourable. This algorithm is based on a cost
function and only requires local information. It
can be applied to both store-and-forward and
wormhole networks, being more interesting in
the first case. We also show some numerical
results obtained by simulation.

The rest of the paper is organized as follows.
In section 2 we describe the machine model and
what the implementation of dynamic
configuration control is like. In section 3 we
present the algorithm for dynamic
reconfiguration that we have developed, and in
section 4 we evaluate this algorithm offering
numerical results. Finally, in section 5 we give
some conclusions and ways for future work.

2. Machine Model and Dynamic
Reconfiguration Control

This work was originated while trying to
increase the communication performance of a
transputer-based machine, the PARSYS SN
1000. Then, we have mainly focused on store-
and-forward networks.

All the work has been carried out on the FDP
environment [12], which permits the simulation
of the behaviour of a multicomputer with a
particular topology. FDP also offers a simple and
efficient programming environment with a
friendly user interface.

This environment allows the dynamic
reconfiguration of the network, using the
algorithm which will be presented in the
following section. This algorithm uses a
centralized control scheme to govern the
reconfiguration of the network, as is available
on the SN 1000. Likewise, we only allow

processors to swap places with neighbours,
matching the Supernode capabilities.

2.1 The machine model

Our machine model consists of a main node
or host, and a series of nodes over which the
different processes executed in parallel have
been distributed. FDP allows us to set the
machine parameters, including the number of
nodes. Most simulations have been carried out
for a number of nodes equal to 16, because this
is the size of the SN 1000 we have at the
laboratory.

However, most algorithms have a number of
processes greater than the number of nodes,
and thus various processes will be executed in
each node. The operating system kernel we have
simulated schedules the different processes in a
round-robin fashion.

The mapping of processes to processors is
carried out in a simple way, without taking into
account requisites such as balanced load or
small communication cost. However, network
reconfiguration is exploited. A process i is
assigned to a node j according to the following
function:

 j = i mod node_count

where node_count indicates the total number of
nodes selected for that simulation. Applying the
previous function we obtain a good load
balancing for many numerical algorithms.

The number of links each processor has to
communicate with other processors is limited to
4, as in the transputer [4]. This still allows us
the simulation of the best known topologies for
multicomputers. To be precise, the FDP permits
the simulation of 2-D meshes, rings and
hypercubes, the last one only up to 16 nodes.

As indicated above, store-and-forward routing
is assumed. Because the mapping is static and
known throughout the entire system, the
run-time kernel of a node can determine if the
source and destination processes of a message
are in the same node, or must execute the
routing algorithm to the destination process.

2.2 Dynamic reconfiguration control

As mentioned before we have chosen a
centralized switch control for the dynamic
network reconfiguration. In this model, a master

node (the system controller) is responsible for
controlling the reconfiguration by means of a
control bus.

The network reconfiguration protocol works in
the following way:

1. When a node decides that it is necessary to
reconfigurate the network, it sends a signal to
the system controller through the control bus.

2. Next, the system controller informs all the
nodes that it is going to make a reconfiguration
and therefore they should stop sending
messages to each other. To minimize the
reconfiguration time and relieve the cost that it
implies, nodes stop transmitting even the
messages that are in intermediate nodes.

3. The node which made the request sends
the reconfiguration data to the system controller
to carry out the reconfiguration.

4. The system controller modifies the
interconnection network topology, adapting it to
the new circumstances.

5. Once the new configuration has been
established, the system controller sends this
configuration to all the nodes and permits node
communication again.

This protocol is easily implementable using
the control bus available in the Supernode
architecture, which does not add message traffic
to the network. Moreover, the use of a bus
allows to perform efficiently the broadcast
operations required in steps 2 and 5.

The centralized control could be a bottleneck
for the whole system, since all the nodes must
send reconfiguration requests to the system
controller. This situation is true in the event of
frequent reconfiguration, e.g. for each message.
But because there exists a considerable
overhead, the network will only be
reconfigurated when a large amount of data has
to be transferred. Thus, for moderate systems,
e.g. up to 64 nodes, the centralized control will
not represent a bottleneck for the system. For
larger systems, the Supernode architecture
requires a two-level switch and more than a
single control bus.

3. Algorithm for Dynamic Network
Reconfiguration

In this section we present the algorithm we
have developed for the dynamic reconfiguration
of the interconnection network. We can see from
the reconfiguration protocol presented in the
previous section that this algorithm has two

parts: one for the system controller and another
one for the remaining nodes. These algorithms
are included in the run-time kernel, whether of
the system controller or the nodes.

Firstly, we shall develop the algorithm to be
executed in each node. This is the main and
most difficult part, the system controller
algorithm being very simple.

Before detailing the algorithm, we shall take
into account some preliminary considerations.

3.1 Definitions and tradeoffs

Now we are going to define some concepts
and consider some tradeoffs for the design of
the reconfiguration algorithm:

1. Local versus global reconfiguration. The
question here is to determine which of the two is
more suitable. By local reconfiguration we mean
that reconfiguration only affects the requesting
node and possibly the nodes directly connected
to it. Global reconfiguration, on the other hand,
can bring about a modification in the links of
multiple nodes at the same time. As the system
controller needs to receive information from all
the nodes in the network, global reconfiguration
implies a greater cost. The advantage is that
several changes can be carried out in one step.
The algorithm we have developed performs a
local reconfiguration of the network.

2. Preserving a given topology.
Reconfiguration can be made making sure that
the new network has the same topology (only
some nodes have changed their places) or
allowing any arbitrary topology. In the algorithm
we propose the network topology will be
maintained in such a way that if we have a
hypercube topology, after any reconfiguration
the network still keeps the hypercube topology,
but there are a few nodes (local reconfiguration)
which have changed their place in the network.
This reconfiguration is equivalent, although
much faster, to renumbering a pair of nodes,
also exchanging all the processes they are
executing.

3. Reconfiguration triggering. Somehow the
algorithm has to decide when the
reconfiguration of the network is suitable. There
are basically two possibilities:
 a) Measuring message traffic. A node can
reconfigurate the network taking into account
the number of messages that the node has sent,
or has received or have passed through it.
 b) By means of a cost function. Every node

determines the convenience of producing a
network reconfiguration based on a function
cost.

It must be noticed that in both cases we are
speaking about nodes and not about processes,
as what matters are the node communications
and not the process communications. Besides,
internal communications are not taken into
account (between processes executed in the
same node) to trigger the network
reconfiguration.

In our algorithm both possibilities have been
tried, better results being obtained when the
change is triggered by means of a cost function.
This cost function should take into account two
important aspects: the weight of a
communication, and the distance between
nodes. By weight of a communication we mean
the number of messages which have been sent
in a particular direction. The distance between
nodes measures the number of intermediate
nodes that a message has to cross to go from
node A to node B; if A and B are physically
connected, the distance is null. This distance
receives the name of nominal distance because it
is directly obtained from the network topology.
In [13] the aim is to use the actual distance,
which is a modification of the nominal distance
taking into account the traffic in the
intermediate nodes. In our case, and due to the
fact the reconfiguration is aimed to be local,
using only local information, we have chosen
the nominal distance, because the computation
of the actual distance needs information from
the rest of the nodes and therefore would
require communications between them.

4. Type of change. Once the algorithm has
decided to make a change, there are several
possibilities. Thus, we are going to explain how
the possible changes are tested and carried out.
When a node, by means of the cost function,
decides that it is convenient to make a
reconfiguration, it computes the effect of
possible changes to see if the traffic conditions
improve. There are two strategies to choose
possible changes:

a) Small alteration in the network. A node can
only make an exchange with one of its
neighbour nodes. For example, in a ring
topology a node only has two possibilities of
exchange, with the node on the right, or the
node on the left.

b) Large alteration in the network. A node can
carry out a change to any other place in the

network. To keep the same topology easily, it is
convenient for the changed node to take the
position left by the node which requested the
change.

We are going to detail with an example the
difference between both strategies. Let the
network have a four-dimensional hypercube
topology and let us imagine that the only
communications in the network are due to the
node 0 sending messages to the node 15 (see
figure 1).

With a strategy of small alteration, at a given
moment (when the cost of the communications
is greater than a threshold) the node 0 decides
that it is necessary to make a change and, after
trying the possible changes, it decides to
exchange its position with node 1. After node 15
decides that it is necessary to make a change, it
chooses an exchange with node 7. Finally, node
0 (in position 1) requests a change once more,
choosing the exchange with node 3. Now the
source and the destination nodes are
neighbours, without traffic through
intermediate nodes, and without producing
more changes in the topology.

On the other hand, if we take a large
alteration strategy, the behaviour is different.
When the node 0 decides that it must carry out
an exchange, it does so directly with node 7.
There are no more changes as the traffic in the
network has disappeared (except
communication between neighbour nodes).

Although it seems better to use a large

alteration strategy, when all the nodes are

communicating with each other this is not true.
Better results are achieved by a small alteration,
which produces changes that are more uniform
and less brusque.

A last consideration. Sometimes, there are
several possible changes that minimize the cost
function. If the algorithm always chooses the
same change, it can lead to endless cycles,
which could produce a practically infinite
number of changes. This situation usually
appears when several nodes exchange the same
amount of information in a cyclic way. The
solution adopted is to choose each time one of
the possible changes according to a round-robin
strategy. In this way, endless cycles are avoided
as is shown in the following section.

5. Thresholds in the reconfiguration. As
stated above, a large number of reconfigurations
reduces the performance of the multicomputer
due to the cost implied by a reconfiguration. On
the other hand, a small number of
reconfigurations leads to slow systems, almost
insensitive to changes in message traffic. This is
a problem of dynamic optimization, being
necessary to determine the threshold range for
which network reconfiguration is convenient.
Also, the evaluation of the cost function implies
an overhead. Then, we must determine how
often the cost function is going to be evaluated.
That evaluation will take place every certain
number of messages sent or received. This leads
us to handle another threshold. Thus, our
algorithm will be evaluated for several pairs of
these thresholds.

3.2 The cost function for the dynamic
reconfiguration

Before detailing the reconfiguration algorithm,
we are going to propose the cost function on
which it is based. Our goal is to minimize the
traffic of messages in the network. Therefore,
the cost function must evaluate the network
traffic under the above considerations. Then, for
a given node i:

where Cij is the total message traffic between
nodes i and j (i.e., the messages sent by the
node i to the node j and the messages received
by the node i from the node j) and dij is the
nominal distance. With this cost function we

1 Fig. 1 Hypercube of 16 nodes.
2

ij

nodes

j

iji dCCF *
1

∑
=

=

take into account the real communications
between i and j weighted with their nominal
distance, which give us a measure of the traffic
those communications suppose. This function
needs to record information for every message in
a suitable data structure. For each node, an
array with as many elements as nodes will be
sufficient.

3.3 The reconfiguration algorithm

The algorithm we have developed for the
dynamic network reconfiguration has the
following properties: uses local
reconfiguration, preserves the topology, is
based on a cost function, produces a small
alteration in the network and uses two
thresholds for network reconfiguration. In
this paper, we do not take into account the
operational cost of the reconfiguration. In the
simulations shown, we suppose a null cost for
reconfiguration.

The basic idea is the following: When the
traffic between a pair of nodes is intense, the
algorithm will try to put the source node close to
the destination node by exchanging the
positions of either the source node and a
neighbour of it or the destination node and one
of its neighbours. However, the implementation
of this algorithm is distributed, each node
taking into account the information recorded
locally.

Under all those considerations, firstly we are
going to present the reconfiguration algorithm
for each node i. It is executed each time a
message is sent to or received from a given node
j:

 begin
 record_message_information (node_j);
 message_count:= message_count + 1;
 if (message_count mod threshold_2) = 0 then
begin
 cost:= cost_function(node_i);
 if cost>threshold_1 then begin
 change:=
check_possible_changes(selected_change);
 if change then reconfig(node_i,
selected_change);
 end;
 end;
 end;

where

Message_count: Measures the total number of
messages sent or received by that node.
Threshold_1: Minimum cost for
reconfiguration. Takes into account that the
reconfiguration requires some time.
Threshold_2: Time interval between
evaluation of the cost function. Takes into
account that this evaluation requires some
time.
Check_possible_changes: It evaluates if a new
configuration would reduce the cost function.
If it does, the change is made. In the case that
there are several new configurations with a
smaller cost, the one with the minimum cost
is chosen. When several configurations have a
cost equal to the minimum, a round-robin
strategy is used.
Change: Boolean variable which indicates if a
change will be made.
Reconfig: Procedure initiating the
reconfiguration protocol with the system
controller.

Now, we are going to present the algorithm for
each node i that is executed each time it
receives a message containing a new
configuration from the system controller:

 begin
 update_node_mapping;
 end;

where
Update_node_mapping: Procedure that
updates the mapping of physical nodes to
positions in the network topology. It must be
executed by all the nodes, not only the
requesting node. This update is necessary to
correctly compute the cost function and the
routing algorithm.

Finally we will detail the reconfiguration
algorithm for the system controller. It is
executed each time a reconfiguration request is
received:

 begin
 broadcast(suspend_message_traffic);
 update_switches;
 broadcast(new_configuration);
 broadcast(continue_message_traffic);
 end;

where

Broadcast: Send a message to all the nodes.
After sending it, the system controller waits
until all the nodes acknowledge the reception.
The acknowledgement implies that the
requested operation has been performed.
Update_switches: Switch the topology of the
inter-connection network.

4. Evaluation of the Algorithm

In this section we are going to evaluate our
network reconfiguration algorithm for several
examples. The results illustrate the
improvement that can be obtained when the
network is reconfigurated. This improvement
will be measured by means of three parameters:

1. Total message traffic in the network: We
shall only count those messages crossing
intermediate nodes. Each time a message
crosses an intermediate node, the total traffic is
increased.

2. Maximum node traffic: It tells us how
many messages have crossed the most
saturated node. This is an important parameter
since a highly saturated node reduces the
performance of the whole system.

3. Number of changes. It is important to
know how many changes have been carried out
to obtain a given result.

These results have been obtained with the
FDP environment. First of all, we present the
results for some simple cases, then we show the
results for a complex numerical algorithm.

4.1 Simple cases

We have chosen two simple cases. They are
the following:

- Case 1: Two source nodes and one
destination node. Node 0 and node 8 send
messages to node 15.

- Case 2: A cyclic case. Node 0 sends to node
12, node 12 sends to node 3 and node 3 sends
again to node 0. This case will serve to explain
the concept of a cyclic change and the necessity
of using a round-robin strategy, at the moment
of choosing one change or another.

The conditions that we have chosen for these
cases are the following: the first threshold is
equal to 10, and the second threshold is equal
to 5. The number of messages that a node sends
is 100. A four-dimensional hypercube has been
chosen in the case of dynamic reconfiguration.

Figure 2 shows the results obtained in the
case 1. For comparison purposes we also show
the results obtained with the static topologies
supported by the FDP environment. As we can

see, the results are very good, existing a very
drastic reduction in message traffic, and a
reduction in the traffic through the most
saturated node too. Moreover, once the
reconfiguration algorithm has carried out three
changes, the source and the destination nodes
are neighbours. Although this case is very
simple, these results are similar for more
complex algorithms. A wider study of several
test cases as well as different thresholds can be
found in [14].

The other test case will serve to explain the
cyclic change. Let us imagine the following
situation (see figure 1). Node 0 sends to node
12, node 12 sends to node 3 and node 3 sends
again to node 0. If each node always chooses the
same change among various alternatives, the
produced changes are: node 12 to node 8 (trying
to approach node 3 and node 0), node 3 to node
2 (trying to approach node 0 and node 12), node
3 (position 2) to node 0 (trying to approach node
12), node 12 (position 8) to node 10 (trying to
approach node 0 in position 2), and again node
3 is moved from position 0 to position 2. We
have a cycle since the node 3 is always changed
from position 0 to position 2 of the hypercube
and viceversa, and the node 12 is always
changed from position 8 to position 10 and
viceversa. Then we must avoid cyclic changes,
because they lead to a high number of changes
and a slight reduction in message traffic. When
we use the round-robin strategy we break the
cyclic changes.

Fig 2. Dynamic reconfiguration for simple case 1.

4.2. A complex case: the sparse matrix
triangularization.

To evaluate the reconfiguration algorithm in a
complex case, we have chosen the
triangularization of a sparse matrix based on
the rotations of Givens, as this algorithm is very
suitable for parallel machines because of its
inherent parallelism. A deep study of a parallel
version of this algorithm can be found in
[15,16]. A detailed explanation of the algorithm
as it has been simulated in the FDP can be
found in [12].

We will briefly describe the algorithm. It
requires as many processes as columns the
sparse matrix has. If we define the type of a row
as the column position occupied by its leftmost
non-zero element, then it is well known that
only rows of the same type can be rotated
together. Then we distribute the rows among
processes in such a way that each process
stores all the rows of the same type. After a pair
of rows has been rotated, one of them increases
its type, being sent to the corresponding process
to be processed again. Of course, empty rows
are discarded. The algorithm finishes when
there is at most a single row in each process. As
the rotation of a pair of rows cannot produce a
row of a lower type, a token is passed through
all the processes to determine when the
triangularization program has finished.

This algorithm has been chosen because we
cannot know a priori the communication
pattern between nodes, because it depends on
the structure of the sparse matrix, and therefore
a suitable process mapping cannot be chosen.
Moreover, the communication pattern will vary
over time, making it very suitable for dynamic
reconfiguration.

For dense matrices, the rotation of two rows
of type t produces two rows of types t and t+1
respectively. Then, this algorithm performs very
well on a ring. For sparse matrices, as
processing advances, matrix fill-in increases,
approaching the behaviour of dense matrices. In
fact, when this algorithm is executed statically
on a ring, a 2D-mesh and a hypercube, the best
results as far as traffic is concerned are
obtained for the ring. Therefore we will take the
ring as a suitable point of reference, which will
serve to measure how much we gain by
reconfigurating the network dynamically.

Figure 3 shows the total message traffic and
the message traffic through the most saturated
node for the above described algorithm on
different topologies supported by FDP, including

dynamic reconfiguration. To obtain these values
we have used a 150x75 matrix, with an average
of two non-zero elements per row randomly
placed. Before applying Givens rotations to
triangularize the matrix, its columns have been

reordered to reduce the number of messages
and increase the efficiency of the parallel
algorithm. In the case of dynamic
reconfiguration, we have chosen the hypercube
topology as before.

The number of changes to obtain this result
has been 14, threshold_1 having a value of 16,
and threshold_2 having a value of 64. As can be
seen, message traffic has been drastically
reduced, also existing a significant reduction in
the traffic through the most loaded node. With
respect to the best static topology (the ring), a

Fig. 4. Dynamic reconfiguration in a 300x100 matrix.

Fig. 3. Dynamic reconfiguration in a 150x75 matrix.

reduction of 35% is obtained in the total
message traffic.

To confirm these results, we have carried out
several tests with other matrices, usually with
an average of two non-zero elements per row
[14]. The results obtained are very good,
showing us that the larger the matrix, the better
results are achieved. As an example, the results
obtained for a 300x100 matrix with static
topologies and the best dynamic reconfiguration
are shown in figure 4. As we can see, the traffic
reduction is significant for a relatively small
number of changes. In the best case, the traffic
is a sixth of the one achieved with a static
hypercube, and about 40% less than the traffic
obtained with a ring.

Depending on the threshold values, the
results obtained are different. Low thresholds
seem more adequate; however they cause many
changes, many times without an important
traffic reduction.

This situation will change after introducing
the operational cost of the reconfiguration in the
cost function. Then, it will be easier to
determine the optimal values for the thresholds.

These results confirm the suitability of the
dynamic reconfiguration as a means of
achieving a reduction in message traffic.

5. Conclusions and Future Work

In this paper we have presented an algorithm
to reconfigurate dynamically the interconnection
network for multicomputers with store-and-
forward routing. We have detailed the
reconfiguration protocol and we have evaluated
our algorithm both for simple cases and for a
complex mathematical problem. In all the cases
the behaviour of the algorithm has been good,
leading to a reduction both in the total message
traffic in the network and in the message traffic
through the most saturated nodes. This
improves the performance of multicomputers as
their main bottleneck is the communication cost
between nodes.

In relation with the dynamic reconfiguration
of the interconnection network, we have
analysed several important tradeoffs. The
proposed algorithm features are local
reconfiguration, preserves the topology,
produces a small alteration, and is based on a
cost function.

As future work we want to test several things.
Firstly, we want to include the operational cost

of the reconfiguration in the cost function.
Secondly, we want to evaluate the
reconfiguration algorithm for other parallel
programs, with larger matrices and larger
networks showing the speed-up obtained with
dynamic reconfiguration. Thirdly, we would like
to find a relationship -if there is one- between
the most suitable values for the thresholds and
other network parameters. Finally, we plan to
extend the proposed algorithm for large
Supernode networks, requiring a two-level
switch and several control buses.

References

[1] Flynn, M.J. "Some computer organizations
and their efectiveness". IEEE Trans. on
Computers, Vol. C-21, pp. 948-960, 1972.
[2] Almasi, G.S. and Gottlieb, A. "Highly Parallel
Computing". The Benjamin/Cummings
Publishing Company, 1989.
[3] Dally, W.J. and Seitz, C.L. "Deadlock-free
message-routing in multiprocessor
interconnection networks". IEEE Trans. on
Computers, Vol. C-36, No.5, pp. 547-553, May
1987.
[4] Inmos Corporation. "The Transputer
Databook". Inmos Ltd., England, 1989.
[5] May, D. "The next generation transputers
and beyond". 2nd European Distributed Memory
Computing Conference, Munich, April 1991.
[6] Bokhari, S. H. "On the mapping problem".
IEEE Trans. on Computers, Vol. C-30, No.3, pp.
207-214, March 1981.
[7] Duato, J. "On the design of deadlock-free
adaptive routing algorithms for multicomputers:
design methodologies". Parallel Architectures and
Languages Europe 91, Eindhoven, June 1991.
[8] Nicol, D.M. and Reynolds, P.F.Jr. "Optimal
dynamic remapping of data parallel
computations". IEEE Trans. on Computers, Vol.
C-39, No.2, pp. 206-219, Feb. 1990.
[9] Nicol, D.A. "Reconfigurate transputer
processor architectures", in T.J. Fountain and
M.J. Shute (Ed), Mul-tiprocessor Computer
Architectures, North-Holland, 1990.
[10] Bauch, A.; Braam, R. and Maehle, E.
"DAMP: A dynamic reconfigurate multiprocessor
system with a distributed switching network".
2nd European Distributed Memory Computing
Conference, Munich, April 1991.
[11] Hofestädt, H.; Klein, A. and Reyzl, E.
"Performance benefits from locally adaptive
interval routing in dynamically switched

interconnection networks". 2nd European
Distributed Memory Computing Conference,
Munich, April 1991.
[12] García, J.M. and Duato, J. "FDP: An
environment for a MIMD programming with
message-passing". Technical Report GCP #1/91,
Departamento de Ingeniería de Sistemas,
Computadores y Automática. Univ. Politecnica
de Valencia, 1991.
[13] Lee, S.Y. and Aggarwal, J.K. "A mapping for
parallel processing". IEEE Trans. on Computers,
Vol. C-36, No.4, pp. 433-442, April 1987.
[14] GarcRa Carrasco, JosJ M. "Desarrollo de
Herra-mientas para una Programación Eficiente
de las Redes de Transputers: Estudio de la
Reconfiguración Dinámica de la Red de
Interconexión". PhD thesis. Universidad
PolitJcnica de Valencia. November, 1991.
[15] Duato, J. and Pons, J. "Parallel
triangularization of sparse matrices on
distributed memory multiprocessors", in F.
AndrJ and J.P. Verjus (Ed), Hypercube and
Distributed Computers, North-Holland, 1989.
[16] Duato, J. "Parallel triangularization of a
sparse matrix on a distributed-memory
multiprocessor using fast Givens rotations".
Linear Algebra and its Applications, No.121, pp.
582-592, 1989.

