
An Architecture for High-Performance Scalable
Shared-Memory Multiprocessors Exploiting

On-Chip Integration
Manuel E. Acacio, José González, Member, IEEE Computer Society,

José M. Garcı́a, Member, IEEE, and José Duato, Member, IEEE

Abstract—Recent technology improvements allow multiprocessor designers to put some key components inside the processor chip,

such as the memory controller, the coherence hardware, and the network interface/router. In this paper, we exploit such integration

scale, presenting a novel node architecture aimed at reducing the long L2 miss latencies and the memory overhead of using directories

that characterize cc-NUMA machines and limit their scalability. Our proposal replaces the traditional directory with a novel three-level

directory architecture, as well as it adds a small shared data cache to each of the nodes of a multiprocessor system. Due to their small

size, the first-level directory and the shared data cache are integrated into the processor chip in every node, which enhances

performance by saving accesses to the slower main memory. Scalability is guaranteed by having the second and third-level directories

out of the processor chip and using compressed data structures. A taxonomy of the L2 misses, according to the actions performed by

the directory to satisfy them, is also presented. Using execution-driven simulations, we show that significant latency reductions can be

obtained by using the proposed node architecture, which translates into reductions of more than 30 percent in several cases in the

application execution time.

Index Terms—cc-NUMA multiprocessor, directory memory overhead, L2 miss latency, three-level directory, shared data cache, on-

processor-chip integration.

�

1 INTRODUCTION

ALTHOUGH cc-NUMA constitutes an attractive architec-
ture for building high-performance shared-memory

multiprocessors, far away from the limits imposed by
snooping protocols, there are a number of factors that
constrain the amount of nodes that can be offered at a good
price/performance ratio. Two of these factors are the
increased cost in terms of hardware overhead and the long
L2 miss latencies.

An important component of the hardware overhead is
the amount of memory required to store directory informa-
tion, which depends, to a large extent, on the type of the
sharing code used in each one of the entries of the directory.
On one hand, using a full-map (or bit-vector) sharing code
leads to prohibitively high memory requirements for large-
scale configurations of a cc-NUMA multiprocessor. On the
other hand, compressed sharing codes (such as coarse-vector)
significantly reduce directory memory overhead by storing
an in-excess codification of the sharers (i.e., more sharers

than necessary are usually included). Unfortunately, this
compression has negative consequences on performance,
which are motivated by the unnecessary coherence messages
they introduce. Two-level directories have been recently
proposed as an effective means of significantly reducing
directory memory overhead while keeping performance [1].

The second of the previous factors (i.e., the long L2 miss
latencies suffered in cc-NUMA designs) is caused by the
inefficiencies that the distributed nature of the protocols
and the underlying scalable network imply. One of such
inefficiencies is the indirection introduced by the access to
the directory information, which is usually stored in main
memory.

L2 misses can be classified according to the actions
performed by directories in order to resolve them. This way,
we can distinguish roughly two kinds of L2 misses: those
for which the corresponding home directory has to provide
the memory line and those for which the memory line is not
sent by the home directory. For those misses belonging to
the latter category, the access to main memory in order to
obtain directory information has a serious impact that
significantly increases their latency when compared to
symmetric multiprocessors (SMPs). The fact that these L2
misses appear very frequently [2] along with the well-
known industry trend that microprocessor speed is increas-
ing much faster than memory speed (the memory wall
problem) [3] have motivated that many efforts are devoted
to extend the scale at which snoopy coherence protocols can
be applied. The Sun Enterprise E10000 [4] constitutes an
example of a recent SMP which can accommodate up to
64 processors.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004 755

. M.E. Acacio and J.M. Garcı́a are with the Departamento de Ingenierı́a y
Tecnologı́a de Computadores, Universidad de Murcia, Campus de
Espinardo S/N, Facultad de Informática, 30071 Murcia, Spain.
E-mail: {meacacio, jmgarcia}@ditec.um.es.

. J. González is with the Intel Barcelona Research Center, Intel Labs
Barcelona, C/ Jordi Girona 29, Edif. Nexus 2, Planta 3, 08034 Barcelona,
Spain. E-mail: pepe.gonzalez@intel.com.

. J. Duato is with the Departamento de Informática de Sistemas y
Computadores, Universidad Politécnica de Valencia, Camino de Vera
S/N, 46010 Valencia, Spain. E-mail: jduato@gap.upv.es.

Manuscript received 13 Mar. 2003; revised 20 Oct. 2003; accepted 3 Nov.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0031-0303.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

On the other hand, advances in VLSI have enabled a
computing model where many processors will soon be
integrated into a single die with little impact on system cost.
Besides, technology improvements have already allowed
the integration of some key components of the system
inside the processor chip. For example, the Compaq Alpha
21364 EV7 [5] includes on-chip memory controller, coher-
ence hardware, and network interface and router (see Fig. 1).

We take advantage of the opportunities provided by
current integration scale presenting a novel node organiza-
tion especially designed to reduce the latency of L2 misses
and the memory overhead of using directories that
characterize cc-NUMA multiprocessors and limit their
scalability.

We extend the two-level directory architecture pre-
viously presented in [1] by adding another directory level
which is included into the processor chip (along with the
coherence controller). This results in a three-level directory
architecture. The new directory level becomes the first-level
directory, whereas the small full-map directory cache and
the compressed directory, which are placed outside the
processor, are now the second and third-level directories,
respectively. In addition, our proposal adds a small shared
data cache to each one of the nodes forming the multi-
processor. The shared data cache (SDC) is also included into
the processor die and contains those memory lines for
which the home node holds a valid copy in main memory,
and that are expected to be requested in the near future.
Unlike the remote data caches (RDCs) used in some systems
(such as NUMA-Q [6]) to cache lines that are fetched to the
local node from remote memories, the shared data cache
proposed in our design tries to reduce the latency of
accessing main memory (when a copy of the memory line
must be sent) by quickly providing data from the processor
itself to the requesting node. This is possible since
coherence hardware, memory controller, and network
router are also included into the processor die. Fig. 2
illustrates the chip organization we propose in this paper.

The on-chip integration of the small first-level directory
and the shared data cache enhances performance. Now, those
cache misses that find their corresponding directory entry
and memory line (when needed) in the first-level directory
and shared data cache, respectively, can be directly served
from the processor chip, significantly reducing the directory
component of the L2 miss latency (that is, the time needed by
the home directory to satisfy L2 misses). Additionally,
organizing the directory as a multilevel-level structure
significantly reduces the memory overhead of using direc-
tories. In this case, this is achieved by having two directory

levels out of the processor chip and using compressed data
structures.

The main contribution of this paper is the significant
reduction in the L2 miss latency (more than 60 percent in
some cases), which leads to performance improvements up
to 50 percent over a traditional cc-NUMA multiprocessor
using a full-map and with the coherence hardware included
on-chip. The simplicity of our proposal and the fact that it
could be introduced on commercial processors cuts its cost
off, conversely to the expensive sophisticated network
designs required by state-of-the-art moderate-scale SMPs.

This paper extends the work previously presented in [7],
including a more detailed description and evaluation of our
proposal. The rest of the paper is organized as follows: The
related work is presented in Section 2. Section 3 proposes a
taxonomy of the L2 misses found in cc-NUMA multi-
processors in terms of the actions executed by directories.
The new node architecture is proposed and justified in
Section 4. Section 5 discusses our evaluation methodology.
Section 6 shows a detailed performance evaluation of our
novel proposal and, finally, Section 7 concludes the paper.

2 RELATED WORK

System-on-a-chip techniques allow for integration of all
system functions including compute processor, caches,
communications processor, interconnection networks, and
coherence hardware onto a single die. Directly connecting
these highly-integrated nodes leads to a high-bandwidth,
low-cost, low-latency, ”glueless” interconnect. Some propo-
sals exploiting system-on-a-chip techniques are the Compaq
Alpha 21364EV7 [5], the IBM BlueGene/L supercomputer [8],
and the AMD Hammer [9]. Even more, as more transistors can
be placed on a chip, a sizeable fraction of the main memory is
likely to be also integrated on chip (processor-in-memory or
PIM chips) [10]. Other designs go further and use semicon-
ductor technology trends to implement a complete multi-
processor into a single chip (multiprocessor-on-a-chip), for
example, the Compaq Piranha CMP [11], the Stanford Hydra
[12], or the IBM POWER4 [13]. In this work,we take advantage
of the increased transistor counts by integrating a small first-
level directory and shared data cache on chip, which results in
significant reductions on the latency of L2 misses.

Some hardware optimizations, proposed to shorten the
time processors loose because of cache misses and invalida-
tions, were evaluated in [14]. In [15], the remote memory
access latency is reduced by placing caches in the crossbar
switches of the interconnect to capture and store shared data
as they flow from the memory module to the requesting

756 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

Fig. 1. Alpha 21364 EV7 diagram. Fig. 2. Proposed chip organization.

processor. Subsequently, in [16], the same idea is applied to
reduce the latency of cache-to-cache transfer misses. In both
cases, special network topologies are needed to keep coherent
the information stored in these switch caches.

Other proposals have focused on using snooping protocols
with unordered networks [2], or using prediction-based
techniques to reduce the latency of certain L2 misses (for
example, [17], [18], [19], and [20]). In addition, remote data
caches (RDCs) have also been used in several designs (as [6],
[21], and [22]) to accelerate access to remote data. A RDC is
used to hold those lines that are fetched to the node from
remote memory and acts as backup for the processor caches.

Caching directory information (sparse directories) was
originally proposed in [23] and [24] as a means to reduce
the memory overhead entailed by directories. More
recently, directory caches have also been used to reduce
directory access times [25], [26]. The Everest architecture
proposed in [27] uses directory caches to reduce directory
access time. Everest is an architecture for high-performance
cache coherence and message passing in partitionable
distributed shared memory systems that use commodity
SMPs as building blocks. In order to maintain cache
coherence between shared caches included into every
SMP, Everest uses a new directory design called Complete
and Concise Remote (CCR) directory. In this design, each
directory maintains a shadow of the tags array of each
remote shared cache. In this way, each directory requires
N � 1 shadows for a N-node system, which prevents CCR
directories from being a solution for scalable systems.

Some authors propose to reduce the width of directory
entries by having a limited number of pointers per entry to
keep track of sharers [28], [29], [30], or by using a compressed
sharing code, such as coarse vector [23] or BT-SuT [1].

The use of sparse directories tends to increase the
number of cache misses as a result of the unnecessary
invalidations that are sent each time a directory entry is
evicted. On the other hand, compressed sharing codes and
some of the limited pointers schemes (as a consequence of
directory overflows) increase the number of messages that
are sent on every coherence event due to the appearance of
unnecessary coherence messages. Unfortunately, unnecessary
invalidations and unnecessary coherence messages can
significantly degrade performance. In order to significantly
reduce the memory overhead entailed by the directory
information while achieving the same performance as a
nonscalable full-map directory, we proposed in a previous
work a two-level directory architecture, which combined a
small first-level directory (a few full-map entries) with a
compressed and complete second level. The aim of such
organization is to provide precise information for those
memory lines that are frequently accessed and in-excess
information for those lines that are rarely accessed [1].

3 TAXONOMY OF L2 MISSES

Each time an access to a certain memory line from a
particular processor (i.e., a load or a store) misses in the L2
cache, a request for the line is addressed to the correspond-
ing home directory. The home directory accesses directory
information in order to obtain both the state of the line and
a list of those nodes (if any) that hold a copy of the memory

line. Each memory line can be in one of the following three
states (MESI states are used for L2 caches):

. Uncached: The memory line is not cached by any node
and the home directory has a valid copy of the line.

. Shared: Several L2 caches are holding read-only
copies of the memory line, and the home directory
has a valid copy of the line.

. Private: There is a single L2 cache having a read-
write copy of the memory line. Now, the copy stored
by the home directory is not guaranteed to be valid
and, thus, the copy hold by the owner node should
be obtained.

Depending on both the state of the line and the type of
access causing the miss, the directory determines the
actions needed to satisfy the miss. We classify L2 misses
in terms of these actions into four categories:

. $-to-$ Misses: Cache-to-cache transfer misses occur
when the requested line is in the Private state, that is,
there is a single processor caching the memory line
in the Modified or in the Exclusive states. In this case,
the home directory forwards the miss to the current
owner of the line. Then, the owner sends a reply
with the line directly to the requestor and a revision
message to the home directory. These misses are also
known as 3-Hop misses.

. Mem Misses: Memory misses appear for write
accesses when there is no processor caching the
requested line (the line is in the Uncached state), and
for read accesses when the requested line is cached
by zero or more than one processor (the state of the
line is Uncached and Shared, respectively). The home
directory has a valid copy of the memory line and
satisfies the miss by accessing the main memory in
order to directly provide the line.

. Inv Misses: Invalidation misses, also known as
upgrade misses, take place when a write access for a
memory line comes to the directory, there are several
nodes holding a copy of the line (the line is in the
Shared state) and one of them is the processor issuing
the access (that is to say, this processor sent an
upgrade for the line). In this situation, the directory
sends invalidation messages to all sharers of the
memory line except the requesting processor. Once
all the invalidation acknowledgment messages have
been received, the directory provides ownership of
the line to the requestor.

. Inv+Mem Misses: Invalidation and access to mem-
ory misses are caused by a write access for which
there are several nodes caching the line, but none of
them is the one issuing the access. Now, the
directory must first invalidate all copies of the line.
Once it has obtained all the invalidation acknowl-
edgments, it sends a reply with the memory line to
the requesting processor. The difference between Inv
and Inv+Mem misses is that, for the first category,
the directory does not provide a copy of the memory
line since the requestor already has a valid one.

Table 1 summarizes the actions that the directory
performs to satisfy load and store misses. A load miss is
either satisfied by a cache-to-cache transfer or an access to
memory. On the other hand, any of the four actions could
be used for store misses. Observe that Mem misses are a

ACACIO ET AL.: AN ARCHITECTURE FOR HIGH-PERFORMANCE SCALABLE SHARED-MEMORY MULTIPROCESSORS EXPLOITING ON-CHIP... 757

consequence of cold, capacity, conflict, or coherence misses,
whereas $-to-$, Inv, and Inv+Mem misses fall into the
coherence misses category.

For each one of the former categories, Figs. 3, 4, 5, and 6
present the normalized average miss latency obtained when
running several applications on the base system assumed in
this work. Average miss latency is split into network latency,
directory latency, and miscellaneous latency (buses, cache
accesses, etc.). Further details about the evaluation metho-
dology are included in Section 5. As can be observed, the most
important fraction of the average miss latency is caused by the
directory. This is true for all applications in the Inv and
Inv+Mem cases, whereas only four applications found net-
work latency to exceed directory one in the Mem and $-to-$
categories. For $-to-$ and Mem misses, directory latency is
caused by the access to main memory to obtain the
corresponding directory entry (for Mem misses, memory line
lookup occurs in parallel with the access to the directory
information, as in [31]). For Inv and Inv+Mem misses,
directory latency comprises the cycles needed to obtain
directory information and to create and send invalidation
messages, as well as to receive the corresponding acknowl-
edgments (again, for a Inv+Memmiss, the directory entry and
the requested line are obtained at the same time). In our
system, Inv and Inv+Mem misses are temporally stored in the
home directory until all the responses to the invalidation
messages have been received. In this way, from the
perspective of Inv and Inv+Mem misses, the cycles needed
to invalidate all the sharers (if any) account as directory
latency since these cycles are actually spent in the directory.

4 A NOVEL ARCHITECTURE TO REDUCE

L2 MISS LATENCY

4.1 Node Architecture

The proposed node organization adds several elements to

the basic node architecture shown in Fig. 1.

4.1.1 Three-Level Directory Architecture

Our proposal extends the two-level architecture presented
in [1] adding a new directory level which is integrated into
the processor chip. Two-level directories were originally
proposed for reducing directory memory overhead while
retaining performance. However, we can take advantage of
their uncoupled nature and use them to also reduce L2 miss
latency. It is important to note that coherence hardware,
memory controller, and network router are already in-
cluded inside the processor die.

The three-level directory architecture included in our
proposal consists of:

1. First-level directory: This directory level is located
inside the processor chip, close to the directory
controller. It is managed as a cache and uses a small
set of entries, each one containing a precise sharing
code consisting of three pointers (of log2 N bits each
one, for an N-node system). Note that, as shown in
[32], a small number of pointers generally is sufficient
to keep track of the nodes caching a memory line.
Besides, from the graphs presented in [33], one can
conclude that in more than 90 percent of the cases,
memory lines are shared among up to three sharers for
most applications. Therefore, having three pointers
per line is a good compromise between cost and
performance for the scientific applications that have
been used in these evaluations. On the other hand,
choosing a sharing code linearly dependent on the
number of processors (such as full-map) may make it
infeasible to be incorporated on the processor chip,
compromising both scalability and performance. In
short, it is preferable to invest the transistor budget

758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

TABLE 1
Directory Actions Performed to Satisfy Load and Store Misses

Fig. 3. Normalized average latency for $-to-$ misses.

Fig. 4. Normalized average latency for Mem misses.

Fig. 5. Normalized average latency for Inv misses.

dedicated to this directory in increasing the number of
entries (which increases the hit rate) rather than
directory width.

2. Second-level directory: It is located outside the
processor chip and also has a small number of
entries. In this case, a nonscalable but precise full-
map sharing code is employed. The second-level
directory can be seen as a victim cache of the first
level since it contains those entries that have been
evicted from the first-level directory or do not fit
there due to the number of sharers becoming larger
than the available number of pointers (three in our
case). It is important to note that, if a directory entry
for a certain memory line is present at the first level,
it cannot be present at the second, and vice versa.

3. Third-level directory: This level constitutes the com-
plete directory structure (i.e., an entry per memory
line) and is located near main memory (it could be
included in main memory). Each entry in this level
uses a compressed sharing code, in particular, the
binary tree with subtrees (BT-SuT) sharing code (see
[1] for details), which has space complexity
O(log2ðNÞ), for an N-node system. Sharing informa-
tion in this level is always updated when changes in
the first or second-level directories are performed.

Accesses to the third-level directory imply main memory
latency. The first-level directory has the latency of a fast on-
chip cache, whereas the second-level one provides data at
the same speed as an off-chip cache. In this way, $-to-$, Inv,
and Inv+Mem misses would be significantly accelerated if
their corresponding directory entry were found at the first
or second-level directories. In this case, the directory
controller could immediately forward the miss to the owner
of the line, in the case of an $-to-$ miss, or send invalidation
messages to the sharers of the line, in case of Inv and
Inv+Mem misses. Note that, for Inv+Mem misses, the access
to main memory would not be in the critical path of the
miss since it would occur in parallel with the creation and
sending of the invalidation messages. Due to the locality
exhibited by memory references, we expect the first and
second-level directories to satisfy most of the requests, even
remote accesses to a home node. Thus, this will bring
important reductions in the component of the miss latency
owed to the directory.

4.1.2 Shared Data Cache (SDC)

Contrary to $-to-$ misses, Inv misses and Inv+Mem misses
which can significantly benefit from finding directory
information in the first or second-level directories, Mem

misses cannot take full advantage of having the correspond-
ing directory entry in these directory levels. For these misses,
the directory controller must directly provide the memory
line. Therefore, main memory has to be accessed, being in the
critical path of the miss.

In order to also accelerateMemmisses, our design includes
a small cache inside the processor chip, the shared data cache
(SDC). This cache is used by the directory controller of each
home node to store a copy of those memory lines for which a
valid copy is present in main memory (that is to say, they are
in the Shared or Uncached states) and that are expected to be
accessed in a near future. As coherence hardware, memory
controller, and network router are already included inside the
processor chip, Mem misses can take significant advantage of
finding their corresponding memory line in the shared data
cache, since the access to the slower main memory would be
avoided. State bits are also included in each entry of this
shared data cache. The reason for this will be explained in
next section.

Note that, unlike the remote data caches (RDCs) used in
some systems to cache lines that are fetched to the node
from remote memories, the shared data cache proposed in
our design holds some of the memory lines that, having
been assigned to the local node (i.e., it is the home node for
that lines), are expected to be accessed in a near future, and
valid copies of them are stored in main memory. Thus, this
structure is used by the directory controller of the home
node to reduce the latency of accessing main memory
(when needed) by quickly providing data from the
processor itself to the requesting node.

Fig. 7 summarizes the node architecture proposed in this
paper. This node organization is divided into two different
parts (on-chip and off-chip parts) according to their location
in the processor chip. The on-chip part includes the first-level
directory and the shared data cache. The off-chip structure
comprises the second and third-level directories. Tag
information is stored in the first and second-level directories
as well as the shared data cache in order to determine whether
there is a hit. The next section describes how the proposed
node architecture operates to satisfy L2 misses.

4.2 Directory Controller Operation

Each time an L2 miss for a certain memory line reaches the
directory controller, the address of the line associated with
the request is sent to each one of the directory levels as well

ACACIO ET AL.: AN ARCHITECTURE FOR HIGH-PERFORMANCE SCALABLE SHARED-MEMORY MULTIPROCESSORS EXPLOITING ON-CHIP... 759

Fig. 6. Normalized average latency for Inv+Mem misses.

Fig. 7. Proposed node architecture.

as the shared data cache and main memory. One of the
following situations will take place:

1. The directory entry is found in the first-level
directory. In this case, the directory controller
obtains precise sharing information, ending the
access to the second and third levels. Additionally,
for $-to-$ and Inv misses, the accesses to the shared
data cache and main memory are also cancelled
since the home directory must not provide the
memory line associated with the miss. For Mem
and Inv+Mem misses, the access to main memory is
ended if the memory line is found in the shared data
cache. In all the cases, the directory controller
properly updates sharing information in the first
and third-level directories. After a Mem miss, it is
possible that the final number of sharers will be
greater than three. In this case, the number of
pointers used in the first level is insufficient and,
then, the entry in this level is freed and moved to the
second level.

2. The directory entry is found in the second-level
directory. Again, precise sharing information is
obtained. The directory controller ends the access to
the third-level directory whereas the access to the
shared data cache has already been completed (due to
the on-chip integration of the shared data cache, its
latency is assumed to be lower than or equal to the one
incurred by the second-level directory). Then, the
access to main memory is cancelled if a $-to-$ or an Inv
miss is found or, for Mem and Inv+Mem misses, if the
memory line was obtained from the shared data cache.
Sharing information in the second and third levels is
also updated and, if the final number of sharers is
lower than four, the directory entry is moved from the
second to the first-level directory.

3. The directory entry is found in the third-level
directory. The third-level directory has a directory
entry for each memory line, therefore it can provide
sharing information for those memory lines for
which an entry in the first and second-level
directories has not been found. In this case, the
directory controller obtains imprecise but correct
sharing information which, once the miss is pro-
cessed, is properly updated.

On an L2 miss for which an entry in the first-level
directory was not found, an entry in this directory level is
allocated only when precise sharing information can be
guaranteed. This occurs in one of the following four cases:

1. The miss requested a private copy of the line. Once
the miss has been completed, only the node that
issued it caches a copy of the line.

2. The line was in the Uncached state. In this case, no
sharing code was needed and the state of the line was
obtained from the shared data cache (if the memory
line was present in this structure) or from the third-
level directory. Again, once the miss has been served,
the line is only held by the requesting node.

3. An entry for the line was found in the second-level
directory and the final number of sharers is not greater
than the number of pointers used in the sharing code
of the first-level directory (three in this design).

4. The line was in the Private state and the directory
entry was provided by the third level. In this case,

the sharing code used by the third-level directory
(that is to say, BT-SuT) is wide enough to precisely
codify the identity of the single sharer and, thus,
precise sharing information is also available.

An entry in the shared data cache is allocated in one of
these three situations:

1. On a Mem miss for which an entry is present in the
first or second-level directories. In this case, there are
several sharers for the line since otherwise, a
directory entry in one of these levels would have
not been used. Note also that the miss had to be
caused by a load instruction (otherwise, an Inv or
Inv+Mem miss would have been obtained).

2. On a write-back message from the owner node of the
line. This message is caused by a replacement from
the single L2 cache holding the memory line and
always includes a copy of the line.1 The line is
inserted into the shared data cache (and also into
main memory if it was modified). Since no sharing
code is necessary, the state bits of the associated
entry in the shared data cache are used to codify the
state of the line (Uncached in this case). In this way,
an entry in the first or second-level directories will
not have been wasted.

3. On receiving the response to a $-to-$ miss indicating
that a cache-to-cache transfer was performed, when
the miss was caused by a load instruction. In this
case, the state of the line was changed from Private to
Shared, and the acknowledgment message contains a
copy of the line, which is included at this moment
into the shared data cache (and also into main
memory if it was modified).

An entry in the first and second-level directories is freed
each time a write-back message for a memory line in the
Private state is received. This means that this line is no
longer cached in any of the system nodes, so its correspond-
ing directory entry is made available for other lines. An
entry in the shared data cache is freed in two cases: First,
after a miss that obtains an exclusive copy of the memory
line is processed. This takes place when either the miss was
caused by a store instruction or the memory line was in the
Uncached state (remember we are assuming a four-state
MESI coherence protocol). And, second, when its associated
directory entry is evicted from the second-level directory.

Replacements from the second-level directory are dis-
carded since correct information is present in the third-level
directory. The same occurs for those memory lines that are
evicted from the shared data cache, since main memory
contains a valid copy of them. Finally, replacements in the
first and second-level directories are not allowed for the
entries associated with those memory lines with pending
coherence transactions. Table 2 summarizes the most
important issues described in this section.

4.3 Implementation Issues

In this paper, we assume that the organization of the first
and second-level directory caches as well as of the shared
data cache is fully associative, with a LRU replacement
policy. Practical implementations can be set-associative,

760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

1. The original coherence protocol did not include a copy of the line
neither in a write-back message nor in a cache-to-cache transfer response
when the copy contained in main memory was valid.

achieving similar performance at lower cost [26]. Each line
in the first and second-level directories contains a single
directory entry. The state bits field used in every entry of
the shared data cache are implemented using the already
included state bits of each entry. Now, three states are
possible for a line in the shared data cache: not present,
present in the Uncached state, or present in the Shared state.

We assume that the directory controller provides write
buffers to update the three directory levels, the shared data
cache and main memory. Thus, writes to each one of the
directory levels as well as to main memory and to the
shared data cache are assumed to occur immediately.

Finally, the first and second-level directories are im-
plemented as directory caches, using the usual technologies
for on-chip and off-chip processor caches, respectively. The
small sharing code used for the third-level directory would
avoid the need of external storage for this directory level
since, as in [11] and [22], it could be directly stored in main
memory by computing ECC at a coarser granularity and
utilizing the unused bits. This approach leads to lower cost
by requiring fewer components and pins, and provides a
simpler system scaling.

5 SIMULATION ENVIRONMENT

We have used a modified version of Rice Simulator for ILP
Multiprocessors (RSIM), a detailed execution-driven simu-
lator [34]. The modeled system is a cc-NUMA with
64 uniprocessor nodes that implements an invalidation-
based, four-state MESI directory cache-coherent protocol.
Table 3 summarizes the parameters of the simulated
system. These values have been chosen to be similar to
the parameters of current multiprocessors.

RSIM provides support for multiple memory consistency
models. Although relaxed consistency models such as
Processor Consistency or Release Consistency could reduce
the performance impact of Inv and Inv+Mem misses, we
have configured RSIM to simulate sequential consistency
following the guidelines given by Hill [35].

Table 4 describes the applications we use in this study. In
order to evaluate the benefits of our proposals, we have
selected several scientific applications covering a variety of
computation and communication patterns. BARNES-HUT,
CHOLESKY, FFT, OCEAN, RADIX, WATER-SP, and WATER-

NSQ are from the SPLASH-2 benchmark suite [36]. EM3D is
a shared-memory implementation of the Split-C bench-
mark. MP3D application is drawn from the SPLASH suite
[37]. Finally, UNSTRUCTURED is a computational fluid
dynamics application. All experimental results reported in
this paper are for the parallel phase of these applications.
Data placement in our programs is either done explicitly by
the programmer or by RSIM which uses a first-touch policy
on a cache-line granularity. Thus, initial data-placement is
quite effective in terms of reducing traffic in the system.

Through extensive simulation runs, we compare three
system configurations, using the maximum number of
processors available for each application (that is to say,
64 processors for all the applications except OCEAN and
UNSTRUCTURED, for which a maximum of 32 processors
could be simulated). The compared systems are the base

ACACIO ET AL.: AN ARCHITECTURE FOR HIGH-PERFORMANCE SCALABLE SHARED-MEMORY MULTIPROCESSORS EXPLOITING ON-CHIP... 761

TABLE 2
Directory Controller Operation

TABLE 3
Base System Parameters

TABLE 4
Benchmarks and Input Sizes Used in This Work

system and two configurations using the node architecture
presented in Section 4. The first one (UC system), which gives
us the potential of our proposal, uses an unlimited number of
entries in the first and second-level directories as well as in the
shared data cache. While the second one (LC system) limits
the number of entries in these structures. For the former three
system configurations, the directory controller is assumed to
be included inside the processor chip as shown in Table 3.
Base system uses full-map as the sharing code for its single-
level directory, which obtains the best results since unneces-
sary coherence messages degrading performance do not
appear. As in [1], the coherence protocol used in the UC and
LC configurations has been extended to support the use of a
compressed third-level directory (this implies that more
messages are needed to detect some race conditions) and also
to include always the memory line in write-back messages
and in cache-to-cache transfer responses (which increases the
number of cycles needed by these messages to reach the
corresponding home directory). On the contrary, the base
configuration does not include these overheads.

6 SIMULATION RESULTS AND ANALYSIS

In this section, we present and analyze simulation results
for the base and UC systems as well as for two instances of
the LC configuration. The first one, LC-1, limits the number
of entries used in the first and second-level directories and
in the shared data cache to 512, 256, and 512, respectively.
This results in total sizes of less than 2 and 3 KB for the first
and second-level directories, respectively, and of 32 KB for
the shared data cache. The other instance, LC-2, increases
the number of entries of all components to 1,024, resulting
in total sizes of 3 KB, 10 KB, and 64 KB for the first and
second-level directory and shared data cache, respectively.

In all cases, the sizes of these components represent a small
percentage of the L2 size (12.5 percent in the worst-case).

6.1 Impact on L2 Miss Latencies

This section analyzes how the node architecture presented
in this paper impacts on the latency of each of the categories
of the taxonomy presented in Section 3.

Tables 5, 6, 7, and 8 show the directory structures that are
involved when solving each miss type for the LC-1, LC-2, and
UC configurations. The first and second columns (DC1 and
DC2) present the percentage of misses for which directory
information is obtained from the first and second-level
directories, respectively (and additionally for Mem misses,
the corresponding memory line is found in the shared data
cache (SDC)). Thus, these misses would benefit from the
novel node architecture proposed in this paper, contrary to
the ones shown in the columnMEM, for which main memory
must be accessed. Note that all the accesses in the base
configuration are to the main memory. As observed, for the
majority of the applications, the most important fraction of
the misses can be managed using information from the two
first directory levels and the shared data cache, especially
when the LC-2 configuration is employed. However, some
applications still require the third-level directory to provide
sharing information for an important percentage of certain
miss types. Note that obtaining the directory information
from the third-level directory can entail two negative effects
on performance: First, the miss must wait until main memory
provides the corresponding directory entry and, second, in
some situations, unnecessary coherence messages could appear
as a consequence of the compressed nature of the third-level
directory.

Figs. 8, 9, 10, and 11 illustrate the normalized average
latency for each miss type split into network latency,

762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

TABLE 5
How $-to-$ Misses are Satisfied

TABLE 6
How Mem Misses are Satisfied

directory latency, and miscellaneous latency (buses, cache
accesses, etc.), for the base, UC, LC-1, and LC-2 configura-
tions. Normalized average latencies are computed dividing
the average latencies for each one of the configurations by
the average latencies for the base case. As can be seen from
the results obtained for the UC configuration, the integra-
tion into the processor die of the first-level directory, and
the shared data cache (SDC) has the potential of signifi-
cantly reducing the latency of L2 misses. This is a
consequence of the important reduction in the component
of the latency associated with the directory.

6.1.1 Impact on $-to-$ Miss Latencies

As shown in Fig. 8, the small number of entries used in the
LC-1 case for the directory caches as well as for the shared
data cache suffices to virtually reach the latency reductions
found in the UC case for BARNES (66 percent), CHOLESKY

(13 percent), EM3D (25 percent), MP3D (62 percent), OCEAN

(40 percent), UNSTRUCTURED (17 percent), WATER-NSQ

(62 percent), and WATER-SP (58 percent). As derived from

Table 5, for FFT and RADIX, 80 percent or more of the misses

requiring a cache-to-cache transfer need the third-level

directory to provide the sharing information, which

motivates the small benefit obtained by the LC-1 configura-

tion for these applications. The increased number of entries

used in the LC-2 case significantly reduces this percentage.

Now, only 18.10 percent for FFT and 36.88 percent for

RADIX of the $-to-$ misses must wait for main memory

latency to obtain the sharing information, and reductions of

14 percent for FFT and 11 percent for RADIX in average

latency are observed. Fortunately, unnecessary coherence

messages cannot appear for $-to-$ misses, even when the

third-level directory is accessed. This is because the

compressed sharing code used by this directory level (that

is to say, BT-SuT) is wide enough to exactly codify the

identity of a single sharer, which is the case for these misses.

ACACIO ET AL.: AN ARCHITECTURE FOR HIGH-PERFORMANCE SCALABLE SHARED-MEMORY MULTIPROCESSORS EXPLOITING ON-CHIP... 763

TABLE 7
How Inv Misses are Satisfied

TABLE 8
How Inv+Mem Misses are Satisfied

Fig. 8. Average $-to-$ miss latency.

6.1.2 Impact on Mem Miss Latencies

Fig. 9 shows the normalized average latencies for Mem
misses. For these misses, the directory must provide the
memory line directly from either the shared data cache (SDC)
or main memory. Therefore, unnecessary coherence mes-
sages cannot appear. Latency reductions of 45 percent for
BARNES, 16 percent for CHOLESKY, 26 percent for EM3D,
43 percent for MP3D, 29 percent for OCEAN, 21 percent for
UNSTRUCTURED, 37 percent for WATER-NSQ, and 40 percent
for WATER-SP are obtained for the LC-1 configuration. The
reason for the significant reductions observed in these
applications is that a large number of the Mem misses obtain
the memory line from the shared data cache and the
corresponding directory entry from one of the two first
directory levels (or the own shared data cache for lines in the
Uncached state), saving the access to the slower main memory
(see Table 6). Again, the former values are very similar to

those provided by the UC configuration. For FFT, the LC-1
configuration is unable to reduce the latency of Mem misses
since more than 93 percent of them must obtain the data from
main memory. When moving to the LC-2 configuration, this
percentage decreases and a reduction of 28 percent is
obtained. However, this reduction still remains far from the
potential found for theUC configuration (52 percent). Finally,
small latency reductions are obtained for RADIX when theUC
configuration is used (only 10 percent). As shown in Table 6, a
large percentage of the Mem misses suffered by this
application (62.96 percent) are for lines that are accessed for
the first time (cold misses), which prevents a shared data
cache with an unlimited number of entries from being able to
provide the memory line. The percentage of Mem misses
satisfied by main memory is even higher for LC-1 and LC-2
configurations, and latency reductions of 7 percent and
8 percent, respectively, are observed.

764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

Fig. 9. Average Mem miss latency.

Fig. 10. Average Inv miss latency.

Fig. 11. Average Inv+Mem miss latency.

6.1.3 Impact on Inv Miss Latencies

Fig. 10 shows the normalized average latency for Inv misses.
In this case, the directory must send invalidation messages
and receive their corresponding acknowledgments. There-
fore, the main component of the latency is caused by the
directory. For Inv misses, LC-1 and UC configurations obtain
virtually identical latency reductions for BARNES (20 per-
cent), CHOLESKY (15 percent), EM3D (26 percent), MP3D

(20 percent), UNSTRUCTURED (16 percent), WATER-NSQ

(15 percent), and WATER-SP (45 percent). As observed in
Table 7, 26 percent of the Inv misses in the LC-1 and LC-2
configurations must obtain sharing information from main
memory for RADIX application. In this case, the compressed
sharing code used in the third-level directory does not
increase the number of invalidation messages observed for
the base case, which explains the small difference between the
reduction obtained for the UC configuration and the ones
obtained for both the LC-1 and the LC-2 cases (only
10 percent). For FFT, again, an important fraction of the Inv
misses do not find directory information in the first or second-
level directories when the LC-1 configuration is used
(65.25 percent). In this case, however, the compression of
the third-level directory implies a loss of precision that
increases the number of invalidation messages sent per
invalidation event when compared with the base system and,
consequently, the average time needed to satisfy these misses.
This explains the significant latency increment (more than
40 percent) shown in Fig. 10. This performance degradation
practically disappears when the number of entries in the first
and second-level directories is increased and the LC-2
configuration can obtain the latency reduction of 23 percent
observed for the UC case. Finally, for OCEAN, 11 percent of
the Inv misses obtain directory information from the third
level when the LC-1 configuration is used. Moving to LC-2
reduces this fraction to 3 percent, and latency reductions very
close to those obtained with the UC configuration are seen
(24 percent for LC-2 and 30 percent for UC).

6.1.4 Impact on Inv+Mem Miss Latencies

Fig. 11 illustrates the normalized average latency for
Inv+Mem misses. When the LC-1 configuration is used,
important latency reductions are found for Inv+Mem misses
for BARNES (50 percent), CHOLESKY (20 percent), MP3D

(54 percent), UNSTRUCTURED (13 percent), WATER-NSQ

(32 percent), and WATER-SP (55 percent), which coincide
with the ones obtained for the UC case. As shown in Table 8,
this kind of miss was not found in the EM3D application. As
for the Inv misses, the use of the imprecise third-level

directory increases the latency of Inv+Mem misses for some
applications. In particular, when the LC-1 configuration is
used, latency degradations of more than 40 percent for FFT,
9 percent for OCEAN, and 20 percent for RADIX are observed.
These degradations are completely eliminated in FFT with the
use of the LC-2 configuration and the performance of the UC
case is obtained. However, the situation does not improve
much when moving to the LC-2 configuration in OCEAN and
RADIX, and 21.53 percent and 96.82 percent, respectively, of
the Inv+Mem misses must still obtain directory information
from main memory.

6.2 Impact on Execution Time

The ability of the proposed node architecture to reduce
application execution times will depend on the reductions
in the average latency for each miss type, the percentage of
L2 misses belonging to each category, and the weight these
misses have on the application execution time.

For the applications used in our study, Fig. 13 shows the
percentage of L2 misses belonging to each type, whereas
Figs. 12 and 14 illustrate the normalized average L2 miss
latency and execution time, respectively, for each one of the
configurations considered in this paper.

As shown in Fig. 12, our proposal slightly increases the
average latency due to the network in some applications (up
to 4 percent for WATER-SP) when compared with the base
configuration. This is caused by 1) the presence of unneces-
sary coherence messages and 2) the inclusion of the memory
line in all the cache-to-cache transfer responses and in the
write-back messages. However, important average L2 miss
latency reductions are obtained for those applications that
can take significant advantage of the on-chip integration of

ACACIO ET AL.: AN ARCHITECTURE FOR HIGH-PERFORMANCE SCALABLE SHARED-MEMORY MULTIPROCESSORS EXPLOITING ON-CHIP... 765

Fig. 12. Average L2 miss latency.

Fig. 13. Percentage of $-to-$, Inv, Mem, and Inv+Mem misses found in

the application used in this paper.

the first-level directory and the shared data cache. L2 misses
have been significantly accelerated in BARNES, MP3D,
OCEAN, WATER-NSQ, and WATER-SP, which motivates the
important reductions on the average L2 miss latency
observed for these applications (56 percent for BARNES,
49 percent for MP3D, 35 percent for OCEAN, 46 percent for
WATER-NSQ, and 47 percent for WATER-SP). These reductions
finally translate into significant improvements in terms of
execution time (reductions of 34 percent for BARNES,
53 percent for MP3D, 20 percent for OCEAN, 22 percent for
WATER-NSQ, and 30 percent for WATER-SP). More modest
reductions on L2 miss latencies were found for CHOLESKY,
EM3D, and UNSTRUCTURED, and reductions of 17 percent,
25 percent, and 18 percent, respectively, on average L2 miss
latency are obtained, resulting in reductions of 5 percent,
11 percent, and 13 percent, respectively, on execution time.
For FFT application, Inv and Inv+Mem misses represent more
than 45 percent of the total miss rate, as illustrated in Fig. 13.
Hence, the performance degradation observed for these
misses when using the LC-1 configuration translates into an
increase on the average L2 miss latency of 18 percent and,
finally, on execution time of 5 percent. This degradation
disappeared when moving to the LC-2 configuration and
reductions on average L2 miss latency and execution time
close to the ones reached with the UC configuration are
obtained (execution time reductions of 4 percent and 6 percent
for the LC-2 and UC cases, respectively). Finally, only Inv
misses could be significantly accelerated for RADIX applica-
tion (reduction of 25 percent for the LC-1 and LC-2
configurations). However, as shown in Fig. 13, only 1.72 per-
cent of the misses belong to this category, which explains the
low benefit observed for the LC-2 and UC configurations
(reductions of 3 percent and 5 percent on execution time,
respectively).

7 CONCLUSIONS

In this work, we take advantage of current technology
trends and propose and study a novel node architecture
especially designed to reduce the usually long L2 miss
latency by significantly decreasing the component of the
latency caused by the directory. Additionally, our approach
minimizes the memory overhead caused by directory
information.

Our proposal replaces the traditional directory with a
novel three-level directory architecture and adds a small
shared data to each one of the nodes that form the
multiprocessor. The first-level directory as well as the small
shared data cache are integrated into the processor chip of

every node, which enhances performance by decreasing the
time needed to obtain directory information and memory
lines. On the other hand, the memory overhead entailed by
directory information is significantly decreased by having
two directory levels out of the processor chip.

In order to better understand the reasons for perfor-
mance improvement, a taxonomy of the L2 misses accord-
ing to the actions performed by the directory to satisfy them
has been presented. Then, we show that a cc-NUMA
multiprocessor using the proposed node architecture can
achieve important reductions in the average miss latency of
each one of the categories of the taxonomy when compared
with a traditional cc-NUMA multiprocessor in which each
node includes the coherence controller into the processor
chip. Finally, these reductions translate into important
improvements in the application execution times (reduc-
tions of up to 53 percent).

In general, we have found that with the use of small first
and second-level directories and SDC, most L2 misses can
be significantly accelerated in applications that exhibit high
temporal locality on the references made by several nodes
to the directory information. On the other hand, other
applications such as FFT, which mainly exhibit spatial
locality, require bigger structures to ensure that once a
certain memory line is requested, directory information will
be present when the line is subsequently referenced.

The reported improvement in performance could make
our architecture competitive for medium-scale systems (64
to 256 processors) at the same time that scalability to larger
systems is guaranteed. In addition, the simplicity of our
proposal and the fact that it could be easily introduced in
commercial processors cuts down its cost, unlike the
expensive sophisticated network designs required by
moderate-scale SMPs.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their detailed comments and valuable suggestions, which
have helped to improve the quality of the paper. This research
has been carried out using the resources of the Centre de
Computació i Comunicacionsde Catalunya (CESCA-CEPBA)
as well as the SGI Origin 2000 of the Universitat de Valencia.
This work has been supported in part by the Spanish CICYT

under grant TIC2003-08154-C06-03. José Duato is supported
in part by a fellowship from the Fundación Séneca (Comuni-
dad Autónoma de Murcia, Spain).

REFERENCES

[1] M.E. Acacio, J. González, J.M. Garcı́a, and J. Duato, “A New
Scalable Directory Architecture for Large-Scale Multiprocessors,”
Proc. Seventh Int’l Symp. High Performance Computer Architecture,
pp. 97-106, Jan. 2001.

[2] M.M. Martin, D.J. Sorin, A. Ailamaki, A.R. Alameldeen, R.M.
Dickson, C.J. Mauer, K.E. Moore, M. Plakal, M.D. Hill, and D.A.
Wood, “Timestamp Snooping: An Approach for Extending
SMPS,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 25-36, Nov. 2000.

[3] H. Hadimioglu, D. Kaeli, and F. Lombardi, “Introduction to the
Special Issue on High Performance Memory Systems,” IEEE Trans.
Computers, vol. 50, no. 11, pp. 1103-1105, Nov. 2001.

[4] A. Charlesworth, “Extending the SMP Envelope,” IEEE Micro,
vol. 18, no. 1, pp. 39-49, Jan./Feb. 1998.

766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

Fig. 14. Normalized execution times.

[5] L. Gwennap, “Alpha 21364 to Ease Memory Bottleneck,” Micro-
processor Report, vol. 12, no. 14, pp. 12-15, Oct. 1998.

[6] T. Lovett and R. Clapp, “Sting: A cc-Numa Computer System for
the Commercial Marketplace,” Proc. 23rd Int’l Symp. Computer
Architecture, pp. 308-317, 1996.

[7] M.E. Acacio, J. González, J.M. Garcı́a, and J. Duato, “A Novel
Approach to Reduce L2 Miss Latency in Shared-Memory Multi-
processors,” Proc. 16th Int’l Parallel and Distributed Processing
Symp., Apr. 2002.

[8] The BlueGene/L Team, “An Overview of the Bluegene/L Super-
computer,” Proc. Int’l SC2002 High Performance Networking and
Computing Conf., Nov. 2002.

[9] A. Ahmed, P. Conway, B. Hughes, and F. Weber, “AMD
Opteron2 Shared Memory MP Systems,” Proc. 14th HotChips
Symp., Aug. 2002.

[10] J. Torrellas, L. Yang, and A.T. Nguyen, “Toward a Cost-Effective
DSM Organization that Exploits Processor-Memory Integration,”
Proc. Sixth Int’l Symp. High Performance Computer Architecture,
pp. 15-25, Jan. 2000.

[11] L.A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S.
Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A
Scalable Architecture Based on Single-Chip Multiprocessing,”
Proc. 27th Int’l Symp. Computer Architecture, pp. 282-293, June 2000.

[12] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K.
Olukotun, “The Stanford Hydra CMP,” IEEE Micro, vol. 20, no. 2,
pp. 71-84, Mar./Apr. 2000.

[13] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “Power4
System Microarchitecture,” IBM J. Research and Development,
vol. 46, no. 1, pp. 5-25, Jan. 2002.

[14] P. Stenström, M. Brorsson, F. Dahlgren, H. Grahn, and M. Dubois,
“Boosting the Performance of Shared Memory Multiprocessors,”
Computer, vol. 30, no. 7, pp. 63-70, July 1997.

[15] R. Iyer and L.N. Bhuyan, “Switch Cache: A Framework for
Improving the Remote Memory Access Latency of cc-Numa
Multiprocessors,” Proc. Fifth Int’l Symp. High Performance Computer
Architecture, pp. 152-160, Jan. 1999.

[16] R. Iyer, L.N. Bhuyan, and A. Nanda, “Using Switch Directories to
Speed up Cache-to-Cache Transfers in cc-Numa Multiprocessors,”
Proc. 14th Int’l Parallel and Distributed Processing Symp., pp. 721-
728, May 2000.

[17] M.E. Acacio, J. González, J.M. Garcı́a, and J. Duato, “Owner
Prediction for Accelerating Cache-to-Cache Transfer Misses in cc-
Numa Multiprocessors,” Proc. Int’l SC2002 High Performance
Networking and Computing Conf., Nov. 2002.

[18] S. Kaxiras and J.R. Goodman, “Improving cc-Numa Performance
Using Instruction-Based Prediction,” Proc. Fifth Int’l Symp. High
Performance Computer Architecture, pp. 161-170, Jan. 1999.

[19] A.C. Lai and B. Falsafi, “Selective, Accurate, and Timely Self-
Invalidation Using Last-Touch Prediction,” Proc. 27th Int’l Symp.
Computer Architecture, pp. 139-148, May 2000.

[20] M.M. Martin, P.J. Harper, D.J. Sorin, M.D. Hill, and D.A. Wood,
“Using Destination-Set Prediction to Improve the Latency/
Bandwidth Tradeoff in Shared Memory Multiprocessors,” Proc.
30th Int’l Symp. Computer Architecture, June 2003.

[21] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, and M.S. Lam, “The Stanford Dash
Multiprocessor,” Computer, vol. 25, no. 3, pp. 63-79, Mar. 1992.

[22] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, W. Radke,
and S. Vishin, “The s3.mp Scalable Shared Memory Multiproces-
sor,” Proc. Int’l Conf. Parallel Processing, pp. 1-10, July 1995.

[23] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing Memory and
Traffic Requirements for Scalable Directory-Based Cache Coher-
ence Schemes,” Proc. Int’l Conf. Parallel Processing, pp. 312-321,
Aug. 1990.

[24] B. O’Krafka and A. Newton, “An Empirical Evaluation of Two
Memory-Efficient Directory Methods,” Proc. 17th Int’l Symp.
Computer Architecture, pp. 138-147, May 1990.

[25] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A.
Gupta, M. Rosenblum, and J. Hennessy, “The Stanford Flash
Multiprocessor,” Proc. 21st Int’l Symp. Computer Architecture,
pp. 302-313, Apr. 1994.

[26] M.M. Michael and A.K. Nanda, “Design and Performance of
Directory Caches for Scalable Shared Memory Multiprocessors,”
Proc. Fifth Int’l Symp. High Performance Computer Architecture,
pp. 142-151, Jan. 1999.

[27] A.K. Nanda, A.-T. Nguyen, M.M. Michael, and D.J. Joseph, “High-
Throughput Coherence Control and Hardware Messaging in
Everest,” IBM J. Research and Development, vol. 45, no. 2, pp. 229-
244, Mar. 2001.

[28] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An
Evaluation of Directory Schemes for Cache Coherence,” Proc. 15th
Int’l Symp. Computer Architecture, pp. 280-289, May 1988.

[29] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Limitless Direc-
tories: A Scalable Cache Coherence Scheme,” Proc. Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 224-234, Apr. 1991.

[30] R. Simoni and M. Horowitz, “Dynamic Pointer Allocation for
Scalable Cache Coherence Directories,” Proc. Int’l Symp. Shared
Memory Multiprocessing, pp. 72-81, Apr. 1991.

[31] J. Laudon and D. Lenoski, “The SGI Origin: A ccnuma Highly
Scalable Server,” Proc. 24th Int’l Symp. Computer Architecture,
pp. 241-251, June 1997.

[32] A. Gupta and W.-D. Weber, “Cache Invalidation Patterns in
Shared-Memory Multiprocessors,” IEEE Trans. Computers, vol. 41,
no. 7, pp. 794-810, July 1992.

[33] D.E. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architec-
ture: A Hardware/Software Approach. Kaufmann Publishers, Inc.,
1999.

[34] V. Pai, P. Ranganathan, and S. Adve, “Rsim Reference Manual
Version 1.0,” Technical Report 9705, Dept. of Electrical and
Computer Eng., Rice Univ., Aug. 1997.

[35] M.D. Hill, “Multiprocessors Should Support Simple Memory-
Consistency Models,” Computer, vol. 31, no. 8, pp. 28-34, Aug.
1998.

[36] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
Splash-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Int’l Symp. Computer Architecture, pp. 24-
36, June 1995.

[37] J. Singh, W.-D. Weber, and A. Gupta, “Splash: Stanford Parallel
Applications for Shared-Memory,” Computer Architecture News,
vol. 20, no. 1, pp. 5-44, Mar. 1992.

Manuel E. Acacio received the MS and PhD
degrees in computer science from the Universi-
dad de Murcia, Spain, in 1998 and 2003,
respectively. He joined the Computer Engineer-
ing Department, Universidad de Murcia, in 1998,
where he is currently an assistant professor of
computer architecture and technology. His re-
search interests include prediction and specula-
tion in multiprocessor memory systems,
multiprocessor-on-a-chip architectures, and

power-aware cache-coherence protocol design.

José González received the MS and PhD
degrees from the Universitat Politecnica de
Catalunya (UPC). In January 2000, he joined
the Computer Engineering Department of the
University of Murcia, Spain, and became an
associate professor in June 2001. In March
2002, he joined the Intel Barcelona Research
Center, where he is a senior researcher.
Currently, he is working in new paradigms for
the IA-32 family, in particular, thermal and

power-aware clustered microarchitectures. He is a member of the IEEE
Computer Society.

ACACIO ET AL.: AN ARCHITECTURE FOR HIGH-PERFORMANCE SCALABLE SHARED-MEMORY MULTIPROCESSORS EXPLOITING ON-CHIP... 767

José M. Garcı́a received the MS and the PhD
degrees in electrical engineering from the
Technical University of Valencia, in 1987 and
1991, respectively. In 1987, he joined the
Computer Science Department at the University
of Castilla-La Mancha at the Campus of Alba-
cete, Spain. From 1987 to 1993, he was an
assistant professor of computer architecture. In
1994, he became an associate professor at the
University of Murcia, Spain. From 1995 to 1997,

he served as vice-dean of the School of Computer Science. Currently,
he is the director of the Computer Engineering Department, and also the
head of the Research Group on Parallel Computing and Architecture. He
has developed several courses on computer structure, peripheral
devices, computer architecture, and multicomputer design. His current
research interests include multiprocessors systems and grid computing.
He has published more than 50 refereed papers in different journals and
conferences in these fields. Dr. Garcia is a member of several
international associations such as the IEEE and ACM, and also a
member of some European associations (Euromicro and ATI).

José Duato received the MS and PhD degrees
in electrical engineering from the Technical
University of Valencia, Spain, in 1981 and
1985, respectively. Currently, Dr. Duato is a
professor in the Department of Computer En-
gineering (DISCA) at the same university. He
was also an adjunct professor in the Department
of Computer and Information Science, The Ohio
State University. His current research interests
include interconnection networks, multiproces-

sor architectures, networks of workstations, and switch fabrics for IP
routers. He has published more than 250 refereed papers. He proposed
the first theory of deadlock-free adaptive routing for wormhole networks.
Versions of this theory have been used in the design of the routing
algorithms for the MIT Reliable Router, the Cray T3E supercomputer,
the internal router of the Alpha 21364 microprocessor, and the
BlueGene/L supercomputer. He is the first author of the book
Interconnection Networks: An Engineering Approach. This book was
coauthored by Professor Sudhakar Yalamanchili, from the Georgia
Institute of Technology and Professor Lionel Ni, from Michigan State
University. Dr. Duato served as a member of the editorial boards of IEEE
Transactions on Parallel and Distributed Systems and IEEE Transac-
tions on Computers. He has been the general cochair for the 2001
International Conference on Parallel Processing and is the program
committee chair for the 10th International Symposium on High
Performance Computer Architecture (HPCA-10). Also, he served as
cochair, member of the steering committee, vice-chair, or member of the
program committee in more than 40 conferences, including the most
prestigious conferences in his area (HPCA, ISCA, IPPS/SPDP, ICPP,
ICDCS, Europar, HiPC). He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 8, AUGUST 2004

