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Abstract

Several techniques have been developed to increase the performance of parallel computers. Recon®gurable networks

can be used as an alternative to increase the performance. Network recon®guration can be carried out in di�erent ways.

Our research has focused on distributed memory systems with dynamic recon®guration of node location. Brie¯y, this

technique consists of positioning the processors in the network depending on the existing communication pattern

among them, to suit the requirements of each computation.

In this article, we present a dynamic recon®guration technique for wormhole networks. We have used both a

crossbar and a multistage interconnection network to implement a recon®gurable logical two-dimensional (2-D) torus

topology. The recon®guration mechanism is based on a distributed recon®guration algorithm. The algorithm is based

on a cost function that requires only local information. We discuss recon®guration features and adjust the di�erent

parameters of the recon®guration algorithm. We have also studied the deadlock problem in recon®gurable wormhole

networks, and give details of our solution. Finally, we have evaluated the performance of this technique under several

workloads. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In parallel machines, several computing nodes
work together in order to solve large application
problems. The nodes communicate data and co-
ordinate their e�orts by sending and receiving
messages through an interconnection network.

Consequently, the performance of such machines
critically depends on the performance of their in-
terconnection networks. As a result, it is important
to improve network performance.

During the last decade, many multicomputer
networks have used virtual cut-through or worm-
hole switching [10,12], which are techniques that
reduce message latency by pipelining transmission
through the channels along a message's route. In
wormhole networks, messages are split into ¯ow
control digits, or ¯its. Message blocking is a major
problem in wormhole networks. A blocking situ-
ation occurs when the header ¯it cannot ®nd a free
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channel in its way towards its destination. Con-
sequently, the remaining ¯its in the message are
blocked. Moreover, a message usually spans mul-
tiple channels in these networks. As a result, a
blockage on one channel can have an immediate
impact on the other channels. Tight coupling
among channels can lead to one long message
blocking the progress of many others. In worm-
hole networks, channel coupling e�ects lead to the
performance becoming very sensitive to blockage
problems. Clearly, the resulting congestion can
signi®cantly reduce network performance.

Several techniques have been proposed to re-
duce or avoid congestion, such as virtual channels,
adaptive routing, random routing, or message
combining. Other approaches are based on re-
con®gurable interconnection networks. These
networks have topologies that can be con®gured
during the execution of applications. The objective
is to adapt the network topology to the commu-
nication requirements of each application. In this
way, the cost of non-local communication is re-
duced. The recon®guration is carried out by pro-
viding an underlying switching layer that enables
the necessary changes to be made.

There are several approaches to perform net-
work recon®guration. For example, several re-
search groups proposed the use of additional
connections (which can be ®xed broadcast buses
[7,17,32]) among the di�erent nodes of the net-
work. Miller and other authors, extended this
concept by introducing meshes with recon®gurable
buses [14,28,29]. Ben-Asher [8] studied the com-
putational aspects of this kind of network using
several topological models.

Many of the latest studies on recon®gurable
systems are based on the use of ®eld programma-
ble gate arrays (FPGAs). FPGAs consist of a
matrix of ®ne grain computational elements, usu-
ally implemented using lookup tables, with a hi-
erarchy of programmable interconnections.
Although traditionally FPGAs have been used for
logical design and hardware emulation, their suit-
ability as computing engines for recon®gurable
architectures has also been explored [1,19]. Re-
search is also being carried out on the design of
coarser grain architectures that incorporate re-
con®gurable features [20,23,27].

Another method of performing recon®guration
consists of modifying the structure of the network
by altering the existing connections among the
nodes. This does not necessarily mean that the
topology is modi®ed. For instance, we can ex-
change the position of pairs of nodes in the net-
work. Our work addresses this issue and, as will be
indicated in the following sections, the recon®gu-
ration can be applied any time during the execu-
tion of any application.

Little work has been done on this approach, and
most of it has been developed at European uni-
versities. The main reason for this was the devel-
opment in the P1085 Esprit project [4] of
transputer-based multiprocessor boards using the
C104 switch, a link switching device with a struc-
ture that allows the recon®guration of the inter-
connection network. Di�erent proposals of
recon®gurable systems can be found [2,4,18]. In all
of these projects, recon®guration of the intercon-
nection network can be considered as quasi-dy-
namic because the changes are made at
predetermined points during program execution. In
other works [21,22], dynamic network recon®gu-
ration has been studied. These approaches consist
of the design and implementation of a recon®gu-
ration algorithm. Moreover, they include the
analysis of the conditions under which the algo-
rithm can be developed in order to drive the mod-
i®cation of the network structure in an arbitrary
way during the execution of a given application.

In this context, in our previous work we pro-
posed a recon®guration protocol [24,25,33], in-
cluding the algorithm that performs the
recon®guration process. This work was developed
in the context of multicomputers with store-and-
forward switching. In this article, we present the
foundations for dynamic recon®guration in
wormhole interconnection networks, and without
the transputer-based dependence. Recon®guration
is based on a recon®guration algorithm distributed
at each node. The algorithm decides when and
how the recon®guration will take place. It also
evaluates the communication contention and de-
cides when the recon®guration is more convenient.
This algorithm is based on a cost function and
requires only local information. Besides, we show
the performance bene®ts of using dynamic net-
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work recon®guration by means of several simula-
tions.

The rest of this article is organized as follows: In
Section 2, we introduce recon®gurable wormhole
networks and present the algorithm and protocol
for dynamic recon®guration on these networks. In
Section 3, we study the deadlock problem in re-
con®gurable wormhole networks, and in Section 4,
we evaluate the performance bene®ts of using
dynamic network recon®guration. Finally, in
Section 5, some conclusions are given.

2. Recon®gurable wormhole networks

Most message-passing systems are based on a
®xed interconnection topology. In specialized ar-
chitectures, the interconnection topology is se-
lected so that it matches the communication
requirements of a speci®c application. For more
general purpose architectures, routing mechanisms
must be implemented to allow a processor to
communicate with non-neighbouring processors.

A recon®gurable network can be adopted in
order to reduce the communication cost. Basically,
the recon®guration process consists of placing the
di�erent processors in those positions in the net-
work that are better suited for the requirements of
the computation. The positions depend on the
existing communication pattern among the pro-
cessors at each computational step.

A recon®gurable network has the following
important advantages [2]:

· Programming a parallel application becomes
less dependent on the target architecture as the
architecture adapts to the application.

· It is easy to exploit the locality in communica-
tions.

· In wormhole networks, recon®gurable architec-
tures alleviate the congestion due to the block-
ing problem. This problem is more important
in networks with deterministic routing.

· Finally, there are applications in which the com-
munication pattern varies over time. Recon®gu-
rable architectures are very well suited for these
applications.
There are two types of recon®guration: static

and dynamic. In this article, we focus on dynamic
recon®guration, that is, the topology can change
almost arbitrarily at run-time. Fig. 1 shows the
e�ects of this technique for a very elementary sit-
uation. In Fig. 1(a) and (b), messages sent by
processors go through the same channels until they
reach their destination, thus producing delays in
communication due to channel contention. This
problem disappears once the situation in Fig. 1(c)
is reached. As a result, network performance is
improved.

Recon®guration works as follows: the processor
that receives the messages manages to place itself
in the best position in the network at every mo-
ment. This is achieved by changing the location of
this processor in the network, and is carried out by
exchanging its position with a neighbouring pro-
cessor. Exchanging processor positions requires
an underlying switching layer that will be studied
later.

Fig. 1. An example of the e�ects of the recon®guration algorithm.
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2.1. The adopted recon®guration technique

There are several ways of recon®guring an in-
terconnection network. For example, the recon-
®guration process can a�ect either the whole or
part of the network. It does not necessarily alter
the topology of the network, and can be controlled
in a centralized or distributed way. Although re-
con®guration techniques can be very di�erent, we
think that all of them should consider a series of
aspects intrinsic to any recon®guration process.
The decision about each of the properties that
characterize the recon®guration technique will give
rise to di�erent forms of applying it. We now in-
dicate the recon®guration technique we have
adopted, justifying the election for each one of the
aspects that characterizes it.

Recon®guration scope: Our design of the re-
con®gurable network allows both local and global
recon®gurations. Local recon®guration a�ects on-
ly the nodes that participate in a change, and
possibly the nodes directly connected to them.
Global recon®guration can simultaneously modify
the connections in multiple nodes located at dif-
ferent points in the network. As global recon®g-
uration a�ects a larger area of the network, it may
be thought that it involves a higher cost. How-
ever, the ®nal result of applying global recon®g-
uration depends on other factors, for example, the
possible bene®ts of performing several changes
simultaneously. Diverse tests have been carried
out for determining the more appropriate option.
The results will be presented in Section 4.5. Out of
these results it can be seen that a better perfor-
mance is obtained when local recon®guration is
adopted.

Alteration of the topology: We have maintained
the topology at every moment, independently of
the characteristics of the changes carried out. The
main reason for this is to be able to use the same
routing algorithm, besides obtaining a much sim-
pler recon®guration algorithm.

Recon®guration triggering: A cost function is
used to determine when the recon®guration pro-
cess is activated. A node determines whether it is
convenient to exchange its position by taking into
account the information that it receives about
contention in the network. This information is

obtained from the messages arriving at it. Each
node records the time a message has been blocked
in the network, and the number of channels that it
has occupied. Both of these factors can be used to
estimate the loss of network bandwidth due to
congestion.

For a given node D and a given channel j, the
cost function takes the following expression:

CFj �
X

messages

XD

b�S

tb � cb

 !
;

where tb is the time that a message arriving at node
D has been blocked at each node in its path
(S; . . . ;D), and cb is the number of channels oc-
cupied during tb.

Recon®guration distance: Basically, there are
two strategies for carrying out the possible
changes: short distance and large distance ex-
changes. In a short distance strategy, a node can
only exchange its position with one of its neigh-
bouring nodes. In the second case, a node can
exchange its position with any other node in the
network. As a result, fewer exchanges are needed
to place a node at its optimal position, but it can
produce abrupt and less uniform changes than
those obtained from the short distance strategy.

In our case, the cost function provides infor-
mation about the contention experienced by in-
coming messages, that is, about the direction in
which the change must take place. As a result, the
changes will take place among nodes that occupy
neighbouring positions in the network, and
therefore the short distance strategy will be
used.

Recon®guration start: Recon®guration is started
by some of the nodes in the network when the re-
quired conditions have been met. The conditions
can be evaluated at ®xed or variable time intervals.
In the ®rst case, the testing process takes place at
regular intervals during the execution of the ap-
plication. In the second case, the process is auto-
matically activated at a node when a ®xed number
of messages arrives or leaves. We have selected the
second option: a node begins the recon®guration
process after receiving a given number of messages.

Thresholds in the recon®guration: A high num-
ber of recon®gurations can reduce system perfor-
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mance due to the recon®guration overhead. In
contrast, a small number of recon®gurations leads
to slow systems, where the bene®t obtained with
the recon®guration of the network will be dimin-
ished. With an adequate number of thresholds, the
algorithm, and consequently the recon®guration,
will exhibit a better behaviour.

Our algorithm uses two thresholds: The ®rst
one indicates the conditions that must be satis®ed
so that the recon®guration begins at a given node.
The other one represents the minimum conditions
to be met so that the processed information can be
considered.

Recon®guration control: There are two methods
for controlling the dynamic recon®guration of the
network: centralized control (a particular node ±
system controller ± is responsible for recon®guring
the network) or distributed control (each node
controls its own recon®guration). As a conse-
quence of the system architecture (Section 2.4), the
recon®guration control is centralized.

2.2. The recon®guration algorithm

The recon®guration process is split into two
phases: the study of the state of the network and
the preparation±execution of the changes in the
connections. To observe the state of the network, a
set of actions in each of the nodes of the system is
periodically executed. This is the recon®guration
algorithm. The second phase represents the recon-
®guration protocol, and consists of the communi-
cation maintained by the nodes that are a�ected by
the changes, and the actions that ®nally produce
those changes.

In the description of the algorithm, we distin-
guish the part of it that is executed at each node in
the system, and the part that is executed at the
controller of the system. The ®rst part consists of a
group of actions that will be executed at every
node, with the objective of analysing its particular
state, and consequently, determine whether a
change should be performed. The second part is
executed by the node that acts as controller of the
system. Each node considers only local informa-
tion.

The recon®guration algorithm for each node is
as follows:

record information(message);
message counter++;
if (checkpoint(message counter,threshold1));
{

continue � process information(thresh-
old2);
if (continue)

{
node change � select( );
change � check change(no-

de change);
if (change) recon®g-

ure(node,node change);
}

}
where
threshold1 indicates the number of messages
that must be received at a node for initiating
the recon®guration process,
checkpoint establishes the starting points of the
recon®guration process study,
threshold2 represents the contention level that
triggers the recon®guration process,
process_information evaluates the information
recorded in the node in order to determine
whether it is convenient to exchange its position
in the network,
select determines a more appropriate position
for its new location,
check_change examines the suitability of the
change. It takes into account the node_change
situation, and
recon®gure starts the recon®guration protocol,
which will exchange the positions of the a�ected
nodes.
The following actions will be executed in the

system controller:
receive(change_data);
change_connections;
broadcast(new_con®guration);

where
change_data indicates the nodes that want to ex-
change their positions,
change_connections establishes the new connec-
tions in the network in agreement with the data
for the requested change, and
new_con®guration indicates the new node loca-
tions in the network.
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The basic idea is the following: when messages
arriving through a given channel at their destina-
tion nodes are signi®cantly delayed, the recon®g-
uration process will try to move the destination
node close to the site that is producing the delays,
by exchanging its position with a neighbour closer
to the congested zone. The algorithm works in the
following way:
1. Each time a message arrives at its destination

node, information about contention found
along its path is recorded. It must be taken into
account that there is a threshold for the conten-
tion value (threshold2). This threshold prevents
one message, which may have experienced a
very large contention, from starting the recon-
®guration process.

2. The algorithm checks the state of the node each
time the number of messages arriving at the
node is a multiple of threshold1 value.

3. If the contention in one channel is greater than
the sum of the rest of the channels, the node
sends a message to its neighbouring node
through that congested channel to indicate the
convenience of exchanging their positions.

4. If the change is bene®cial, the network carries
out the recon®guration protocol.
The changes are not carried out in all the cases

in which a recon®guration process begins. When
this occurs, the controller actions will consist of
miscarrying the process and of communicating it
to the a�ected nodes.

2.3. The recon®guration protocol

The recon®guration protocol describes the
messages necessary to complete each recon®gura-
tion process, and the required actions to produce
the physical changes in the structure of the net-
work. We have de®ned a recon®guration protocol
that adds a small amount of message tra�c to the
network. The main steps in this protocol are the
following:
1. When a pair of nodes decide that it is necessary

to recon®gure the network, both nodes inform
all their neighbours that they are going to ex-
change their positions, and therefore, those
nodes should stop sending messages to them.

2. The nodes that want to exchange their positions
(one of them) send the recon®guration data to
the control node in order to carry out the re-
con®guration.

3. When the a�ected area has reduced its activity
until no messages circulate through it, the con-
trol node establishes the new connections in the
network, adapting it to the tra�c distribution.

4. Once the new con®guration has been estab-
lished, the control node sends information
about the new node locations to the other
nodes. Then, the pair of nodes that have ex-
changed their positions permit their neighbour-
ing nodes to communicate with them again.
The changes may not to be carried out in all the

cases in which a recon®guration process begins.
Some circumstances can arise forcing this process
to be aborted, e.g., when excessive time is spent in
the recon®guration protocol. In this case, the re-
con®guration protocol will communicate this fact.

In order to free the area of the network a�ected
by a change from messages, two techniques can be
adopted: storing the messages in the intermediate
nodes, or allowing these messages to continue
along their path until they abandon the changing
area. As we are considering pipelined networks
with small input and output bu�ers, the ®rst op-
tion would consist of storing the message in the
local memory of the nodes, signi®cantly increasing
message latency. The option of allowing the mes-
sages to continue towards their respective desti-
nations can lead to di�culties if there is a lot of
congestion in the network. These messages may
take a lot of time to leave the area a�ected by the
change. The situation may become even more
complicated if for any reason the messages are
wrapped in a deadlock. In this case, some strategy
to avoid such situations should be used.

We have allowed the messages crossing the
changing area to continue their path until they
abandon it. This decision is based on the simula-
tion results. These results will be presented in
Section 4.5.

2.4. Implementation details

In our model, a dynamically recon®gurable
system consists of several nodes, a link switch that
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allows communication among nodes, a system
controller that supervises the switch con®guration,
and a bus used for recon®guration control (Fig. 2).

The implementation of our recon®gurable ar-
chitecture model must take into account several
important details. In order to establish a connec-
tion in the switch, a con®guration request message
is sent by a node through the control bus to the
switch controller. When possible, the required link
connection is established in the switch. Then, ac-
cording to the recon®guration protocol described
in the previous section, nodes requesting the con-
nection change are acknowledged by appropriate
messages.

We have studied two kinds of switches: a
crossbar and an Omega multistage network [13].
The former is suitable for very small systems, up to
64 nodes. The latter is suitable for larger system
sizes, but the recon®guration capacity is much
smaller than in the case above. The characteristics
of these networks are such that the transmission
time from an input port to an output port is sig-
ni®cant. This does not enable, for example, a
performance similar to the one obtained with di-
rect networks. In order to improve the perfor-
mance of the recon®gurable system, we have used
channel pipelining [16]. In this way, the negative
e�ect of the transmission time across the switch
has been reduced [31].

In a pipelined channel network, data are
clocked onto the wires at a rate determined solely
by the switching speed [16], allowing multiple ¯its

to be simultaneously in ¯ight on a single wire. In a
multistage network, for example, several ¯its may
be in ¯ight simultaneously from an input port to
an output port, along the path established through
the di�erent stages in the network.

Pipelined channels are very common in wide
area networks and local area networks [5]. In this
work, we have used a ¯ow control protocol based
on control ¯its. In particular, we have used the
Stop and Go protocol, very much like in Myrinet
networks [6]. The bu�er size has been accurately
calculated in order to avoid the loss of ¯its or the
appearance of bubbles in the message pipeline.

3. Deadlocks in recon®gurable wormhole networks

Deadlocks can occur in many di�erent situa-
tions. A deadlock occurs as a result of cyclic waits
for resources by two or more messages. A cyclic
wait can occur when a message is allowed to hold
the resources allocated to it while waiting for other
resources to become available. In store-and-for-
ward and virtual cut-through networks, the re-
sources are bu�ers. In wormhole networks, the
resources are channels [10,11].

Deadlocks can also appear in recon®gurable
wormhole networks, as shown in Fig. 3. In this
example, we assume a deterministic routing strat-
egy in which channels are allocated to messages in
increasing order. The topology is k-ary n-cube. We
used the following scenario: four messages (M1,
M2, M3, and M4) and their destinations (D1, D2,
D3, and D4), respectively.

When the four messages move towards their
destinations, two of these destinations (D1 and D3)
change their positions in the network. When the
header ¯its o� messages M1 and M3 arrive at
nodes S2 and S4, respectively; they must change
their normal trajectory to reach the new positions
of their destinations. Finally, the situation as
shown in Fig. 3(b) is reached. In this ®gure, it can
be seen how each message holds a bu�er while
requesting the bu�er held by another message.

It can be seen that a deadlock occurs when
some messages are routed in such a way that the
strategy used for channel allocation (that is, in-
creasing dimension order) cannot be satis®ed. This

Fig. 2. General system structure for dynamic link connection

recon®guration.
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situation occurs as a consequence of the changes of
node location in the network. Therefore, we can-
not guarantee the absence of these situations even
if a deadlock-free routing algorithm is being used.

In order to recover from deadlock, a simple
solution has been adopted. It consists of storing
whole messages involved in a potential deadlock in
the local memory of the node where their header
¯its are blocked. This frees the channels that those
messages were using, so that other messages can
advance. The messages that have been stored in
the local memory will be re-injected when the
channels they need become free. This solution in-
troduces an important increment in latency.
However, we have chosen this strategy, as our
recon®guration algorithm produces a small num-
ber of changes in the network, and all the changes
do not necessarily produce deadlock. Through

simulation, we have found that potential dead-
locks occur in approximately 40% of the changes.
As the number changes is small, the increment in
latency is not signi®cant.

4. Performance evaluation

In this section, we evaluate our network re-
con®guration strategy. We study the behaviour of
the recon®gurable network in two di�erent situa-
tions. In the ®rst, network tra�c is produced by
the simulated execution of a parallel algorithm.
We have chosen a numerical algorithm. In the
second, a non-uniform tra�c model has been used.
We analyse the e�ect of our recon®guration
strategy on the performance of the network with
one or several hot-spots. The evaluation method-

Fig. 3. An example of channel deadlock involving four messages.
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ology we have used is based on the one proposed in
[11] and it is summarized in the following sections.

4.1. Programming and simulation environment

The results have been obtained with the PEPE
environment [26], a programming and evaluating
tool for multicomputers. The key features of this
environment are simplicity and completeness. Our
main goal has been to obtain a ¯exible system that
enables an easy and e�cient way to evaluate the
multicomputer recon®gurable architecture.

This environment has been developed on a
workstation using CC language. PEPE provides a
user-friendly visual interface for all the phases of
parallel program development and tuning. This
graphical interface (Fig. 4) has been designed with
the aim of making it comfortable for the user,
following the styles currently adopted by most
human-oriented interfaces. In our environment,
the user gets tools for easy experimentation with
both di�erent parallelization possibilities and dif-
ferent network parameters. With this methodolo-

gy, the programmer can analyse very quickly
several parallelization strategies and evaluate these
strategies with tools for performance analysis.

PEPE simulates the execution of a parallel al-
gorithm at two levels: At the ®rst level, the be-
haviour of the parallel algorithm can be studied.
To observe this behaviour, its execution is simu-
lated over a virtual architecture. At the second
level, the behaviour of the recon®gurable network
can be studied. To do this, we start with the
communication pattern produced by the parallel
algorithm and the performance of the network for
this communication pattern is simulated. At this
level, PEPE allows us to use di�erent parameters
for the recon®gurable network. These levels con-
form to the two phases of the simulator.

PEPE has two main phases and several modules
within it: The ®rst phase is more language-orient-
ed, and allows us to code, simulate, and optimize a
parallel program. In this phase, interactive tools
for speci®cation, coding, compiling, debugging,
and testing have been developed. This phase is
independent of the architecture. The second phase

Fig. 4. PEPE's graphical interface.
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has several tools for mapping and evaluating the
recon®gurable architecture. We could vary sev-
eral network parameters, such as interconnection
topology and routing algorithm. In Fig. 5, we
show the modules of PEPE. The link between the
phases is an intermediate code that is generated
as an optional result of the ®rst phase. This in-
termediate code is a trace of the communication
pattern for the source program. This allows the
user to manage the environment as a whole or
each individual phase. For example, we could
only execute the ®rst phase for testing the parallel
behaviour of an algorithm on an ideal multi-
computer. We could also obtain an intermediate
code from a key parallel algorithm. The second
phase could then be executed several times
from this trace with di�erent network parameters
to evaluate and tune the network for this key
algorithm.

4.2. Message generation

We have considered two di�erent tra�c models:
communication pattern produced by the simulated
execution of a parallel numerical algorithm and
hot-spots [15] workload. Both of them are de-
scribed below.

4.2.1. Triangularization of a sparse matrix
We have used a parallel application such as the

triangularization of a sparse matrix using Fast

Givens [3] rotations. The Fast Givens rotations
algorithm produces communication among the
di�erent nodes of the multicomputer, which is
mainly due to the movement of rows in the matrix
from one process to another. It is therefore nec-
essary to reduce the negative e�ect, due to this
communication, on the total execution time of the
algorithm.

This algorithm has been chosen because we
cannot know a priori the communication pattern
among nodes as it depends on the structure of the
sparse matrix. Consequently, a suitable topology
cannot be selected [30]. Moreover, the communi-
cation pattern will vary over time.

4.2.2. Hot-spots
The situation that has been simulated is the

following: let us consider a multicomputer with a
uniform distribution of message destinations. At a
given moment, and with the network in a steady
state, the communication pattern changes and a
small number of hot-spots appear in the network.
This situation is repeated with variable frequency
and the hot-spots are di�erent every time.

Hot-spots produce congestion in the network,
due to the great number of messages destined
for the hot-spot nodes. This increases delays,
thereby degrading the performance of the net-
work. Our objective is to verify the behaviour
of a recon®gurable network under this workload
model.

Fig. 5. Modules of PEPE.
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4.3. Performance measures

The most important performance measures are
delay and throughput. Delay is the additional la-
tency required to transfer a message with respect
to an idle network. It is measured in clock cycles.
The message latency lasts from the moment the
message is introduced in the network until the last
¯it is received at the destination node. An idle
network means a network without message tra�c.
Throughput is usually de®ned as the maximum
amount of information delivered per unit of time.
It is measured in ¯its per clock cycle.

4.4. Simulation parameters

We have evaluated the performance of the
recon®guration algorithm on 8-ary 2-cube and
16-ary 2-cube networks. The deterministic algo-
rithm proposed in [10] for the k-ary n-cube has
been used. It has been modi®ed so that it uses bi-
directional channels with two virtual channels
per physical channel. To compute the clock fre-
quency for each node, we have used the delay
model proposed in [9]. The router takes 4.7 ns to
compute the output channel. The switch takes
4.8 ns to transfer a ¯it through the crossbar, and
the time required to transfer a ¯it across a
physical channel is 6.8 ns. We have also consid-
ered that the useful throughput of the bus is
1 MB ps, and that the token, moves quickly
(50 ns per node). Finally, each switch recon®g-
uration takes 2 ls.

The proportion of messages at the hot-spot has
been varied between 5% and 20%. For each sim-
ulation run, we have considered that the message
generation rate is constant and the same for all the
nodes. Each simulation was run until the network
reached a steady state, that is, until a further in-
crease in simulated network cycles did not change
the measured results appreciably. Once the net-
work has reached a steady state, the ¯it generation
rate is equal to the ¯it reception rate (tra�c). The
number of hot-spots has been 1 and 2, chosen
randomly. Finally, 16-¯it and 128-¯it messages
have been considered.

We have considered a crossbar switch to con-
nect the nodes in the system and, therefore, the

time required to transfer a ¯it from an input port
to an output port has been 13.2 ns. This time has
been 17.3 ns when Omega multistage network has
been considered. Input bu�er size has been 21 ¯its.
We have considered four ¯its as the output bu�er
size. For other values, di�erent from the above
parameters, the result tendency is maintained.

4.5. Simulations results

In this section, we present the main results ob-
tained from the evaluation of the recon®gurable
network. These results are presented in two sepa-
rated groups. Firstly, we have included those re-
sults which allowed us to completely tune the
proposed recon®gurable network. The second
group of plots shows the performance evaluation
results.

4.5.1. Recon®guration tuning
As indicated in a previous section, our design of

the recon®gurable network allows both local and
global recon®guration. We have performed several
tests to check how our system works in each case.
In Figs. 6 and 7, we can see the results obtained in
both cases. It may be thought that performing
several recon®guration processes at the same time
could lead to better behaviour, as the nodes would
move faster to the most appropriate locations.
However, note that for a recon®guration process
to conclude successfully, the area a�ected by the
change should be completely inactive. Therefore,
no message should cross this zone. This causes
signi®cant congestion in the network for a given
interval of time. Congestion will increase consid-
erably when several areas, corresponding to sev-
eral changes, are inactive. Therefore, local
recon®guration is preferable.

On the contrary, in order to free the area of the
network a�ected by a change from messages, we
have considered two alternatives, as mentioned in
Section 2.3. In the ®rst one, we have removed all
the messages from the channels belonging to the
a�ected area, storing them in the intermediate
nodes where their header ¯its are. Once the change
has ®nished, the messages will again be injected
into the network and sent towards their destina-
tions. This injection will have priority over the
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transmission of new messages. Another option
consists of allowing the messages crossing the
changing area to continue until they abandon it. In
both cases, other messages will be prevented from
entering the a�ected area, and will not be assigned
the channels that they request.

Using the ®rst option will enable the a�ected
channels to be removed faster than by using the
second option. However, the latency of the stored
messages will increase. The result of applying both
techniques on a recon®gurable system is shown in
Fig. 8. From this ®gure, it can be seen that the
second option o�ers better results. The drawback
of the storage technique is the increase of the la-
tency due to the temporary storage of messages in
intermediate nodes.

4.5.2. Performance results
Once the recon®guration technique has been

tuned, we show the performance evaluation re-

sults. To obtain the plots shown below, several
parameters were varied. In the case of trace
workload, the parameters were load size (Figs. 9(a)
and (b)) and the way of distributing processes
among processors (Fig. 10(a)). For synthetic tra�c
load, the number of hot-spots and the tra�c
(Fig. 10(b)) were varied.

As mentioned earlier, we have used an indirect
network to design the recon®gurable system ar-
chitecture. In Fig. 9(a), the recon®guration e�ect
on the proposed system is shown (non-pipelined
channel network with recon®guration, (NPWR),
versus non-pipelined channel network non-recon-
®guration, (NPNR)). Note that the simulation
time is reduced for all the load sizes. This reduc-
tion has reached a value of 15% in some cases. The
changes in the network made it possible to locate
the nodes of the system in more appropriate lo-
cations compared to their previous locations.
Consequently, message delay is reduced. We

Fig. 7. Average message latency vs. tra�c for 16� 16 torus and Omega switch (a) One hot-spot, (b) Two hot-spots.

Fig. 6. Average message latency vs. tra�c for 8� 8 torus and Omega switch (a) One hot-spot, (b) Two hot-spots.
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would like to emphasize that this improvement is
produced with a small number of changes in the
network (approximately 30 changes).

Even though these results are signi®cant, it is
important to compare the behaviour of the system
with a direct non-recon®gurable network (DN).

The rest of the ®gures show some of these results in
addition to those obtained by applying a channel
pipelining technique with recon®guration (CPWR)
on the proposed system.

Two observations can be made from all the
plots. First, an indirect recon®gurable network

Fig. 9. (a) Recon®guration and (b) Channel pipelining e�ects vs. load size for 2-D torus with 64 nodes.

Fig. 8. Average message latency for 2-D torus, one hot-spot and crossbar switch (a) 16 nodes, (b) 64 nodes.

Fig. 10. Channel pipelining e�ects vs. mapping and tra�c (a) 8� 8 2D torus and trace D3 (b) 2D torus with 64 nodes, one hot-spot

and 20% non-uniform component.
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does not achieve the performance o�ered by a di-
rect one. The reason is the overhead produced by
the switching layer in order to allow recon®gura-
tion. Second, the application of the channel pipe-
lining technique to the proposed system
signi®cantly improves performance over direct
networks. These improvements are maintained
even when using di�erent distributions of pro-
cesses among processors, as can be seen in
Fig. 10(a).

5. Conclusions

In this article, we have presented a dynamic
recon®guration technique for wormhole networks,
and have proposed a general recon®guration al-
gorithm that decides when and how the recon®g-
uration takes place. We have presented a
recon®gurable network model, and featured the
recon®guration technique supported by it. We
have analysed the capabilities of several types of
con®gurations, using a unique crossbar or by
means of a multistage network. The performance
of these models has been analysed by simulation.

As can be observed in the presented ®gures, the
e�ect of the recon®guration is positive and, for a
trace workload, it is possible to reduce the simu-
lation time to 15% in some cases, without needing
a large number of changes. Moreover, it is an
important fact that this reduction is independent
of the way in which the processes are distributed
among the processors.

We have compared these results with those
obtained by considering a system with a direct
interconnection network. In this sense, we have
checked that the improvements pointed out pre-
viously are not enough to recommend the use of
our approach initially. The characteristics of the
crossbar or Omega multistage, that should estab-
lish the connections among the nodes in the sys-
tem impose strong restrictions, re¯ected in high
transmission times, superior to those that o�er
point to point connections. This is the main reason
that prevents the proposed system from reaching
levels of similar or superior performance to those
that o�er classic multicomputers based direct
networks.

However, the characteristics of this kind of
system enables the technique of channel pipelining
to be applied. The results obtained are much better
when this technique is applied. This technique
enables to reach, using indirect networks, a
throughput closer to direct networks. If these
networks could be recon®gurated, the results in
some situations could be improved.

Although the recon®guration capacity of the
Omega multistage is much smaller than the
crossbar, the behaviour of the system is similar in
both cases when the channel pipelining technique
is applied. The necessity to use an Omega net-
work as the interconnection device for systems of
larger size does not produce excessive reduction
of the level of bene®ts in comparison with the
crossbar.
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