
PEPE: A Trace-Driven Simulator to Evaluate

Recon�gurable Multicomputer Architectures?

Jos�e M. Garc��a1, Jos�e L. S�anchez2, Pascual Gonz�alez2

1 Universidad de Murcia, Facultad de Inform�atica
Campus de Espinardo, 30071 Murcia, Spain

jmgarcia@dif.um.es
2 Universidad de Castilla-La Mancha, Escuela Polit�ecnica

Campus Universitario, 02071 Albacete, Spain

fjsanchez,pgonzalezg@info-ab.uclm.es

Abstract. Recent research on parallel systems with distributed memory

has shown that the most di�cult problem for system designers and users

is related with the interconnection network. In this paper, we describe
a programming and evaluating tool for multicomputers, named PEPE.

It allows the execution of parallel programs and the evaluation of the

network architecture. PEPE takes a parallel program as input and gen-
erates a communication trace obtained from this program. Next, PEPE

simulates and evaluates the behaviour of a multicomputer architecture for

this trace. The most important parameters of the multicomputer can be
adjusted by the user. PEPE generates performance estimates and quality

measures for the interconnection network. Another important feature of

this tool is that it allows us to evaluate networks whose topology is recon-
�gurable. Recon�gurable networks are good alternatives to the classical

approach. However, only recently this idea became the focus of much in-

terest, due to technological developments (optical interconnection) that

made it more viable. A recon�gurable network yields a variety of pos-

sible topologies for the network and enables the program to exploit this

topological variety to speed up the computation.

1 Introduction

The growing demand for high processing power in various scienti�c and engin-

eering applications has made multiprocessor architectures increasingly popular.

This is exempli�ed by the proliferation of a variety of parallel machines with some

diverse design philosophies. This diversity in architectural design has created a

need for developing performance models and simulators for multiprocessors, not

only to analyze the e�ectiveness of a design, but also to reduce the design time.

Distributed memory multiprocessors (often called multicomputers) are in-

creasingly being used for providing high levels of performance for scienti�c ap-

plications. The distributed memory machines o�er signi�cant advantages over

their shared memory counterparts in terms of cost and scalability, but it is a

? This work was supported in part by CICYT under Grant TIC94-0510-C02-02



widely accepted fact that they are much more di�cult to program than shared

memory machines. As a result, the programmer has to distribute code and data

on processors himself, and manage communication among processes (or tasks)

explicitly.

Simulators provide many advantages over running directly on a multipro-

cessor, including the cost e�ectiveness of workstations, the ability to exploit

powerful sequential debuggers, the support for non-intrusive data collection and

invariant checking, and the versatility of simulation. Several simulators as Pie [12]

or Paret [11] have been developed. Usually these projects are aimed at develop-

ing programming environments and tools for the programmer, rather than tools

designed to evaluate the architecture of the system. Newer high-performance sim-

ulators such as TangoLite [4] or Proteus [2] consider the architectural support of

the system showing several results about the performance of parallel machines.

A very interesting way of simulation is to evaluate the behaviour of an ar-

chitecture using a trace taken from adequated algorithms. Trace-driven simu-

lations, which evaluate network performance on actual communication streams

taken from characteristic programs, are the most reliable way for network design

evaluation. These simulations require a great computation power, because of the

many di�erent design possibilities that must be simulated, and because of the

length of the communication traces that drive the simulation. We have developed

a simulator to evaluate the main features of the interconnection network, because

in this way it can more faithfully represent the hardware implementation, tak-

ing into account details like channel multiplexing, partial bu�ering and delays

in blocked messages. Furthermore, we are very interested in evaluating some

new features in parallel machines, mainly recon�gurable architectures, that is,

multicomputers whose networks can change their topology dynamically.

In this paper we describe our environment called PEPE (this acronym stands

for Programming Environment for Parallel Execution). PEPE provides a user-

friendly visual interface for all phases of parallel program development, i.e. par-

allel algorithm design, coding, debugging, task mapping, execution control and

evaluation of some architecture parameters.

Our environment is di�erent from previous work because of two major fea-

tures. First, PEPE allows us to evaluate the network for a communication trace

taken from proper scienti�c problems we have previously coded in the environ-

ment. That is, we can evaluate and modify the behaviour of the interconnection

network for real problems and not only for predetermined workloads. Second, it

allows us to evaluate the performance of a multicomputer with a recon�gurable

interconnection network. A completely connected interconnection network can

match the communication requirements of any application, but it is too expens-

ive to build even for a moderate number of nodes. Recon�gurable interconnection

networks are alternatives to complete connections. This paradigm is suitable with

either electronic or optical interconnections, which are applicable to a large class

of networks. Some researchers believe that the immediate goal in the development

of computer networks should be hybrid optical-electronic systems which combine

the advantages of both electronic and optical technologies while avoiding their



disadvantages. Recon�gurable networks are especially suitable when these tech-

nologies are combined.

Up to now, we only know another related environment for parallel program-

ming on recon�gurable multicomputers. It is described in [1]. This environment

is devoted to phase-recon�gurable programs, that is, programs must be imple-

mented as series of phases, and each phase is assumed to be separated from

another one by synchronization - recon�guration points. These points select the

adequated topology for each phase. Additionally, this tool is language-oriented.

Our environment focuses on testing the di�erent parameters of dynamically re-

con�gurable networks. A dynamically recon�gurable network means that a net-

work can vary its topology arbitrarily at runtime. In this approach, any arbitrary

topology is allowed, so that the interconnection network can easily match the

communication requirements of a given algorithm. In our environment, we can

study in depth the main concepts and options about dynamically recon�gurable

networks, their limitations and tradeo�s.

The rest of the paper is arranged as follows. In section 2 the overall environ-

ment is described and its di�erent parts are shown. The programming style and

several issues related to it are detailed in section 3. The structure of the traces is

discussed in section 4. In section 5, we present the network simulator and explain

the main results we can obtain with it. Finally, we outline some conclusions.

2 An Overview of PEPE

In this section we are going to present PEPE. The key features of this environ-

ment are simplicity and completeness. Our main goal has been to obtain a 
exible

system which allows us an easy and e�cient way to evaluate the multicomputer

recon�gurable architecture.

Our environment has been developed on a workstation using C-language.

PEPE provides a user-friendly visual interface for all phases of parallel program

development and tunning. This graphical interface (�gure 1) has been designed

with the aim of keeping it really comfortable to the user, following the styles

adopted nowadays by most of the human-oriented interfaces [9].

In our environment, the user gets tools for easy experimentation with both,

di�erent parallelization possibilities and di�erent network parameters. With this

methodology, the programmer can analyze very quickly several parallelization

strategies and evaluate these strategies with tools for performance analysis.

PEPE simulates the execution of a parallel algorithm at two levels. At the

�rst level, we are interested in verifying the behaviour of the parallel algorithm

and studying the di�erent strategies of parallelization, as well as the problems

that arise when the parallel algorithms are coded and executed, such as deadlock,

livelock, etc. For this, the execution of the parallel algorithm is simulated over a

virtual architecture. At the second level, the behaviour of the recon�gurable net-

work is studied. For this, we start with the communication pattern produced by

the parallel algorithm and the performing of the network for this communication

pattern is simulated. At this level, PEPE allows us to use di�erent parameters



Fig. 1. PEPE's graphical interface

for the recon�gurable network. These levels give rise to the two phases of the

simulator.

PEPE has two main phases and several modules within it. The �rst phase is

more language-oriented, and it allows us to code, simulate and optimize a paral-

lel program. In this phase, interactive tools for speci�cation, coding, compiling,

debugging and testing were developed. This phase is architecture independent.

The second phase has several tools for mapping and evaluating the recon�gurable

architecture. We can vary several network parameters such as interconnection to-

pology and routing algorithm. In �gure 2 we show the modules of PEPE. The

link between the phases is an intermediate code that is generated as an optional

result of the �rst phase. This intermediate code is a trace of the communication

pattern of the source program. This allows the user to use the environment as

a whole or each phase singly. For example, we can execute only the �rst phase

for testing the parallel behaviour of an algorithm on an ideal multicomputer. We

can also obtain an intermediate code from a key parallel algorithm. Then, we

can execute several times the second phase from this trace with di�erent network

parameters to evaluate and tune the network for this key algorithm.



I NT ER M E DI ATE

C ODE

NET W OR K

I NT E R ME DIAT E

C ODE

NET W OR K

SI M ULAT OR
MAPPI NG

PARALLEL ALGORITHM

RESULTS

PHASE 1

FRONT - END

PHASE 2

BACK - END

PAR AL LE L

SOURCE

PROGRAM

DEBUG

EXECUTION

OPTIMIZATION
COMPILE

EDIT
PROCESS

RESULTS

NETWORK

PERFORMANCE

Fig. 2. Modules of PEPE

3 The Programming Tool

In this section we outline some important features of the �rst phase of PEPE.

In this module we try to overcome the di�culty of programming multicomputers

with an integrated approach and virtual concepts. The programming tool aims

at increasing programming productivity. It takes a user parallel program as its

input and tries to simulate its parallel execution on a virtual multicomputer. In

this way, the user can test his parallel algorithmand, in case (s)he is not satis�ed,

come back to code a new parallel version.

In this phase it is important to abstract from speci�c architectural details

such as topology, number of processors, etc. This module supports the concepts

of virtual processor and virtual network. The user must take this into account,

since the correct execution of a program must not depend upon the topology of

the interconnection network.

Usually, the parallel programming style for most of these systems corresponds

to the SPMD model [10], in which each processor asynchronously executes the

same program but operates on distinct data items. PEPE uses the SPMD model

and an extension of Pascal for coding parallel algorithms. This parallel language

[7] which we have developed, is based on standard Pascal with some extensions

to allow an easy and elegant programming of parallel algorithms, consisting of

processes which communicate by means of message-passing. Finally, PEPE uses

static scheduling. All processes must be created before starting execution.

For debugging parallel programs, PEPE's environment o�ers a parallel debug-

ger. With this debugger the programmer gets a global view of the parallel system.

Some features are breakpoints, the inspection of program states, displaying the



contents of data structures and the state of each process or the modi�cation of

the contents of data structures.

4 The Communication Trace

At the end of the �rst phase, we can optionally generate an intermediate code

(or trace) to evaluate the network performance for the parallel algorithm. That

is, the network performance can be evaluated from the communication pattern

obtained from a parallel algorithm. The trace records the set of messages that

must be sent through the network. As we will see, this trace is independent of

the timing parameters of the network.

The trace contain a complete information for each message. It consists of �ve

�elds whose meaning is detailed below. Additionally, each message has a message

identi�er not included in the trace. It is equal to the row number where it appears

in the trace.

a) Source Process. Indicates the process that sent this message.

b) Destination Process. Indicates the process for which the message is destined.

c) Message Length. This �eld indicates the number of data bytes. It does not

include control information.

d) Injection Time. Indicates the instant at which the message was injected into

the network. This value is given in clock cycles (clock frecuency is a simulator

parameter). This value can be absolute or relative as detailed below.

e) Dependency. This �eld indicates if a message is dependent on the reception

of another message or independent. If it is independent, the value of this �eld

is -1; otherwise, its value indicates the identi�er of the message on which it

depends.

Next, we are going to explain the last two �elds in detail. When a paral-

lel program starts execution, some processes send messages. Upon reception of

those messages, some processes perform some computations, eventually sending

more messages. Thus, there are two types of messages in a parallel algorithm:

dependent and independent. A message is independent of any other message if a

process can send this message without having to wait for the arrival of another

message. On the opposite side, a message m is dependent on another message m'

when a process p receives message m', performs some computations and sends

message m. This dependency arises either because message m makes use of the

information contained in message m', or because process p has no way to reach

the instruction that sends message m without receiving message m' before, even

if m does not use the information in m'.

Please, note that in many cases this dependency cannot be statically resolved

by the compiler, and it is necessary to wait until execution time to know which

ones are the dependencies between messages. Thus, communication traces must

be generated during the simulation of the execution of the parallel algorithm.

Figure 3 shows the code for a process in three di�erent cases. In the �rst case,

the message is sent independently of any other message, because the process does



Send (message)

Receive (message)

then else
if a > 0

Send (message)

Send (message)

Receive (message)

a) Independent b) Dependent c) Intermediate case

Fig. 3. Types of messages: dependent and independent messages

not need to receive any other message to execute the send instruction. Case b)

shows a dependent message; the process has to receive a message. After pro-

cessing it, the send instruction is executed. In case c), the dependency between

messages is determined at run time. In this case, depending on the value of the

variable a, the message to send will be dependent or independent. As the com-

munication trace of the algorithm is generated during the simulated execution,

this trace will always be correctly generated for the di�erent input values.

The value of the �eld that contains the time at which a message is sent can be

absolute or relative. An absolute value indicates the moment at which a message is

sent. At this time, the network simulator will inject the message into the network.

Obviously, for independent messages, this �eld will always contain an absolute

value. On the other hand, a relative value indicates the time since the arrival

of a certain message until the departure of the message on which it depends.

Therefore, the network simulator will spend a time equal to this value between

the arrival of a message at a node and the injection of the dependent message.

For dependent messages, the injection time is always taken as a relative value.

The injection time is obtain by computing the time that the simulated pro-

cessor needs to execute the instructions before the instruction send (absolute

value), or between a pair of dependent instructions send and receive (relative

value). Our environment allows us to choose among the execution times of some

commercial processors like transputers and others. The use of dependent mes-

sages allows us to use the same traces to simulate di�erent network parameters.

5 The Network Simulator

Next, we are going to describe the second phase of our environment, the in-

terconnection network simulator. The unique feature included in our simulator

is that it permits the network to be dynamically recon�gured. A recon�gurable

network presents some advantages, the most interesting one being that it can



easily match the network topology to the communication requirements of a given

program, properly exploiting the locality in communications; moreover, program-

ming a parallel application becomes more independent of the target architecture

because the interconnection network adapts to the application dynamically.

In our simulator we can evaluate the performance of the interconnection net-

work for parallel applications and not only for synthetic workloads. This allows us

to vary the parameters of the recon�gurable network and study how to improve

its behaviour in real cases. This phase of the simulator consists of two modules,

the mapping module and the network simulator module. We are going to detail

the features of each one of them.

Source
Node

Dest.
Node

Message
Length

Injection
Time

Depen-
dency

.

.

0

5

8

9
.
.

.

.

0

0

9

0
.
.

.

.

18

34

57

63
.
.

.

.

16

16

32

64
.
.

.

.

-1

-1

30

56
.
.

NETWORK

SIMULATOR
MAPPING

Fig. 4. Intermediate code after the mapping

The mapping module is the �rst one of the second phase and is responsible

for translating the process-oriented communication trace to a processor-oriented

intermediate code according to some pre-de�ned mapping functions.

The intermediate code output by this module is slightly di�erent from the

communication trace. Now, the �rst two �elds are related to processors (source

and destination processor) instaed of processes. The remaining code is unchanged.

Figure 4 shows an example of this intermediate code. With this module, we can

evaluate several mapping algorithms for a given parallel algorithm.

The last module is properly the network simulator. It is an improved version of

a previous simulator [6] that supports network recon�guration. It can simulate at

the 
it level di�erent topologies and network sizes up to 16K nodes. The topology

of the network is de�nable by the user. Each node consists of a processor, its local

memory, a router, a crossbar and several channels. Message reception is bu�ered,

allowing the storage of messages independently of the processes that must receive

them. The simulator takes into account memory contention, limiting the number

of messages that can be sent or received simultaneously. Also, messages crossing

a node do not consume any memory bandwidth.

Wormhole routing is used. In wormhole routing [5] a message is descomposed



into small data units (called 
its). The header 
it governs the route. As the

header advances along the speci�ed route, the remaining 
its follow in a pipeline

fashion. The pipelined nature of wormhole routing makes the message latency

largely insensitive to the distance in the message-passing network.

The crossbar allows multiple messages to traverse a node simultaneously

without interference. It is con�gured by the router each time a successful routing

is made. It takes one clock cycle to transfer a 
it from an input queue to an

output queue. Physical channels have a bandwidth equal to one 
it per clock

cycle and can be split into up to four virtual channels. Each virtual channel has

queues of equal size at both ends. The total queue size associated with each phys-

ical channel is held constant. Virtual channels are assigned the physical channel

cyclically, only if they can transfer a 
it. So, channel bandwidth is shared among

the virtual channels requesting it. It should be noted that blocked messages and

messages waiting for the router do not consume any channel bandwidth.

The most important performance measures obtained with our environment

are delay, latency and throughput. Delay is the additional latency required to

transfer a message with respect to an idle network. It is measured in clock cycles.

The message latency lasts since the message is injected into the network until

the last 
it is received at the destination node. An idle network means a network

without message tra�c and, thus, without channel multiplexing. Throughput is

usually de�ned as the maximum amount of information delivered per time unit.

The network recon�guration is transparent to the user, being handled by sev-

eral recon�guration algorithms that are executed as part of the run-time kernel

of each node. This class of recon�guration is not restricted to a particular ap-

plication, being very well suited for parallel applications whose communication

pattern varies over time. The goal of the network recon�guration is to reduce

the congestion of the network. For this, when the tra�c between a pair of nodes

is intense, the recon�guration algorithm will try to put the source node close

to the destination node to reduce the tra�c through the network and, therefore,

to reduce the congestion that may have been produced. The recon�guration al-

gorithm decides when a change must be carried out by means of a cost function.

The network recon�guration is carried out in a decentralized way, that is, each

node is responsible for trying to �nd its best position in the network depending

on the model of communication. Also, recon�guration is limited, preserving the

original topology. There are several di�erent parameters [8] that can be varied

to adjust how the recon�guration is performed.

With recon�gurable networks, we want to reduce the latency and delay and to

increase the throughput. Also, we want to have a small number of changes to keep

the recon�guration cost low. The quality of each recon�guration is measured by

the simulator.

6 Conclusions

Application development via high-performance simulation o�ers many advant-

ages. Simulators can provide a 
exible, cost-e�ective, interactive debugging en-



vironment that combines traditional debugging features with completely nonin-

trusive data collection.

We have presented an environment for evaluating the performance of mul-

ticomputers. Our environment, unlike most of the earlier work, captures both

the communication pattern of a given algorithm and the most important features

of the interconnection network, allowing even the dynamic recon�guration of the

network. This feature is a valid alternative to solve the communication bottleneck

problem. By means of using a recon�gurable topology, the principle of locality in

communications is exploited, leading to an improvement in network latency and

throughput.

Until now, the study of these features was di�cult because there were no

tools that permited varying the di�erent parameters of recon�gurable networks.

In this paper, a system that solves this problem and opens a way for studying

recon�gurable networks has been presented. A recon�gurable network yields a

variety of possible topologies for the network and enables the program to exploit

this topological variety in order to speed up the computation [3].

References

1. Adamo, J.M., Trejo, L.: Programming environment for phase-recon�gurable par-

allel programming on supernode. Journal of Parallel and Distributed Computing.
23 (1994) 278{292

2. Brewer, E.A., Dellarocas, C.N., Colbrook, A., Weihl, W.E.: Proteus: A high-

performance parallel-architecture simulator. In Proc. 1992 ACM Sigmetrics and
Performance '92 Conference, (1992) 247{248

3. Ben-Asher, Y., Peleg, D., Ramaswami, R., Schuster, A.: The power of recon�gur-
ation. Journal of Parallel and Distributed Computing, 13 (1991) 139{153

4. Davis, H., Goldschmidt, S.R., Hennesy, J.: Multiprocessor simulation and tracing

using Tango. In Proc. of the Int. Conf. on Parallel Processing, (1991) II99{II107
5. Dally, W.J., Seitz, C.L.: Deadlock-free message-routing in multiprocessor intercon-

nection networks. IEEE Transactions on Computers, C-36, No. 5 (1987) 547{553

6. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks.

IEEE Transactions on Parallel and Distributed Systems, 4, No. 11 (1993) 1{12

7. Garc��a, J.M.: A new language for multicomputer programming. SIGPLAN Notices,

6 (1992) 47{53
8. Garc��a, J.M., Duato, J.: Dynamic recon�guration of multicomputer networks: Lim-

itations and tradeo�s. Euromicro Workshop on Parallel and Distributed Processing,

IEEE Computer Society Press, (1993) 317-323
9. Hartson, H.R., Hix, D.: Human-computer interface development: Concepts and

systems. ACM Computing Surveys, 21, No. 1 (1989)

10. Karp, A.: Programming for parallelism. IEEE Computer, (1987) 43{57
11. Nichols, K.M., Edmark, J.T.: Modeling multicomputer systems with PARET. IEEE

Computer, (1988) 39{48

12. Segall, Z., Rudolph, L.: PIE: A programming and instrumentation environment for
parallel processing. IEEE Software, (1985) 22{37

This article was processed using the LATEX macro package with LLNCS style


