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Modelling

What: the execution time of parallel routines

Why: to accurately predict the execution time and decide how
to apply the routine, depending on the system and the
problem

How: parameterized routines and models, with theoretical or
empirical estimation of the parameters of the system and
selection of the routine parameters at execution time
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Hybrid parallelism

Routines combining different sources of parallelism:

2-level parallelism with OpenMP

OpenMP+BLAS parallelism

CPU+GPU parallelism

There are possible extensions:
MPI+2lOpenMP+BLAS+MultiGPU...
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Applications

In the Scientific Computing and Parallel Programming (SCPP)
group at the University of Murcia we work on parallel computing
applications and modelling and auto-tuning of parallel routines
(http://dis.um.es/˜domingo/investigacion.html)

In this presentation we summarize our on-going work in
applications with hybrid-parallelism routines:

Linear algebra

Metaheuristics

CPU+GPU
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Applications: Linear algebra

Basic routines: matrix multiplication, factorizations

with OpenMP+BLAS parallelism

in large NUMA systems

to be used in large computational problems
(electromagnetism, statistic models...)

Collaboration with other members of the SCPP group:
Jesús Cámara
Javier Cuenca
Luis-Pedro Garćıa (Polytechnic University of Cartagena)
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Applications: Metaheuristics

Parameterized scheme of metaheuristics (multiple
metaheuristics)

with independent parallelization of the functions in the scheme

and parallelism parameters.

With 2-level OpenMP parallelism.

Applied to:

Simultaneous Equations Models, p-hub problem,
tasks-to-processors (Javier Cuenca; Jose J. López-Esṕın,
University Miguel Hernández; Francisco Almeida, University of
La Laguna; Melquiades Pérez-Pérez, University of Gran
Canaria)
Electrical consumption in exploitation of wells (José-Mat́ıas
Cutillas-Lozano; Luis-Gabino Cutillas-Lozano, Municipalized
water of Alicante)
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Applications: CPU+GPU

Combination of OpenMP and GPU or MultiGPU parallelism

preliminary analysis.

How to model?

Scientific problems:

Green functions in Electromagnetism (Carlos Pérez-Alcaraz;
Alejandro Álvarez-Melcón, Fernando D. Quesada, Polytechnic
University of Cartagena)
Simultaneous Equations Models (Jose J. López-Esṕın; Carla
Raḿırez, Antonio M. Vidal, Polytechnic University of Valencia)
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General ideas

Scientific and engineering problems solved with large parallel
systems: NUMA with cores sharing a hierarchical memory

Kernel of the computation: BLAS multithread
Degradation in the performance when the system size
increases

Our goal:
Nested parallelism: OpenMP+BLAS
Model of the execution time and auto-tuning methodology

Experiments with matrix multiplication
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Computational systems

Ben:
Part of Ben-Arabı́ of the Supercomputing Center of Murcia.
NUMA system with 128 cores (16 nodes, each with four CPUs
dual core Itanium-2).
Hierarchical composition with crossbar interconnection.
The maximum memory bandwidth in a node is 17.1 GB/s and
with the crossbar commuters 34.5 GB/s.
Four different costs in the access to memory.
Pirineus:
In the Centre de Supercomputacio de Catalunya.
SGI Altix UV 1000, with 1344 cores (224 Intel Xeon six-core
serie 7500)
An interconnection NUMAlink 5 in a paired node 2D torus.
Saturno:
In the laboratory of the SCPP group.
24 cores: four nodes hexacore.
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BLAS multithread

A multithread version of the MKL dgemm routine
The optimum number of threads changes from one platform
to another
A number of threads equal to that of the available cores is not
a good option
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OpenMP+BLAS parallelism

Dynamic selection of threads: number of MKL threads used is
just one
No Dynamic Selection of threads: the highest speed-up by
combining OpenMP and MKL parallelism
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Auto-tuning methodology
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Design phase: MKL 1-level

Model: tdgemm = 2n3

p
kdgemm

kdgemm = αkdgemm NUMA(p) + (1− α)kdgemm M1

kdgemm M1 : when data are in the memory closest to the core

kdgemm NUMA: when data are in any level in the memory

α: directly proportional to the use by each thread of data assigned
to the other threads; inversely proportional to data reuse degree:

α = min{1, p(p−1)
n
}
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Design phase: MKL 1-level, general

Platform: L memory levels, cl cores have a similar access
speed to level l , 1 ≤ l ≤ L

kdgemm NUMA:
if 0 < p ≤ c1 then kdgemm NUMA(p) = kdgemm M1

if c1 < p ≤ c2 then

kdgemm NUMA(p) =
c1kdgemm M1

+(p−c1)kdgemm M2
p

...
if cL−1 < p ≤ cL then

kdgemm NUMA(p) =
∑L−2

l=0 (cl−cl−1)kdgemm Ml
+(p−cL−1)kdgemm ML

p
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Design phase: OpenMP+MKL

Model: t2L dgemm = 2n3

R
k2L dgemm

R = q ∗ p, q threads OpenMP, p threads MKL

k2L dgemm = αk2L dgemm NUMA(q, p) + (1− α)k2L dgemm M1

k2L dgemm M1 : when data are in the closest memory to the core

k2L dgemm NUMA: when data are at any level in the memory

k2L dgemm NUMA(q, p) =
kdgemm NUMA(R)+kdgemm NUMA(p)

2

α = min{1, R(R−1)
n
}
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Installation

Estimation of the parameters in the theoretical
model:kdgemm M1 , ..., kdgemm ML

For each memory level l , 0 ≤ l ≤ L, execute dgemm for a
number of threads pl , with cl−1 < pl ≤ cl
This execution time + routine model → kdgemm NUMA for pl
threads
kdgemm NUMA value for pl + kdgemm NUMA model + values of
kdgemm M1 , . . . kdgemm Ml−1

→ kdgemm Ml
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Comparison model-experimental: Ben
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Comparison model-experimental: Pirineus
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Execution
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Empirical installation

Not to design and use the model of the execution time

but to run some selected executions at installation time:

a large installation time can be necessary
For some problem sizes search the best parameters
combination:
exhaustive search
guided search: search in the most promising direction
Experiments with:

Installation set={500,1000,3000,5000}
Validation set={700,2000,4000}
Cores in the experiment:
Ben 96; Saturno 24; Pirineus 240
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Exhaustive search
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Guided search

There are local optima ⇒ use of a percentage of improvement to
stop the search:
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Guided search
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Installation time
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Linear algebra: perspectives

Higher level routines:

Use of basic routines in higher level routines (matrix
factorizations, in collaboration with Parallel Computing group
of the Polytechnic University of Valencia) and scientific
applications (microstrip circuits, Computational
Electromagnetism group, Polytechnic University of Cartagena).
Application of the techniques to higher level routines.

Improvement of the technique:

Better models and search techniques.
Combination of modelling and search.
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Parallel-parametrized scheme

Initialize(S ,ParamIni,ThreadsIni)
while (not EndCondition(S ,ParamEnd,ThreadsEnd))

SS = Select(S ,ParamSel,ThreadsSel)
SS1 = Combine(SS ,ParamCom,ThreadsCom)
SS2 = Improve(SS1,ParamImp,ThreadsImp)
S = Include(SS2,ParamInc,ThreadsInc)

Independent parallelization of the functions,
with parallelism parameters (number of threads) for each function.
The optimum value of the parallelism parameters depends on the
values of the metaheuristic parameters (the metaheuristic or
combination of metaheuristics).
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Identify functions with the same parallel scheme:

One-level parallel scheme (scheme 1)

omp set num threads(threads − one − level(MetaheurParam))
#pragma omp parallel for
loop in elements

treat element

i.e.: Initialize, Combine...
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Two-level parallel scheme (scheme 2)

two–level(MetaheurParam) :
omp set num threads(threads − first − level(MetaheurParam))
#pragma omp parallel for
loop in elements

second–level(MetaheurParam,threads − first − level)

second–level(MetaheurParam,threads − first − level):
omp set num threads(threads − second −

level(MetaheurParam,threads − first − level))
#pragma omp parallel for
loop in neighbors

treat neighbor

i.e.: Initialize, Improve...

Allows fine and coarse grained parallelism by changing the number
of threads in each level



Motivation Linear algebra Metaheuristics CPU+GPU Perspectives

Design

A model is obtained for each basic routine. Two basic models
can be used, one for one-level routines and another for nested
parallelism.

The generation of the initial population in function Initialize
with an initial number of elements in the reference set INEIni ,
can be modelled:

t1−level =
kg · INEIni

p
+ kp · p (1)

And the improvement of a percentage of the initial elements
PEIIni with an intensification (extension of the considered
neighborhood) IIEIni is modeled:

t2−levels =
ki · INEIni ·PEIIni ·IIEIni100

p1
+ kp,1 · p1 + kp,2 · p2 (2)
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Application problem

Electricity consumption in exploitation of water resources:

Water pumping in exploitation of water resources.
There are a number of technical constraints to be complied
with (restrictions).
Our goal is to apply an algorithm that allows us to optimize
the cost of electricity subject to the restrictions.
The space of possible solutions is very large and exhaustive
methods are not applicable here ⇒

Metaheuristic:

Pure metaheuristics: GRASP, Genetic algorithms (GA),
Scatter search (SS)
Combinations: GRASP+GA, GRASP+SS, GA+SS,
GRASP+GA+SS
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Installation

Experiments with some metaheuristic parameters, and system
parameters in the formula obtained by least-square:

For the one-level routine studied, in the experiments with
INEIni = 20: kg = 2.38 · 10−3 and kp = 1.94 · 10−4, all in
seconds.

For the two-level routine studied, with metaheuristic
parameters INEIni = 20, PEIIni = 50, IIEIni = 20 and p2 = 1:
ki = 9.10 · 10−4, kp,1 = 6.50 · 10−4 and kp,2 = 6.31 · 10−3

seconds
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Theoretical-experimental comparison. One-level routine

Theoretical and experimental speed-up for three parameters when
varying the number of threads in the initial generation of the

reference set
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Theoretical-experimental comparison. Two-level routine

Theoretical and experimental speed-up for three combinations of
the parameters INEIni , PEIIni and IIEIni when varying the number

of threads in the improvement routine
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Execution. One-level routine

Initial generation of the reference set:

popt. =

√

kg

kp
· INEIni = 3.50 ·

√
INEIni (3)

Speed-up and number of threads for INEIni = 100 and 500 in the
one-level parallel routine. Optimum experimental values
(optimum) and values obtained with autotuning (model)

threads speed-up
INEIni optimum model optimum model

100 55 35 22 18
500 64 78 44 39
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Execution. Two-levels routine

Improvement of the generated elements:

p1,opt. = 1.18 · 10−1 ·
√
INEIni · PEIIni · IIEIni (4)

Speed-up and number of threads for other parameter combinations
in the two-level parallel routine. Optimum experimental values
(optimum) and values obtained with autotuning (model)

threads speed-up
INEIni PEIIni IIEIni optimum model optimum model

100 50 10 30 26 15 11
500 100 5 32 59 29 27
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Metaheuristics: perspectives

Inclusion of more “pure” metaheuristics (Tabu, Ant...).

Design of hyperheuristics to automatically select the values of
the metaheuristic parameters for a particular problem.

Inclusion of autotuning in the parallel scheme, with some
engine to autonomously select the number of threads.

Develop unified parallel schemes for other computational
systems (message-passing, hybrid, GPU...).
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Context

Accelerate the resolution of scientific problems by combining
CPU+GPU

Combination of OpenMP+CUDA parallelism
Heterogeneous system
MultiGPU

Systems:

UM: 4 cores + GPU
UPV: 12 cores + 2 GPU

Problems:

Green functions for waveguides
Simultaneous Equations Models
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Modelling CPU+GPU computation ?

Design: extend the ideas of modelling in multicore:

ts

c + sg/cg
+ tscc + tskg

ts sequential time
c , g number of cores and of GPUs
sg/c speed-up of one GPU with respect to one core for the
problem in question
tsc , tsk cost of generation of a core and a kernel

Installation: use some installation methodology to estimate the
values of the parameters in a particular system.

Execution: for a particular entry (problem size) and in a particular
system (the computational system+the implemented algorithms)
select the algorithm and the part of the computational system to
use in the solution of the problem.
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Green functions

Used to solve non homogeneous differential equations with
boundary conditions.

Applied to waveguides, which are used in the design and
analysis of integrated circuits MMIC (Monolithic Microwave
Integrated Circuits).

They can be expressed in the form of infinite series, in the
spatial or spectral domain.

It is necessary to calculate hundreds or thousands of Green
functions.
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Application to waveguides

There is a parallel plate guide along z axis.
Inside this guide is a set of source and observer points which
move in axes ŷ and ẑ .
The Green function associated to each pair of points is
calculated.
The two series in the Ewald method are computed.
The number of terms can be fixed for all the pairs or be
dynamically calculated as a function of the distance between
the two points.
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One-dimensional problem

{For each source point}
for i = 1 to m do

{For each observer point}
for j = 1 to n do

{For the number of modes (terms)}
{Calculation of summation in the spectral domain}
for k = 1 to nmod do

trigonometric operations
end for

{Summation of the trigonometric functions}
for k = 1 to nmod do

trigonometric operations
end for

Apply the method of acceleration of Kummer
end for

end for

Cost O (m · n · nmod)
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Two-dimensional problem

Initialization: obtain and sort modes
for i = 1 to m do

for j = 1 to n do

{Spectral part}
for k = 1 to nmod do

GF [i , j ]+ = spectral(k)
end for

{Spatial part}
{For images in axes x and y}
for r = −mimag to mimag do

for s = −imag to nimag do

GF [i , j ]+ = spatial(r , s)
end for

end for

end for

end for

Cost O (m · n ·mimag · nimag)
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One-dimensional implementations

1D-OMP-FG: A fine grain version with OpenMP the
calculation. The two innermost loops are parellelized.

1D-OMP-CG: Coarse grain parallelism with OpenMP,
parallelizing the work in the outer loop.

1D-CUDA: The computation of each Green’s function (fine
grain parallelism) is performed by the GPU.

1D-OMP+CUDA: Hybrid implementation. In an
shared-memory program (with OpenMP) the number of
threads generated is one more than the number of cores. One
of the threads is in charge of calling the CUDA kernel. The
other threads follow the coarse grain shared-memory scheme.
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Speed-up
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Two-dimensional implementations

2D-OMP: Parallelizing the first loop of the spatial part. The
access to some variables to store partial results is done with
reduction.

2D-CUDA: Each thread is in charge of the computation of
one image. An auxiliar matrix is used to store the partial sum
obtained by each thread, and the values in the matrix are
added sequentially.

2D-MPI: The spatial part is parallelized, and the spectral
part is done sequentially. Similar to that of OpenMP, and the
final sum is obtained with MPI Reduce.
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Speed-up
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Simultaneous Equations Models

N interdependent variables (endogenous variables) which
depend on K independent variables (exogenous variables).
Each endogenous variable can be expressed as a linear
combination of the other endogenous variables, the exogenous
variables, and white noise:

Y = YBT + XΓT + u

where Y ∈ R
d×N , X ∈ R

d×K and u ∈ R
d×N are matrices

with N endogenous variables, K exogenous variables and N

white noise variables respectively, being d the sample size, and
elements Bii = 0.
Solving a SEM is equivalent to obtaining B and Γ, from a
representative sample of the model (a set of values of the
data variables X and Y) in order to explicitly know a matrix
equation which represents the relationship between both sets
of variables.
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Two-Stage Least Squares

Require: X ∈ R
d×K ,Y ∈ R

d×N and zero pattern of B and Γ

Ensure: B ∈ R
N×N and Γ ∈ R

N×K

Obtain Q, R and Ỹ such that X = QR (QRD of X) and
Ỹ = QTY

for i=1...N do

if i-th equation is identified (i.e. it can be solved) then
[Ri,1|Ỹi,1]← Select columns from [R1|Ỹ1]
Obtain Q̃i, R̃i,1 and ˜̃yi,1 such that [Ri,1|Ỹi,1] = Q̃iR̃i,1 and
˜̃yi,1 = Q̃T

i ỹi,1
Solve R̃i,1η̂i = ˜̃yi,1

end if

end for
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Implementations

Parallelization by distribution of the equations among the various
computational elements:

OMP: Only the cores in the CPU are used.
OMPGPU: Distributes the solution of the equations among
the cores of the CPU and of the GPU.

Parallelize the computation of the QRD, by using Givens rotations,
and taking advantage of the structure of the matrix [Ri,1|Ỹi,1]:

C1T: On one GPU.
C2T: Distributes dynamically, with OpenMP, the equations
between the two GPUs. Each GPU applies the parallel QRD
on its set of equations.

Hybrid parallelization: The set of equations to be solved are divided
dynamically among the various computational elements. The GPU
applies the parallel QRD on its set of equations.

MULTI1T: Uses the cores in the CPU + 1 GPU.
MULTI2T: Uses the cores in the CPU + 2 GPU.
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Speed-up
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Perspectives

Modelling can help in the auto-tuning of basic parallel
routines and scientific codes, so contributing to the
efficient use of parallel programs.

Hybrid parallelism (multiple level, different types of
parallelism, different paradigms...) introduces additional
difficulties.

Sometimes the theoretical models are combined with
empirical analysis.

Some successful applications are shown, but better
modelling techniques are needed, especially for complex
scientific problems, more complex computational systems
and more hybrid-heterogeneous-hierarchical programming.
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