
Improving the Performance of Parallel

Triangularization of a Sparse Matrix

Using a Recon�gurable Multicomputer?

Jos�e L. S�anchez1, Jos�e M. Garc��a2, Joaquin Fern�andez1

1 Universidad de Castilla-La Mancha, Escuela Polit�ecnica

Campus Universitario, 02071 Albacete, Spain

fjsanchez,joaquing@info-ab.uclm.es
2 Universidad de Murcia, Facultad de Inform�atica

Campus de Espinardo, 30071 Murcia, Spain

jmgarcia@dif.um.es

Abstract. Many applications require the solution of a least-squares (LS)

problem from a coe�cient matrix and a measurement vector. In some
cases, the solution must be obtained within a short period of time, re-

quiring great computation power, as is the case of state estimation in
electric power systems. In some cases, the coe�cient matrix is a large

and sparse one, requiring special techniques to reduce the computation-

time and storage requirements. In these situations, fast Givens rotations
are very well suited for parallel computers because they exhibit a great

potential parallelism.

In this paper we improve the performance of the fast Givens rotations
algorithm for sparse matrices by means of using a recon�gurable mul-

ticomputer. A recon�gurable multicomputer is a message-passing multi-

processor in which the network topology can change during the execution

of the algorithm. In this way, the interconnection network can match the

communication requirements of a given algorithm.

In this paper we show the improvement for applying this novel technique
to improve the performance of the parallel fast Givens rotations, and we

present general concepts related with it. This technique consists basic-

ally in placing the di�erent processors in those positions in the network
which, at each computational moment and according to the existing com-

munication pattern among them, are more adequated for the development

of such computation.

1 Introduction

Many numeric calculation problems need to be solved in the shortest possible

time, therefore requiring the availability of computers with high calculation power.

In this sense, massively parallel computers have become the best alternative to

achieve this objective. Their high processing speed is based on parallel execu-

tion of di�erent processes which, properly combined, will produce the solution

required.

? This work was supported in part by CICYT under Grant TIC94-0510-C02-02



Parallel algorithm implementation is not immediate, being in many cases

necessary a great programming e�ort and specially when these problems are

speci�cally of sequential type. Another problem related with the parallel imple-

mentation is the election of the best parallel algorithm. Sometimes, the sequential

and parallel behaviour is not the same. So, it is necessary to choose the algorithm

with the best parallel execution.

In this paper, we solve in parallel the least-squares problem by means of nu-

merical methods based on orthogonal transformations. This problem is very usual

in many scienti�c applications, as lineal system resolution or eigenvalue problems.

Among QR descomposition, Householder transformations are usually preferred

when programming a serial computer, due to their higher speed. However, Givens

rotations are very well suited for parallel computers, because they exhibit a great

potencial parallelism.Moreover, there is an improved version of Givens rotations,

known as fast Givens rotations. Finally, in some cases the coe�cient matrix is a

large and sparse one.

In this paper, we present a novel technique to improve the performance of

parallel triangularization of a sparse matrix using fast Givens rotations. This

parallel algorithm is executed in a multicomputer. Among all computer architec-

tures developed to this moment, multicomputers present the highest performance

for resolution of sparse matrices problems. In this class of machines, the commu-

nication between processors relies on an interconnection network, generally with

a point-to-point topology. The main problem presented by multicomputers is

precisely the saturation of the interconnection network. When a process requires

one datum which is being calculated by other processes executed in di�erent

processor, communication is established between both. Another possible cause

which can produce communication between two processes is when they must be

synchronized.

In order to reduce the negative e�ect due the communication, a novel tech-

nique used to improve the performance in multicomputers is the dynamic recon-

�guration of the interconnection network. This technique consists basically in

placing the di�erent processors in those positions in the network which are more

adecuated for the development of the computation and communication.

In this paper we show the performance improvement in fast Givens rota-

tions using a recon�gurable network multicomputer. We are encouraged by than

to continue our researches in depth. The rest of the paper is organized as fol-

lows. In the next section we briey introduce Givens rotations and the parallel

algorithm. In section 3 we present the dynamic recon�guration of the intercon-

nection network, and in section 4 we show and analyse the evaluation results.

Finally, in section 5 we give some conclusions and ways for future work.

2 Fast Givens Rotations

A Givens rotation can be de�ned by a transformation matrix J(i; k; �), where �

is the rotation angle. The de�nition of J(i; k; �) is well known and can be found



in [8]. The application of an mxn transformation matrix J(i; k; �) to an mxn

matrix A annihilates the element Aki, choosing the appropiate value of �.

The transformation of A into an upper triangular matrix can be achieved by

calculating and applying to A a sequence of Givens rotations, which annihilate

the elements below the diagonal. In several problems, including LS, the rotations

are also applied to an mx1 coe�cient vector b. The result of the transformation

is a triangular equation system, which can be solved by backward substitution.

The classical algorithm for matrix triangularization on serial computers nul-

li�es all the elements below the diagonal sequentially. A pair of rows is selected

in each iteration, calculating a rotation and applying it to all the elements of the

selected rows. This algorithm has a complexity O(mn2).

To obtain a parallel implementation of the algorithm, we must take into ac-

count that the rotations of rows of A are totally independent and can be applied

in any order. The only requirement for applying rotation to a pair of rows is that

the �rst nonzero elements of both rows occupy the same column position. So, any

pair of rows of the same type can be processed in parallel with any other pair.

Processes do not need to communicate during the rotation process. However,

after each rotation one of the rows must be transferred to another process in

most cases.

The algorithm to triangularizate a matrix A and its associated coe�cient

vector b, based on fast Givens rotations, the theoretical proof of the algorithmand

more information about Givens rotations can be found in [8]. We have followed

the studies developed by Duato [4] in order to apply fast Givens rotations in

multicomputers.

2.1 Parallel Algorithm

The parallel implementation of the algorithm requires as many processes as

columns the sparse matrix has. If we de�ne the type of a row as the column

position occupied by its leftmost non-zero element, then it is well known that

only rows of the same type can be rotated together. Then we distribute the rows

among processes in such a way that each process stores all the rows of the same

type. After a pair of rows has been rotated, one of them increases its type, being

sent to the corresponding process to be rotated again. Processes are mapped

to processors depending on a prede�ned cost function, in order to minimize the

communication cost. In this paper, we have ussually taken into account a round

robin or cyclic distribution.

Empty rows are discarded and the algorithm �nishes when there is at most

a single row in each process. As the rotation of a pair of rows cannot produce

a row of a lower type, a token is passed through all the processes to determine

when the triangularization program has �nished.

Our machine model allows that the communication is carried out asynchron-

ously and in parallel with the processing.

The basic algorithm executed by a given process, is the following:



repeat

if received()

then begin

receive rows from other processes

insert rows in local matrix

end

if rows_counter>1

then begin

extract two rows from local matrix

calculate and apply a rotation

insert the first row in the local matrix

calculate destination process of second row

send second row to destination process

end

until finished

It is interesting to note here that the algorithm has not a regular commu-

nication pattern. The communication pattern is not �xed and is varying along

the time. Moreover, there is no locality of communications. So, it is very di�cult

to choose a good topology that can adjust this communication pattern. A deep

study of this algorithm can be found in [9].

3 A Recon�gurable Multicomputer

Multicomputers rely on an e�cient interconnection network. The network is a

critical component because performance is very sensitive to network latency and

throughput. In our work, we consider a multicomputer with a control-ow mech-

anism called wormhole routing [3]. Interconnection networks with wormhole rout-

ing mechanism are insensitive to the communication distance, but they are fairly

sensitive to conicts on the same link, that is, the congestion problem. Several

techniques have been proposed to reduce or avoid congestion, such as virtual

channels, random routing or message combining. The technique here presented

is related to the recon�guration capacity of the interconnection network topology.

The dynamic recon�guration of the interconnection network is a solution ad-

opted in order to reduce the cost of the communication. Basically, consists in pla-

cing the di�erent processors in those positions in the network which, at each com-

putational moment and according to the existing communication pattern among

them, are more adequated for the development of such computation.

The basic idea is the following: when messages arriving by a given channel to

their destination nodes have supported an important delay, the recon�guration

algorithm will try to put the destination node close to the site that is producing

those delays, by exchanging its position with its neighbour more closed to the

conict zone.

A recon�gurable network has the following advantages:

- Programming a parallel application becomes more independent of the target

architecture because the architecture adapts to the application.



- This feature provides the exibility required for an e�cient execution of

various applications. Moreover, in this way it is easy to exploit the locality

in communications.

- Finally, this feature is very well suited for parallel applications where com-

munications pattern varies over time.

A recon�gurable network is controlled by a recon�guration algorithm. There

are two types of recon�guration: static or dynamic. In this paper, we focus on

dynamic recon�guration, that is, the topology can change almost arbitrarily at

run-time. We present the results we have obtained with this recon�guration al-

gorithm [6] for a numerical problem: the fast Givens rotations.

The algorithm we have developed for the dynamic network recon�guration

has the following properties: uses global recon�guration (several changes can be

carried out in one step), preserves the topology (after recon�guration, the network

has the same topology), is based on contention network (a node can recon�gurate

the network taking into account information about the contention in the network),

produces a small alteration (a node can only make an exchange with one of its

neighbour nodes) and uses three thresholds for network recon�guration.

Figure 1 shows the e�ects of this technique for a very elemental situation.

In (a) and (b) messages sent by processors must in some situations go through

the same channels until they reach their destination, originating logical delays in

communication. Once situation (c) is reached, this problem disappears, thus ac-

celerating emission and reception of these messages. The processor which receives

the messages manages to place itself in its best position in the network. This is

achieved by changing the situation of this processor by means of small alterations

in the network, that is, exchanging its position with a neighbour processor.

4 Performance Evaluation

In this section we are going to evaluate and analyse the results obtained after we

have applied the algorithm for the dynamic recon�guration of the interconnection

network at the parallel triangularization of a sparse matrix using fast Givens

rotations.

Fast Givens rotations algorithm produces communication among the di�erent

processors of the multicomputer through its interconnection network which is

mainly due to the movement of rows in the matrix from one process to another.

It seems therefore obvious to try to reduce the negative e�ect introduced by that

communication in the total time of execution of the algorithm.

This algorithm has been chosen because we cannot know a priori the com-

munication pattern between nodes, because it depends on the structure of the

sparse matrix, and therefore a suitable topology cannot be selected. Moreover,

the communication pattern will vary over time.

For dense matrices, the rotation of two rows of type t produces two rows of

types t and t+1 respectively. Then, this algorithm performs very well on a ring.



Source nodes Destination node

(a) (b)

(c)

Fig. 1. An example of the recon�guration algorithm e�ects

For sparse matrices, on the other hand, we cannot know a priori the communic-

ation pattern. As processing advances, matrix �ll-in increases, approaching the

behaviour of denses matrices.

Simulation has been used because it is di�cult to analyse theoretically the

arithmetic and communication complexities when sparse matrices are processed.

This is specially true when the matrix structure changes dynamically during the

processing, as is the case of Givens rotations. In this case, experimental results

are needed to evaluate the performance of the algorithm.

The evaluation methodology we have used is summarized in the following

sections.



4.1 Programming and Simulation Environment

The results we present have been obtained with Pepe, a Programming Environ-

ment for Parallel Execution [7]. Pepe takes a parallel program as input and gener-

ates intermediate code for an execution on a multicomputer. The most important

parameters of this multicomputer can be varied by the user. Pepe generates per-

formance estimates and quality measures for the interconnection network.

Pepe provides a user-friendly visual interface for all phases of parallel develop-

ment. This graphical interface has been designed with the aim of keeping it really

immediate and comfortable to the user, following the styles adopted nowadays

by most of the human-oriented interfaces. In our environment, the user gets tools

for easy experimentation both di�erent parallelization possibilities and di�erent

network parameters. With this methodology the programmer can change very

quickly parallelization strategies and evaluate this parallelization with analysis

tools.

Pepe has two main phases and several modules within it. The �rst phase

is language-oriented, and it allows us to code, simulate and optimize a paral-

lel program. In this phase, interactive tools for speci�cation, coding, compiling,

debugging and testing were developed. This phase is architectural independent

and it is the front-end of our environment. The second phase has several tools

for mapping and evaluating the recon�gurable architecture. We can vary several

parameters as di�erent interconnection topologies or routing algorithms. The link

between two phases is an intermediate code that is generated as possible result

of the �rst phase. This allows that the user can handle our environment as whole

or each phase singly. For example, we can execute only the �rst phase for test-

ing the parallel behaviour of an algorithm on an ideal multicomputer. The other

possibility is to obtain an intermediate code from a key parallel algorithm. Then,

we can execute several times the second phase with di�erent network parameters

to evaluate them for this key algorithm.

4.2 Characteristic of the Testing Matrices

The testing matrices have been generated at random by making a homogeneous

distribution of their non-zero elements. Large size matrices have been selected to

produce a large message tra�c to better appreciate in this way the advantages

of the recon�guration algorithm. For a speci�c number of columns in the matrix,

tests with di�erent rectangularity factors have been carried out for a minimum

value of two, since smaller factors can hardly produce tra�c in intermediate

nodes of the network. An average number of two non-zero elements per row has

been taken in order to ensure we are dealing with sparse matrices. Most of the

results included in this work refer to matrices of 2400 rows and 1200 columns.

In order to increase the e�ciency of the parallel algorithm, a column re-

arrangement in the matrix is usually made before applying Givens rotations.

This is directed to attain that the �rst columns in the matrix are those with the

lowest number of non-zero elements.



4.3 Performance Measures

The most important performance measures are delay and throughput. Delay is

the additional latency required to transfer a message with respect to an idle

network. It is measured in clock cycles. The message latency lasts since the mes-

sage is introduced in the network until the last it is received at the destination

node. An idle network means a network without message tra�c and, thus without

channel multiplexing. Throughput is usually de�ned as the maximum amount of

information delivered per time unit. It is measured in its per clock cycle.

4.4 Results

In this section, we show some evaluation results. These results have been obtained

making use of a hipercube topology. We choose this topology because is that we

have obtained the best results for the static case.

Figure 2 shows the throughput as a function of network size. It can be seen

that the algorithm achieves a higher throughput for the whole range of network

sizes which have been analysed. In similar way we have obtained other graphs

showing the average message delay as a function of network size. All of them

clearly show that the dynamic recon�guration of the network scales well with

network size. Figure 3 shows the average message delay versus message length.

Static network

Reconfigurable network

Network size

T
h

ro
u

gh
p

ut

16 64 128 256 512

100

80

60

40

20

0

Fig. 2. Throughput as a function of network size

The curves correspond to di�erent values for the number of virtual channels

on a 256-node network: Static algorithm (Static 1vc), dynamic algorithm (Dy-

namic 1vc), static algorithm with two virtual channels (Static 2vc) and dynamic

algorithm with two virtual channels (Dynamic 2vc).



Static 1vc

Dynamic 1vc

Static 2vc

Dynamic 2vc

Message length

A
ve

ra
ge

de
la

y

16 64 128 256

250

200

150

100

50

0

Fig. 3. Average message delay as a function of message length

Static network

Reconfigurable network

Network size

S
im

u
la

ti
on

ti
m

e

200

150

100

50

0
16 64 128 256 512

Fig. 4. Total simulation time as a function of network size

The results show a signi�cant reduction in message delay, especially for long

messages.

Finally, �gure 4 shows the simulation time as a function of the network size.

It is noticed that the reduction of the total time of the computation in the trian-

gularization process is kept for the di�erent sizes of the network.



5 Conclusions and Future Work

In this paper we show the advantages of using a recon�gurable multicomputer for

solving a great variety of problems. In our case, the triangularization of sparse

matrices by means of fast Givens rotations has been selected and we present the

results here.

The evaluation of these results shows a reduction in message delay with re-

spect to the static case. The improvement is more noticeable when the messages

have a larger length, and the algorithm scales very well with network size.

As regards future work we want to evaluate the recon�guration algorithm for

larger matrices and larger networks and also other parallel programs.

References

1. Adamo, J., Bonello, C.: Tenor++: A dynamic con�gurer for Supernode machines.
Lecture Notes in Computer Science. No. 457, pp. 640{651, Springer Verlag (1990)

2. Bauch, A., Braam, R., Maehle, E.: DAMP: A dynamic recon�gurable multiprocessor

system with a distributed switching network. 2nd European Distributed Memory
Computing Conference, Munich, April, 1991

3. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor intercon-

nection networks. IEEE Trans. on Computers, Vol.C{36, No. 5, pp. 547{551, May,
1987

4. Duato, J.: Parallel triangularization of a sparse matrix on a distributed{memory

multiprocessor using fast Givens rotations. Linear Algebra and its Applications,
121:582{592, 1989

5. Fraboul, Ch., Rousselot, J.Y., Siron, P.: Software tools for developing programs on

a recon�gurable parallel architecture. in D. Grassilloud and J.C. Grossetie (Eds.),
Computing with Parallel Architectures: T. Node, pp. 101{110, Kluwer Academic

Publishers, 1991

6. Garc��a, J.M., Duato, J.: Dynamic recon�guration of multicomputer networks: Lim-
itations and tradeo�s. in P. Milligan and A. Nunez (Eds.), Euromicro Workshop on

Parallel and Distributed Proces., IEEE Computer Society Press, pp. 317{323, 1993

7. Garc��a, J.M., S�anchez, J.L., Duato, J., Fern�andez, J.: Pepe: A trace-driven simulator

to evaluate recon�gurable multicomputer architectures. Technical Report DIS TR

4{95, University of Murcia, March, 1995

8. Golub, G.H., Van Loan, C.F.: Matrix computations, North Oxford Academic, 1983
9. S�anchez, J.L., Garc��a, J.M.: Estudio de la recon�guraci�on din�amica de la red. Eva-

luaci�on de nuevas propuestas para mejorar su e�ciencia. Technical Report DIS TR

13{94, University of Murcia, October, 1994


