
A New Approach to Provide Real-Time Services
on High-Speed Local Area Networks

J. Fernández, J. M. Garcı́a
Dpto. Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia
30071 Murcia (Spain)�

peinador, jmgarcia � @ditec.um.es

J. Duato
Dpto. Informática de Sistemas y Computadores

Universidad Politécnica de Valencia
46071 Valencia (Spain)

jduato@gap.upv.es

Abstract

In the past few years, networks of workstations (NOWs)
and clusters, based on high-speed local area networks
(LANs), have emerged as a serious alternative to super-
computers and high-performance servers. Meanwhile, ap-
plications demanding real-time network services have also
suffered a substantial growth. In order to use NOWs for dis-
tributed real-time processing, a topology change and fault-
tolerant mechanism that guarantees the maximum latency
or the minimum bandwidth in the worst case must be pro-
vided. Up to now, the backup channel protocol (BCP),
based on real-time channels, provides fault-tolerant real-
time services. But in this approach, fault tolerance is lim-
ited by the alternative paths provided by the routing func-
tion to establish the backup channels and topology change
tolerance is not supported. On the other hand, dynamic re-
configuration updates the routing tables without stopping
user traffic when a topology change or fault occurs. How-
ever, dynamic reconfiguration by itself does not provide nei-
ther quality of service nor real-time services, but it provides
support for an additional mechanism designed to meet real-
time requirements.

In this paper, we propose a new hardware-supported
protocol to provide topology change and fault-tolerant
real-time services on NOWs. The novelty of our proposal
primarily relies on the ability to assimilate hot topology
changes and faults while still providing real-time services
through backup channels and dynamic reconfiguration. Our
protocol increases fault tolerance beyond the level provided
by the backup channel protocol so that fault tolerance is
only limited by topology connectivity. Furthermore, to our
knowledge, our protocol is the only mechanism which is
able to assimilate hot updates without stopping neither real-
time traffic nor normal network operation.

1. Introduction

The growing interest on network of workstations
(NOWs) and cluster computing has been fuelled in part
by the availability of powerful microprocessors and high-
speed local area networks (LANs) as off-the-shelf com-
modity components. NOWs and clusters, based on high-
speed LANs, constitute a serious alternative to supercom-
puters or MPPs (Massive Parallel Processors) and are the
most cost-effective platform for high-performance servers.
Meanwhile, applications demanding real-time network ser-
vices, such as process control or factory automation, have
also suffered a substantial growth. As a result, there is a
lot of interest in using NOWs and clusters as platforms for
distributed real-time applications. Distributed real-time ap-
plications impose strict conditions on traffic, with limita-
tions on maximum message latency, maximum message de-
lay variation and message loss rate parameters. Addition-
ally, topology change and fault tolerance must be provided
to ensure real-time services even in the worst case.

Current high-speed LAN designs [2, 5] are focused on
achieving the minimum average latency and the maximum
average throughput. Therefore, in order to use these high-
speed LANs for hard real-time applications, a topology
change and fault-tolerant mechanism that guarantees the
maximum latency or the minimum bandwidth in the worst
case must be provided. Moreover, high-speed LANs could
also be used for other non real-time applications with less
strict time constraints. Thus, network bandwidth must be
shared among real-time traffic as well as best-effort one.

The concept of real-time channel [8] is one of the most
well-known solutions to the problem of meeting message
delivery deadlines in real-time systems. However, while
this approach is suitable to provide hard real-time guaran-
tees, it is not able to achieve neither topology change nor
fault tolerance. The backup channel protocol (BCP), de-
veloped by Shin et al. [6], based on real-time channels,

performs recovery from faults by means of additional re-
sources (backup channels). Nevertheless, in case of topol-
ogy changes, which are the most frequent cases in current
NOWs, this scheme is not able to manage this new situation
efficiently.

On the other hand, dynamic reconfiguration, recently
proposed by Duato et al. [1, 3], updates the routing tables
without stopping user traffic. Note that dynamic reconfig-
uration by itself does not provide neither quality of service
nor real-time services, but it provides support for an addi-
tional mechanism designed to meet real-time requirements.

Therefore, our proposal is based on the combination of
dynamic reconfiguration with the backup channel proto-
col. The main objective of our proposal is to develop a
new hardware-supported protocol to provide topology
change and fault-tolerant real-time services on NOWs.
This mechanism is being developed for NOWs with irreg-
ular topology which are the most cost-effective and scal-
able alternative to supercomputers. In this environment,
topology changes are more likely due to switches/hosts be-
ing turned on/off, link remapping, hot expansion, hot re-
placement, etc. The novelty of our proposal primarily
relies on the ability to assimilate hot topology changes
and faults while still providing real-time services through
backup channels and dynamic reconfiguration.

The rest of this paper is organized as follows. Next
section presents our approach. In Section 3, the modified
switch architecture providing support for our scheme is pre-
sented. A qualitative analysis is performed in Section 4.
Section 5 describes related work. Finally, we present our
concluding remarks and feasible ways of future work.

2. Our protocol

In order to support real-time communications, we set
up a primary channel and a single secondary one for each
real-time channel (the terms secondary channel and backup
channel are used interchangeably). When either a fault or a
hot topology change breaks down a primary channel, real-
time messages are redirected through its secondary chan-
nel and the dynamic reconfiguration algorithm, described in
[1, 3], is triggered. The procedure to be followed for inter-
rupted secondary channels is the same apart from real-time
traffic is unaffected.

After reconfiguration, a new secondary channel is allo-
cated for each affected real-time channel because either the
old secondary channel has become the new primary channel
or the old secondary channel was broken down. The recon-
figuration process updates routing tables in such a way that
secondary channels could be re-established for the affected
real-time channels as long as the network topology still pro-
vides an alternative physical path. This strategy provides
more cost-effective fault tolerance than previously proposed

strategies. Besides, the dynamic reconfiguration algorithm
will not affect the deadline of real-time messages flowing
through real-time channels by allowing message traffic dur-
ing reconfiguration.

Figures 1, 2 and 3 show real-time channel establishment
for a source host, a destination host and an intermediate
switch respectively. State diagrams are used in order to
completely specify the behavior of the protocol. State di-
agrams for hosts correspond to single real-time channels.
State diagram for switches corresponds to a single primary
or secondary channel. The notation conventions for state
diagrams are the following: bold font is used for sent mes-
sages and actions, normal font is used for received messages
and italic font is used for satisfied conditions.

2.1. Real-time channel establishment

A real-time channel is a unidirectional connection be-
tween a pair of hosts H � and H � . A real-time channel
consists of a primary channel and a secondary one. Each
of them is a set

�
H � , H � , B, D, T � where B is the re-

quired bandwidth, D is the maximum admissible latency
or deadline for real-time messages, and T is the type of
channel, that is, primary or secondary. Real-time messages
flow through the primary channel from H � to H � . In the
meantime, the secondary channel remains idle and does not
consume link bandwidth but just a virtual channel in each
switch along its path from H � to H � . When the primary
channel fails, the secondary channel becomes the new pri-
mary channel and real-time messages are redirected through
it. Enough resources are assigned to each channel to meet
its bandwidth and deadline requirements before real-time
messages are transmitted. In order to maximize fault toler-
ance, the primary channel and the secondary channel should
not share physical resources, that is, disjoint physical paths
are essential.

Before transmitting real-time messages, H � must re-
serve the necessary resources for both the primary and
the secondary channel. A best-effort message, called
RTC REQUEST, is sent from H � to H � to set up the pri-
mary channel. In each switch, the availability of resources
must be checked by means of an admission control strat-
egy. For each possible output port provided by the rout-
ing function for a RTC REQUEST message, the admission
control strategy determines the availability of a free virtual
channel and enough bandwidth (B) to set up the channel.
Output ports without enough resources are no longer con-
sidered. The selection of an output port, among all ports
with available resources, involves a partial decision about
the channel path. This decision must choose an appropriate
port in order to solve the disjoint path selection problem
for primary and secondary channels (we will deal with this
problem later).

If there are enough resources and an appropriate out-
put port can be found, resources are allocated, channel is
added to the channel table (see Table 1), and the request
is forwarded to the next switch. If not, a best-effort mes-
sage, called RTC RESPONSE(False), is returned to H � fol-
lowing a different path from that of RTC REQUEST. The
corresponding RTC MSG(Release)* will be ignored by the
switch in the initial state.

Both reserved virtual channel and bandwidth are regis-
tered by means of especial registers located in the switch
output ports as shown in Figure 4. Channel table content
is shown in Table 1. Global channel identifier consists
of CHANNEL, HSSOURCE, TYPE and ATTEMPT. AT-
TEMPT allows to distinguish among different attempts for
the same real-time channel.

When a RTC REQUEST message arrives at H � , the pri-
mary channel is accepted if and only if channel length is
not too long to prevent real-time messages from meeting
their deadlines. MaxLength is the maximum admissible
channel length in order to real-time messages meet their
deadlines. Then, H � sends a best-effort message, called
RTC RESPONSE(True), back to H � .

If H � receives a RTC RESPONSE(False) message, re-
sources are released by means of a RTC MSG(Release)
message and RTC REPORT(*) messages received for that
attempt are ignored.

If channel timeout expires, resources are released by
means of a RTC MSG(Release) and RTC RESPONSE(*)
or RTC REPORT(*) messages received for that at-
tempt are ignored. Channel timeout allows H � to re-
lease resources when neither RTC RESPONSE(True) nor
RTC RESPONSE(False) messages are received. After a
few cycles, H � will try to establish the primary channel
again until a maximum number of attempts is reached.
MaxAttempts is the maximum number of attempts to estab-
lish a primary or a secondary channel.

If H � receives a RTC RESPONSE(True) message, the
secondary channel will be established likewise the primary
one. Once both the primary and the secondary channel have
been successfully established, the real-time channel estab-
lishment process has finished. Otherwise, resources for
both the primary and the secondary channel are released,
and the real-time channel is rejected. Note that several
channels could be concurrently established.

As mentioned earlier, an essential condition to guaran-
tee our protocol behaves correctly is the use of disjoint
physical paths for the primary and the secondary channel.
Next, we are going to describe the selection of channel
routes to satisfy that constraint. As the primary and the
secondary channels should not share physical resources,
the routing for RTC REQUEST messages should be flexi-
ble enough to provide disjoint physical paths among source
and destination hosts. To ensure their paths do not share

neither switches nor links1, besides checking the availabil-
ity of resources, the control admission strategy looks up
the channel identifier2, included in the RTC REQUEST
message, in the channel table. If an entry is found, a
RTC RESPONSE(False) message is sent back to H � (see
Figure 3), and H � will try to establish the channel again
after a few cycles. If not, some criterion must be applied
to select an output port. In order to deal with this prob-
lem, a different selection function from that of best-effort
messages is used for request messages. Several selection
functions are being considered:

� Round-Robin. All the valid output channels are alter-
natively selected for routing request messages with the
same destination host.

� Minimal. Request messages are routed using minimal
routing.

� Bandwidth Balancing among Primary Channels. The
output channel with minimum amount of reserved
bandwidth for primary channels is chosen. Ties are
broken by selecting the output channel randomly.

� Bandwidth Balancing among Primary and Secondary
Channels. The output channel with minimum amount
of reserved bandwidth for primary channels is chosen.
In the case of a tie, the output channel with minimum
amount of reserved bandwidth for secondary channels
is chosen. The remaining ties are broken by selecting
the output channel randomly.

Combinations of these strategies, such as Minimal and
Round-Robin, are also being analyzed. In any case, we are
interested in the simpler strategy which is able to maximize
the channel establishment rate while minimizing the num-
ber of attempts.

Once an output port is selected, resources are allocated
and the request is forwarded through it to the next switch.
Note that selection of channel routes is distributed among
all switches, that is, global information is not necessary to
establish channels.

2.2. Real-time channel operation

Once the real-time channel has been successfully estab-
lished, H � begins to inject RTC MSG messages through
the primary channel. Real-time messages flow from H � to
H � through the primary channel until the real-time chan-
nel is closed or the primary channel is broken down.
In the former case, resources are released by means of
two RTC MSG(Release) messages. In the latter case,

1Initially, up to two NICs per host are assumed so that the primary and
the secondary channels have not to share neither links nor switches.

2The only difference between a primary and a secondary channel iden-
tifier is the type field (see Table 1).

Inactive
Primary
Channel

Established

Real− Time
Channel

Established

Attempts ≤ MaxAttempts
RTC_REQUEST (Primary) RTC_RESPONSE (True)

Waiting for
Response

for Primary
Channel

Waiting for
Response

for Backup
Channel

RTC_RESPONSE (True)

RTC_RESPONSE (False) or
RTC_REPORT(Primary)

RTC_MSG (Release Primary)

RTC_MSG

TimeOut (Primary)
RTC_MSG (Release Primary)

TimeOut (Backup)
RTC_MSG(Release Backup)

Attempts ≤ MaxAttempts
RTC_REQUEST (Backup)

Attempts > MaxAttempts
RTC_MSG (Release Primary)
RTC_MSG (Release Backup)

RTC_RESPONSE (False)
or

RTC_REPORT(Backup)
RTC_MSG

(Release Backup)

Attempts > MaxAttempts

RTC_RESPONSE (*)
or

RTC_REPORT(*)

RTC_RESPONSE (*)
or

RTC_REPORT(*)

RTC_REPORT(Primary)
Redirect traffic through Secondary Channel

RTC_MSG(Release Primary)
RTC_REPORT(Backup)

RTC_MSG(Release Backup)Channel Closure
RTC_MSG (Release Primary)
RTC_MSG (Release Backup)

Figure 1. State diagram for Source Host (H �).

Field Meaning
CHANNEL Channel identifier in the source host
HSSOURCE Source host identifier
TYPE Primary or Secondary
ATTEMPT Number of attempts
Bandwidth Reserved bandwidth
Deadline Maximum delay or deadline
LinkIn Input port
VCIn Virtual channel of the input port
LinkOut Output port
VCOut Virtual channel of the output port

Table 1. Real-time channel table.

RTC MSG messages are redirected through the secondary
channel. Note that if the secondary channel is broken down,
real-time traffic is unaffected.

2.3. Real-time channel recovery

Once a real-time channel has been set up and is trans-
mitting real-time messages, we have to deal with the prob-
lem of channel recovery while satisfying real-time require-
ments.

Let us assume that a single link fails. Next, the two ad-
jacent switches detect the fault and determine the broken
channels looking at their real-time channel tables.

For each channel whose LinkOut field matches with the
broken link, a best-effort message, called RTC REPORT,
is sent to its corresponding HSSOURCE. The switch
remains in the releasing state until the corresponding
RTC MSG(Release) is received. If report timeout expires,
a RTC REPORT message is sent again.

For each channel whose LinkIn field matches with the
broken link, a RTC MSG(Release) message is sent to the
destination host through the channel. Every time a re-
port arrives at HSSOURCE for the primary or the sec-
ondary channel, a RTC MSG(Release) releases resources
from HSSOURCE to the switch that detected the fault, and
RTC RESPONSE(*) messages received for that attempt are
ignored. In the former case, real-time traffic is redirected
through the secondary channel, that is, the secondary chan-
nel becomes the new primary channel. In the latter case,
real-time messages continue flowing through the primary
channel. In any case, after reconfiguration, the secondary
channel will be re-established if possible.

At the same time that the adjacent switches detect the
fault, the dynamic reconfiguration protocol is triggered.
This process performs sequences of partial routing table up-
dates to avoid stopping user traffic, and trying to update
routing tables in such a way that a secondary channel could
be re-established for each affected real-time channel. Af-
ter reconfiguration, a new secondary channel is allocated,
if possible, for each affected real-time channel because ei-

Waiting for
Request

for Primary
Channel

Channel Length ≤ MaxLength
RTC_REQUEST (Primary)

Add Channel to CT
RTC_RESPONSE (True) Waiting for

Request
for Backup

Channel

Channel Length ≤ MaxLength
RTC_REQUEST (Backup)
Add Channel to CT

RTC_RESPONSE (True) Real− Time
Channel

Established

RTC_MSG

RTC_MSG (Release Primary)
Remove Channel from CT

Channel Length >MaxLength
RTC_REQUEST (Primary)
RTC_RESPONSE(False)

Channel Length >MaxLength
RTC_REQUEST (Backup)

RTC_RESPONSE (False)

RTC_MSG (Release Primary) or
RTC_MSG (Release Backup)
Remove Channel from CT

Figure 2. State diagram for Destination Host (H �).

ther the old secondary channel has become the new primary
channel or the old secondary channel was broken down.

Therefore, our protocol is topology change and fault-
tolerant while satisfying real-time requirements because of
the restrictions imposed in the channel establishment phase.

2.4. Fault tolerance property of our protocol

Finally, this section shows the fault tolerance property of
our protocol, that is, how our protocol is able to recover it-
self from the loss of any type of message. Next, we analyze
all possibilities.

If a RTC REQUEST message gets lost, the time-
out associated with the channel will expire (see Fig-
ure 1). Then, reserved resources will be released by
means of a RTC MSG(Release) message. Finally, if
the maximum number of attempts has not been reached,
a new RTC REQUEST message will be sent. For
RTC RESPONSE messages, the situation is the same as
above (see Figure 1).

The loss of a RTC MSG(Release) message could cause
resources to be reserved and not released, therefore de-
grading performance. Nevertheless, when a fault or topol-
ogy change causes the loss of a RTC MSG(Release) mes-
sage, the next switch of the channel route detects the fault
or change (see Figure 3). Consequently, it sends a new
RTC MSG(Release) for that channel.

If a RTC REPORT message gets lost, the sender switch
will not receive the corresponding RTC MSG(Release).
Next, the timeout associated with the report will expire (see
Figure 3). Then, the RTC REPORT message will be sent
again.

As shown above, the fault tolerance property of our pro-
tocol is only limited by topology connectivity. In any case,
we ensure the protocol releases all unused resources when-
ever a channel is released because of a fault or topology
change.

3. Modified switch architecture

Additional hardware is essential to support topology
change and fault-tolerant real-time channels. Although a
detailed hardware design is out of the scope of this paper,
switch architecture is depicted to help readers to understand
our proposal. As shown in Figure 4, our approach uses
an input-buffered switch with virtual channels. The high-
lighted hardware elements provide support for our protocol.

Each switch has a fixed number of ports. Every port has
the same number of virtual channels: RTC virtual channels
for real-time traffic3, MIN adaptive virtual channels (min-
imal routing) and UD virtual channels (Up*/Down* rout-
ing) for best-effort traffic (see Subsection 3.2), and C/RTC
virtual channels for reconfiguration control traffic and chan-
nel establishment traffic. The CONTROL UNIT manages all
control messages due to reconfiguration, and all messages
used to establish and to tear down real-time channels 4. The
CONTROL PORT allows the control unit to inject messages.
The CHANNEL TABLE (see Table 1) has an allocated entry
for each channel, primary or secondary, that goes through
the switch. Each output port has three registers storing its
reserved resources. PRIMARY and SECONDARY are the
amount of reserved bandwidth for primary and secondary
channels respectively. RVC keeps track of the reserved vir-
tual channels. The VIRTUAL CHANNEL ARBITER included
in each output port implements a scheduling algorithm to
provide an appropriate forwarding behavior to support real-
time traffic. A multiplexed crossbar connects input ports to
output ports. Since a virtual channel is used for each con-
nection5, a demultiplexed crossbar becomes prohibitive.

3These virtual channels could be also used by best-effort traffic if they
have not been reserved.

4Note that the control unit is essential to implement dynamic reconfig-
uration.

5Initially, up to 16 virtual channels per port are being considered.

Waiting for
Request

for Channel

Channel
Established

RTC_REQUEST Received
Request

for Channel

No available resources or no valid path
RTC_RESPONSE (False)

RTC_MSG
RTC_MSG

Available resources and valid path
Reserve Bw and VC
Add Channel to CT

RTC_REQUEST

RTC_MSG (Release)*

RTC_MSG (Release)
Release Bw and VC

Remove Channel from CT
RTC_MSG (Release)

Fault or Topology
Change Detected:

For Outgoing Channels:
Release Bw and VC

Remove Channel from CT
RTC_MSG (Release)

Releasing
Fault or Topology
Change Detected:

For Incoming Channels:
(in the opposite direction)

RTC_REPORT

TimeOut (RTC_REPORT)
RTC_REPORT

RTC_MSG (Release)
Release Bw and VC

Remove Channel from CT

Figure 3. State diagram for a Switch.

3.1. Switching technique

Most commercial switches designed for high-speed net-
works implement wormhole switching [2, 5]. However,
long wires required in NOWs lead to large buffers to sup-
port pipelined channels and to avoid buffer overflow while
sending flow control signals. On the other hand, in vir-
tual cut-through switching, buffer size is independent of
wire length and flow control is simpler. Moreover, the
traditional disadvantages of virtual cut-through, such as
buffer requirements and packetization overhead, disappear
in NOWs. The wire lengths make the buffer requirements
of both wormhole and virtual cut-through to be very similar.
Most message-passing libraries split messages into fixed-
size packets for efficiency purposes. Consequently, a vir-
tual cut-through switch can be simpler than a wormhole one
for best-effort traffic, while still achieving the advantages
of using pipelined routing, virtual channels and adaptive
routing [4]. For real-time traffic, a connection-oriented and
reservation-based switching technique is essential to sup-
port real-time channels. In order to share resources between
the two traffic types, a pipelined switching technique, simi-
lar to pipelined circuit switching, is used.

3.2. Routing unit

The routing unit executes the routing algorithm. The
routing algorithm can be deterministic or adaptive. Deter-
ministic routing simplifies the design of the dynamic recon-
figuration algorithm [1]. However, when a high number of

channels is established, best-effort traffic can suffer starva-
tion because of its lower priority (see Subsection 3.3). Pro-
viding a higher number of alternatives to best-effort mes-
sages could alleviate this problem.

To build an adaptive deadlock-free routing algorithm, we
use the methodology proposed in [15] for wormhole net-
works that is also valid for virtual cut-through switching,
modified as indicated in [4]. Given a deadlock-free routing
function (Up*/Down*), we add virtual channels in parallel
with the existing ones (Min and C/RTC). The new virtual
channels can be used without any restriction as long as the
original channels are used exactly in the same way as in the
original routing function. Real-time messages flow through
pre-established real-time channels.

3.3. Switch scheduling

Switch scheduling refers to the problem of matching in-
put ports with requested output ports in a conflict-free way.
Since our switch is asynchronous, when an output port be-
comes free, an input port must be chosen among all possible
candidates. Each output port has a separate arbiter, called
virtual channel arbiter (see Figure 4), that selects the next
packet to forward from the set of candidate packets avail-
able for transmission through that port.

The scheduling algorithm used by arbiters is based on
that of InfiniBand [7, 13]. Virtual channel arbiters im-
plement a two-level priority scheme, using preemptive
scheduling layered on top of a weighted fair scheme, where

Routing Unit

CROSSBAR

. . .
M
U
X

. . .
M
U
X

�

Output
Ports

Input
Ports R

NR

Primary
Secondary

Reserved
Bandwidth

RVC

Control Unit

Channel Table

. . .
M
U
X

�R

NR

Primary
Secondary

Reserved
Bandwidth

RVC

�R

NR

Primary
Secondary

Reserved
Bandwidth

RVC

. . .

SWITCH ARCHITECTURE

Control Port

VC Arbiter

VC Arbiter

VC Arbiter

RTC

RTC

Min

UD

C/RTC

RTC

RTC

Min

UD

. . .
C/RTC

RTC

RTC

Min

UD

C/RTC

Figure 4. Modified Switch Architecture.

all packets at a precedence level are sent before any packet
at a lower precedence level. Additionally, the algorithm
provides a method to ensure forward progress on the low-
priority virtual channels. Each virtual channel arbiter has
an arbitration table which consists of three components,
High-Priority, Low-Priority and Limit of High-Priority. The
High-Priority and Low-Priority components are each a list
of

�
VC,W � pairs. Each list entry contains a virtual chan-

nel number (VC) and a weighting value (W) specifying the
amount of bandwidth allocated to that VC when its turn in
the arbitration occurs. The Limit of High-Priority compo-
nent indicates the amount of high-priority packets that can
be transmitted without an opportunity to send a low prior-
ity packet. Within each high or low-priority table, weighted
fair arbitration is used. The order of entries in each table
specifies the order of virtual channel scheduling.

In the case of our protocol, virtual channels are assigned
to the two lists as follows. RTC virtual channels reserved
for real-time channels are included in the High-Priority list.
Their weighting values are proportional to their associated
bandwidth. The rest of RTC virtual channels are included in
the Low-Priority list. Min and UD virtual channels are al-
ways included in the Low-Priority list. Finally, C/RTC vir-
tual channels are inserted in the High-Priority list. Note that
real-time traffic and reconfiguration and channel establish-
ment traffic are assigned the same priority level to simplify
design. However, C/RTC virtual channels may be assigned
the lowest weights and RTC virtual channels may appear
several times in the list.

4. Qualitative analysis

This section summarizes the benefits and design trade-
offs of our approach. The most important concepts are the
following:

� Topology change tolerance. To our knowledge, our
protocol is the only one which is able to assimilate hot
topology changes without stopping neither real-time
traffic nor normal network operation.

� Fault tolerance is only limited by topology connectiv-
ity and not by the constraints imposed by the routing
function to avoid deadlocks. Hence, recovery guar-
antees are expected to be better than with any other
scheme.

� Channel recovery delay. The channel recovery delay
is the time to complete reconfiguration plus the chan-
nel establishment delay for the new secondary channel.
Dynamic reconfiguration process takes a few millisec-
onds to finish while the mean time between failures is
much longer [9, 11]. Channel establishment delay for
the new secondary channel is shorter than the neces-
sary time to complete reconfiguration.

� Service disruption affects those channels whose pri-
mary channel is interrupted when a fault or topology
change occurs. It lasts from the fault or topology
change detection to the moment in which the source
host receives the RTC REPORT message.

� Hardware cost. See Subsection 3.

5. Related Work

Static reconfiguration techniques (Autonet [14] and
Myrinet with GM [11]) stop user traffic to update routing
tables. Although reconfigurations are not frequent, they can
degrade performance considerably [14]. Moreover, real-
time constraints can not be met because of traffic disrup-
tion. Duato et al. [1, 3] have proposed a dynamic recon-
figuration algorithm, called Partial Progressive Reconfigu-
ration, to minimize the negative effects of static reconfig-
uration on network performance. The protocol guarantees
that the global routing algorithm remains deadlock-free at
any time. Pinkston et al. [12] have developed a simple but
effective strategy for dynamic reconfiguration in networks
with virtual channels. Lysne et al. [10] aim at reducing the
scope of reconfiguration identifying a restricted part of the
network, the skyline, as the only part where a full reconfig-
uration is necessary.

Shin et al. have proposed the Backup Channel Proto-
col (BCP) [6] to achieve fault-tolerant real-time communi-
cations. In this approach, the maximum number of admis-
sible faults depends on the maximum number of alterna-
tive paths provided by the routing function to establish the
backup channels.

6. Concluding remarks and future work

In this paper, a new hardware-supported approach to pro-
vide real-time services on NOWs in an scenario with topol-
ogy changes and faults has been presented. Our proposal
uses real-time channels and the backup channel protocol to
achieve topology change and fault-tolerant real-time com-
munications. The novelty of our proposal primarily relies
on the ability to assimilate hot topology changes and faults
while still providing real-time services by means of dy-
namic reconfiguration. In this way, the number of allowed
topology changes or faults is not limited by the number of
possible backup channels that the routing function can pro-
vide but just by the topology connectivity.

Using the ideas presented in this paper, future work in-
volves a quantitative characterization of our protocol in
terms of resource overhead, recovery delay and recovery
guarantees; an analysis of the impact of single and multi-
ple link/switch faults/changes on real-time and best-effort
traffic; and the adaptation of our protocol to InfiniBand [7].

7. Acknowledgments

The authors thank Francisco J. Alfaro at the University
of Castilla La Mancha for his comments and suggestions
during the course of this work. This work has been sup-
ported in part by the Spanish CICYT under grant TIC2000-
1151-C07-03.

References

[1] F. J. Alfaro, A. Bermudez, R. Casado, F. J. Quiles, J. L.
Sanchez, and J. Duato. Extending Dynamic Reconfiguration
to NOWs with Adaptive Routing. In Proceedings of Com-
munications, Architecture, and Applications for Network-
based Parallel Computing Workshop (CANPC’00), January
2000.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local-Area Network. IEEE Micro,
15(1):29–36, February 1995.

[3] R. Casado, A. Bermudez, F. J. Quiles, J. L. Sanchez, and
J. Duato. Performance Evaluation of Dynamic Reconfigura-
tion in High-Speed Local Area Networks. In Proceedings of
Sixth International Symposium on High Performance Com-
puter Architecture (HPCA-6), January 2000.

[4] J. Duato, A. Robles, F. Silla, and R. Beivide. A Compar-
ison of Router Architectures for Virtual Cut-Through and
Wormhole Switching in a NOW Environment. In Proceed-
ings of 13th International Parallel Processing Symposium,
pages 240–247. IEEE Computer Society Press, April 1998.

[5] D. Garcia and W. Watson. ServerNet II. In Proceedings of
Parallel Computing Routing and Communication Workshop,
June 1997.

[6] S. Han and K. G. Shin. A Primary-Backup Channel Ap-
proach to Dependable Real-Time Communication in Multi-
hop Networks. IEEE Transactions on Computers, 47(1),
1998.

[7] InfiniBand Trade Association. InfiniBand Architecture Spec-
ification Volume 1. Release 1.0, October 2000.

[8] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-Time Com-
munications in Multi-hop Networks. IEEE Transactions on
Parallel and Distributed Systems, 5(10):1044–1056, Octo-
ber 1994.

[9] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study
of Internet Stability and Wide-Area Networks Failures. In
Proceedings of Fault-Tolerant Computing Symposium, June
1999.

[10] O. Lysne and J. Duato. Fast Dynamic Reconfiguration in
Irregular Networks. In Proceedings of International Confer-
ence on Parallel Processing, August 2000.

[11] Myricom, Inc. http://www.myri.com.
[12] R. Pang, T. Pinkston, and J. Duato. The Double Scheme:

Deadlock-free Dynamic Reconfiguration of CutThrough
Networks. In Proceedings of International Conference on
Parallel Processing, August 2000.

[13] J. Pelissier. Providing Quality of Service Over Infiniband
Architecture Fabrics. In Proceedings of Hot Interconnects,
August 2000.

[14] T. Rodeheffer and M. D. Schroeder. Automatic Reconfigu-
ration in Autonet. Proceedings of the 13th ACM Symposium
on Operating System Principles, pages 183–187, February
1991.

[15] F. Silla and J. Duato. Improving the Efficiency of Adaptive
Routing in Networks with Irregular Topology. In Proceed-
ings of the 1997 International Conference on High Perfor-
mance Computing (HiPC’97), December 1997.

