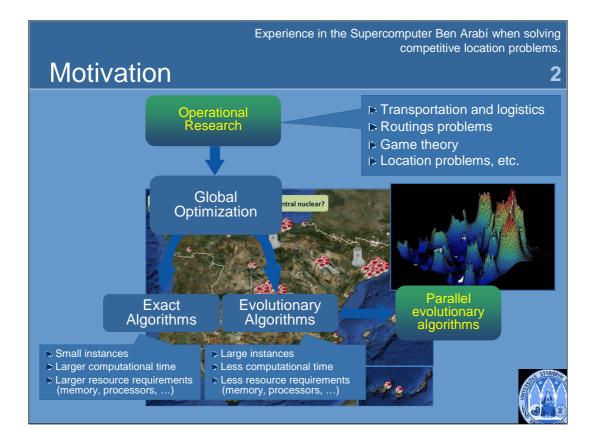


A. G. Arrondo J. Fernández J. L. Redondo P. M. Ortigosa

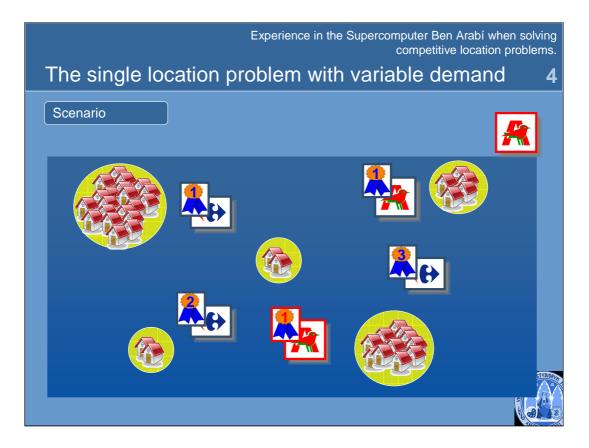
University of Murcia, March 2012

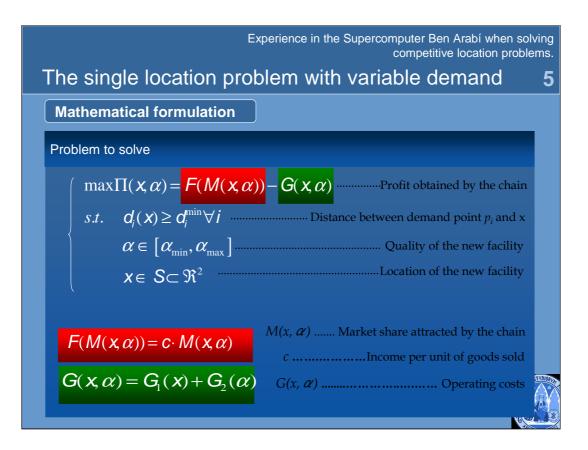


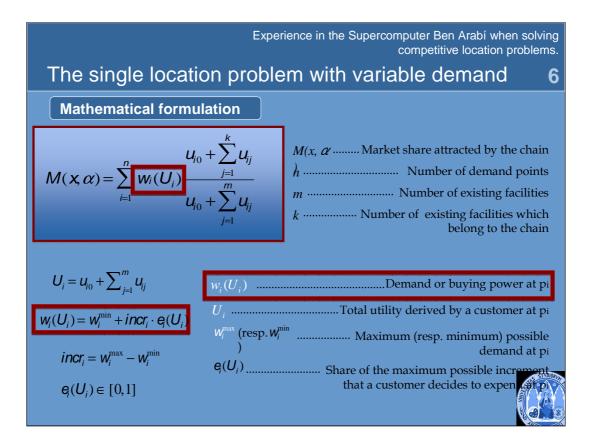
Outline

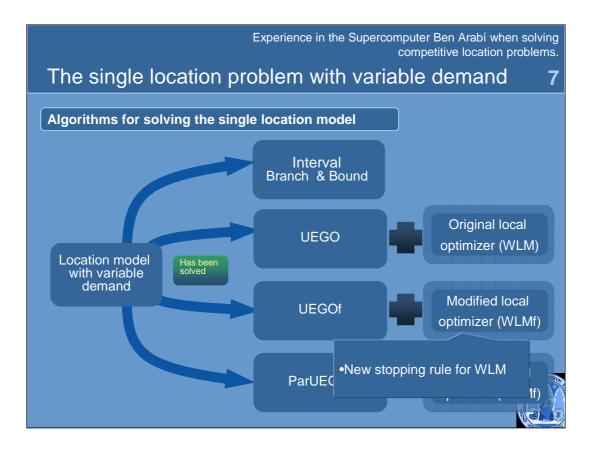
- 1. The single facility location problem with variable demand
- 2. The leader-follower problem with variable demand

3









Experience in the Supercomputer Ben Arabi when solving competitive location problems. **DECOMPTION:** 3

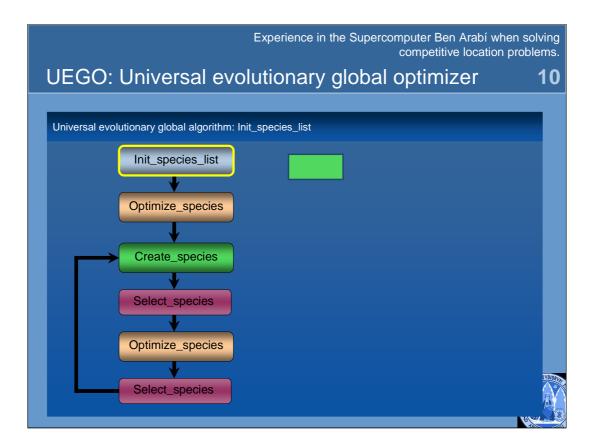
Basic concepts

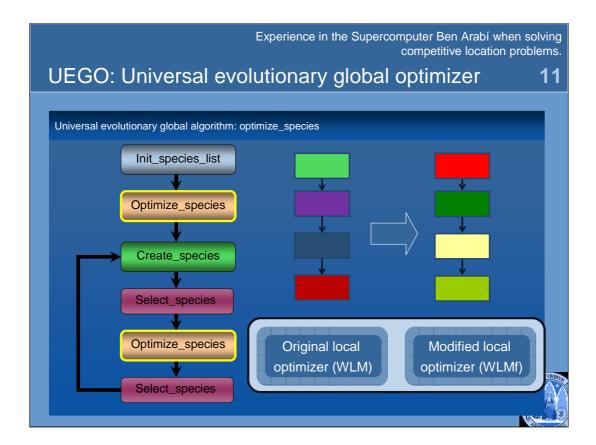
Specie:

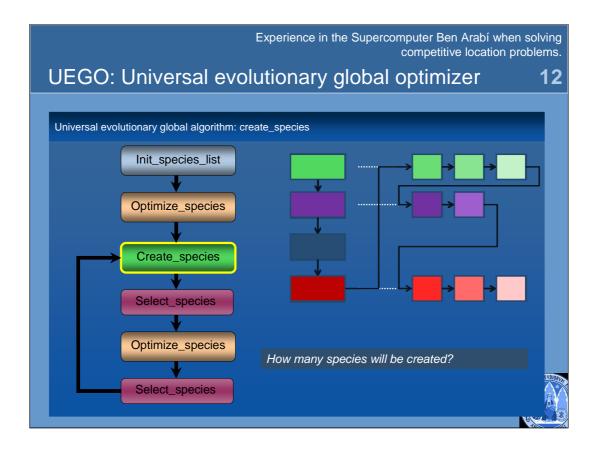
• During the optimization process, a list of species is kept by UEGO.

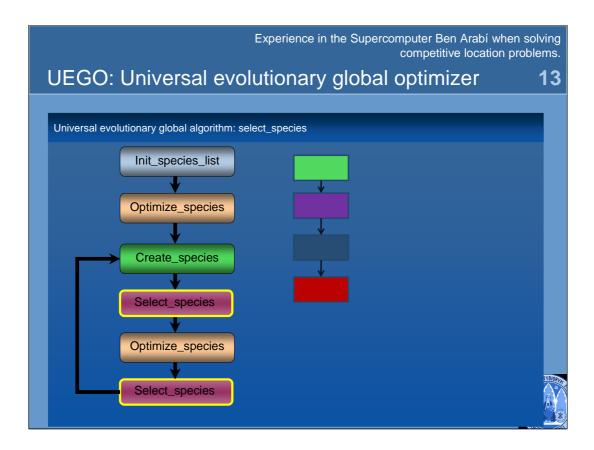
• Each species can evolve to the local or global optima without participation of the remaining ones.

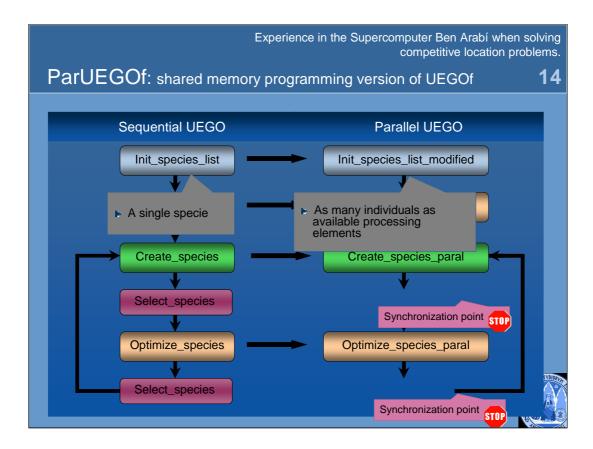
	Experience in the Supercomputer Ben Arabí when solving competitive location problems.
UEGO: Unive	rsal evolutionary global optimizer 9
Parameters	
User given parame	eters
Evals (<i>N</i>	The maximum number of function evaluations for the whole optimization process.
levels (<i>L</i>	The maximum number of levels.
max_spec_ num (<i>M</i>	: The maximum length of the species list.
min_r (R_	The radius that is associated with the minimum level.
Parameter at each	level
R_i :	Radius associated with level <i>i</i> .
new _i :	Maximum number of function evaluations allowed when creating new species.
n _i :	Maximum number of function evaluations allowed when optimizing species.

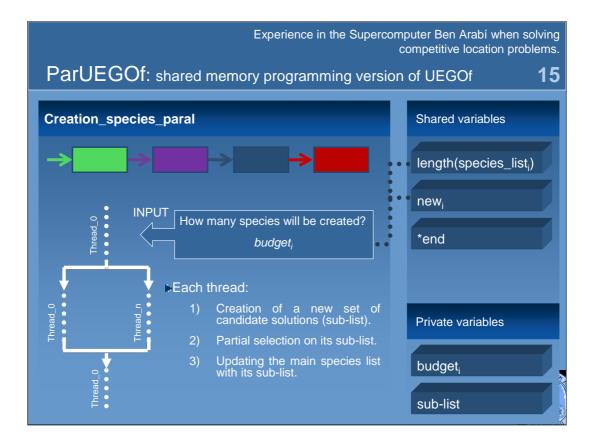


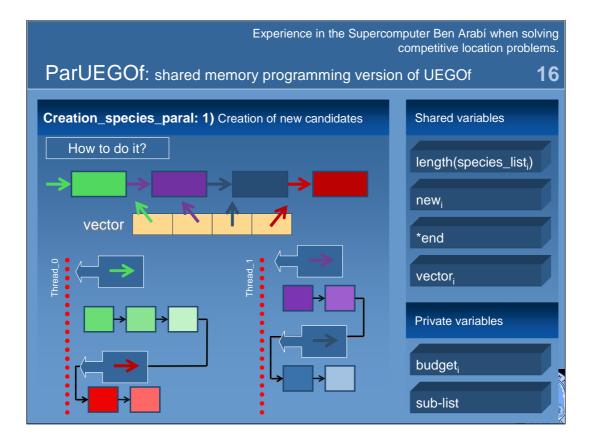


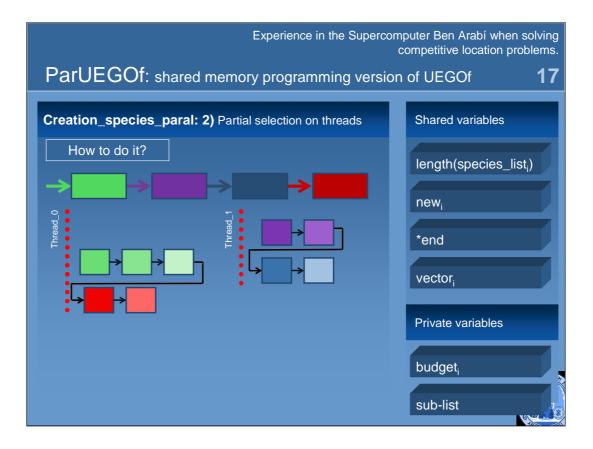


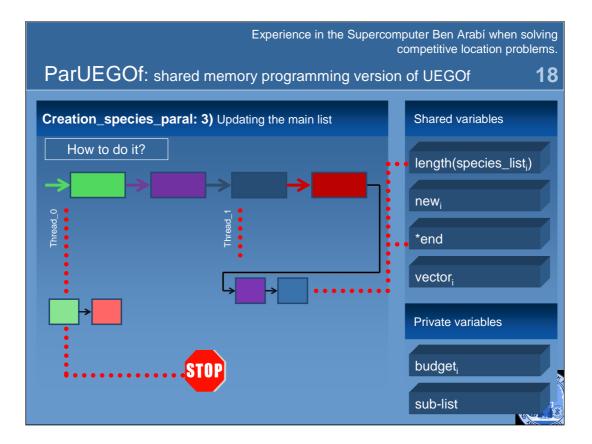


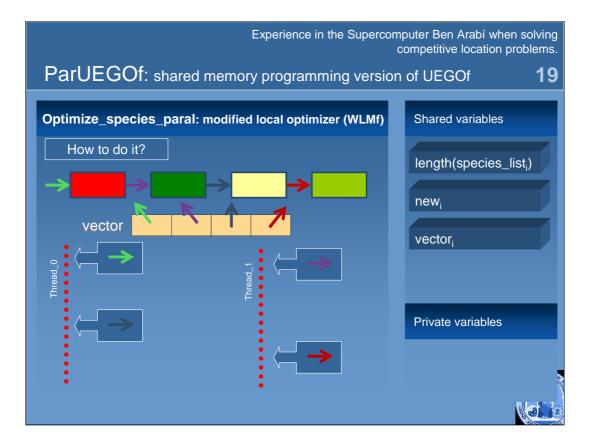












Computational studies

20

Environment

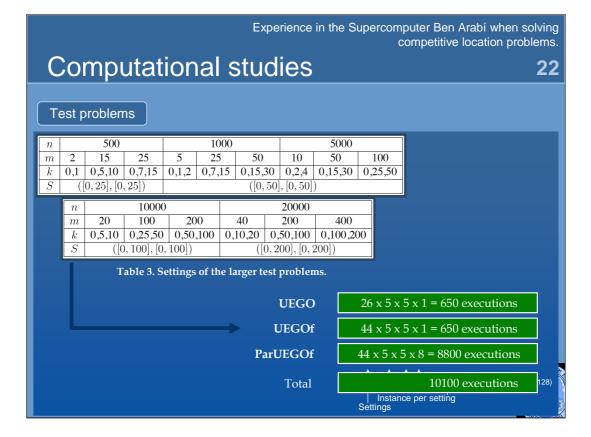
The input parameters were set to N = 1 \cdot 10⁸, M = 350, L = 30 and R_L = 0.05 for all the instances and algorithms.

⊳Algorithms have been implemented in C++.

Shared-memory applications programming interface used was OpenMP (version 3.0, supported by gcc 4.6.0).

▷All the computational studies have been obtained in the Supercomputer BenArabi of Murcia, Spain. The shared-memory machine is a HP Integrity Superdome with 128 cores and 1.5 TB of memory.

							Experie	ence i	n the Su	percomputer Ben Arabí when solving competitive location problems.
	С	om	nput	tatic	ona	al st	udie	es		21
	Te	st pro	blems							
	n m k S	2 0,1	50 5 0,1,2	10 0,2,4		$ \begin{array}{c c} 100 \\ 5 \\ 0,1,2 \\ 0,10], [0 \\ 0,10] \end{array} $		2 0,1	200 10 0,2,4	$\frac{15}{0,5,10}$
			Table	2. Setti	ngs o	t the sh	lan test	prob.	iB&B UEGO	$24 \times 10 \times 1 = 240$ executions $24 \times 10 \times 5 = 1200$ executions
n m k S	ı Nı Nı Re	amber amber	of existir of existir	nd points ng faciliti ng faciliti ne where	es es whi			hain	UEGO: Total	f 24 x 10 x 5 = 1200 executions 2640 executions 2640 executions Execution per instance Instance per setting Settings



Computational studies

23

Results for small problems

- iB&B can solve the small problems with reliability.
- UEGO and UEGOf find the optimal solution with 100% success.
- UEGO is much faster than iB&B.

.

• UEGOf is faster than UEGO, expect for the easiest problems with setting (n=50, m=2,5) reductions varying from 1% up to 37% in some cases.

\overline{n}	m	T(iB&B)	T(UEGO)	T(UEGOf)	%I _{UEGO-iB&B}	$%I_{UEGOf-iB\&B}$	%Iuegof-uego
50	2	42.377	5.974	8.894	85.90	79.01	-48.86
	5	56.757	7.651	8.165	86.52	85.61	-6.71
	10	57.860	8.547	8.443	85.23	85.41	1.21
100	2	232.786	17.063	14.593	92.67	93.73	14.48
	5	254.252	20.500	15.039	91.94	94.08	26.64
	10	293.232	22.917	14.267	92.18	95.13	37.75
200	2	1320.607	36.510	28.821	97.24	97.82	21.06
	10	1491.524	33.246	28.755	97.77	98.07	13.51
	15	1473.295	32.471	28.341	97.80	98.08	12.72

Table 4. Average results for small problems.

Computational studies

24

Result for larger problems

- iB&B runs out of memory.
- Both UEGO and UEGOf can solve them without difficulties.
- Both UEGO and UEGOf are rather robust (it obtains the same solution in all the runs).
- UEGOf is much faster than UEGO (around 50%).
- UEGO has not been able to solve the largest problems.

	Time	ObjF	MaxDist	Time	ObjF	MaxDist	Time	ObjF	MaxDist	
Algorithm		n = 500)		n = 100	00	n = 5000			
UEGO	428	21.903	0.000	1015	6.684	0.000	-	-	-	
UEGOf	286	21.903	0.000	352	6.683	0.000	1727	-31.663	0.000	
ParUEGOf(2)	146	21.902	0.000	178	6.684	0.000	869	-31.663	0.000	
ParUEGOf(4)	76	21.903	0.000	90	6.683	0.000	436	-31.663	0.000	
ParUEGOf(8)	40	21.903	0.000	48	6.683	0.000	226	-31.663	0.000	
ParUEGOf(16)	23	21.902	0.000	27	6.684	0.000	123	-31.663	0.000	
ParUEGOf(32)	14	21.902	0.000	17	6.684	0.000	72	-31.664	0.000	
ParUEGOf(64)	10	21.902	0.000	12	6.684	0.000	48	-31.663	0.000	
ParUEGOf(128)	9	21.902	0.000	11	6.684	0.000	37	-31.663	0.000	

Computational studies

25

Result for larger problems

	Time	ObjF	MaxDist	Time	ObjF	MaxDist		
Algorithm		n = 1000)0	n = 20000				
UEGO	-	-	-	-	-	-		
UEGOf	2914	-21.299	0.000	5811	-17.057	0.000		
ParUEGOf(2)	1463	-21.299	0.000	2918	-17.057	0.000		
ParUEGOf(4)	737	-21.299	0.000	1469	-17.057	0.000		
ParUEGOf(8)	378	-21.298	0.000	754	-17.057	0.000		
ParUEGOf(16)	199	-21.299	0.000	397	-17.057	0.000		
ParUEGOf(32)	111	-21.298	0.000	238	-17.057	0.000		
ParUEGOf(64)	70	-21.299	0.000	209	-17.057	0.000		
ParUEGOf(128)	52	-21.299	0.000	204	-17.057	0.000		

Table 6. Average results for larger problems.

	Exp	perience ir	n the Supe			í when solv tion probler	
Computational	stu	dies				2	26
Performance evaluation	n						
7(1)							
$Eff(P) = \frac{T(1)}{P \cdot T(P)}$				n			
konskeparatelsansesansesanskaparatelsanseparatelsanskeparatelsa	P	500	1000	5000	10000	20000	
	2	0.982	0.991	0.995	0.996	0.996	
_	4	0.943	0.978	0.990	0.989	0.989	
Notation:	8	0.887	0.928	0.957	0.963	0.964	
P: number of processors	16	0.773	0.818	0.882	0.915	0.916	
Transer of processors	32	0.621	0.648	0.753	0.819	0.777	
	64	0.428	0.442	0.563	0.652	0.443	
	128	0.253	0.256	0.364	0.444	0.228	
	Figu	re 7. Aver	age efficio	ency of Pa	rUEGOf a	lgorithm.	

27

8 3 L

Conclusions

▷ The deterministic exact interval B&B method can only solve small problem. For larger problems heuristics are mandatory.

> The evolutionary algorithms UEGO and UEGOf can find the optimal solution of small problems with 100% success, much faster than B&B.

•For larger problems, the heuristic algorithms are rather robust.

⇒ UEGO can solve problems with up to 1000 demand points and UEGOf is able to solve problems with up to 20000 demand points.

> A parallel algorithm to reduce the runtime of UEGOf has been developed. This new method has a good behaviour in terms of effectiveness and efficiency.

Publications

28

 [1] J. L. Redondo, J. Fernández, A. G. Arrondo, I. García, P. M. Ortigosa, *Deterministic or variable demand? Does it matter when locating a facility?*. Omega, Vol. 40, n. 1, pp, 99-20. ISSN: 0305-0483. 2012. Category (position/total): Operations research & Management science: 2/73

[2] A. G. Arrondo, J. Fernández, , J. L. Redondo and P. M. Ortigosa, An approach for solving competitive location problems with variable demand using multicore systems. Optimization Letters, submitted.

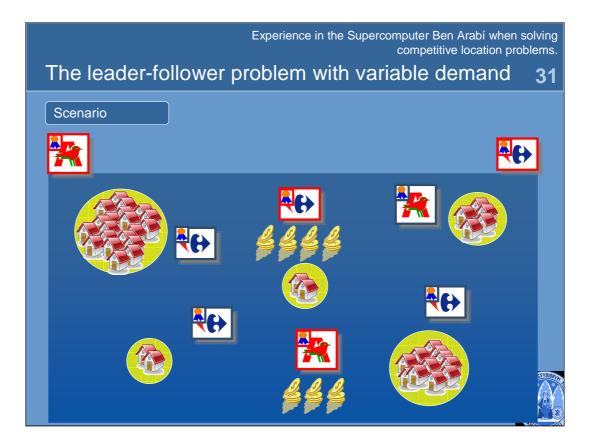
Experience in the Supercomputer Ben Arabí when solving competitive location problems. Use of Ben Arabí supercomputer 29 scrip_r20000-200-0-1 aranzazugila\$ 🗣 C 🗸 # 🗸 🗟 🔒 aranzazugila\$ ssh -XY ben #!/bin/bash
#BSUB -a openmp
#BSUB -J openmp_n20000
#BSUB -q ben_128x24h
#BSUB -n 128
#BSUB -n 128
#BSUB -B
#BSUB -B
#BSUB -N
#BSUB -N
#BSUB -N
#BSUB -N
#BSUB -N
#BSUB -N result-20000-200-0-1.e aranzazugila\$ cd carpeta_algoritmo aranzazugila\$ module load gcc/4.6.0 aranzazugila\$ make aranzazugila\$ cp uego carpeta_experimentos aranzazugila\$ cd carpeta_experimentos aranzazugila\$ bsub < script_r20000-200-0-1 aranzazugila\$ source /etc/profile.d/modules.sh
module load gcc/4.6.0 ./uego r-20000-200-0-1 -s -t128 -r5 It is very important to know your code and the machine where your code is going to run.

Outline

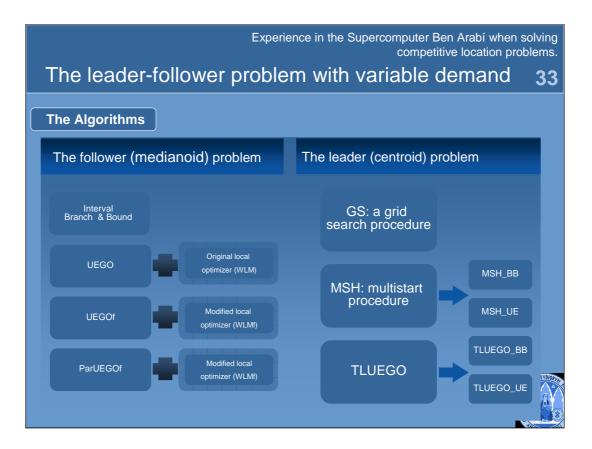
1. The single facility location problem with variable demand

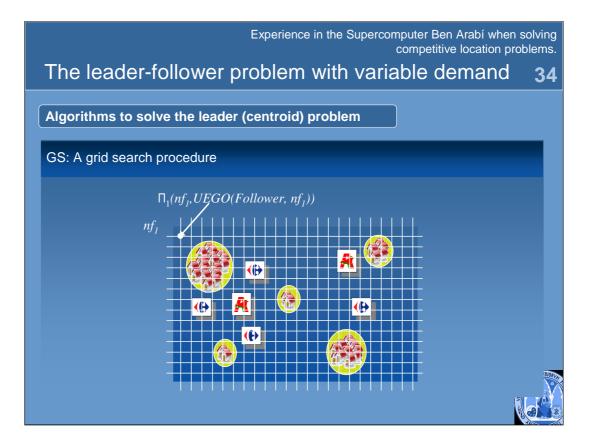
2. The leader-follower problem with variable demand

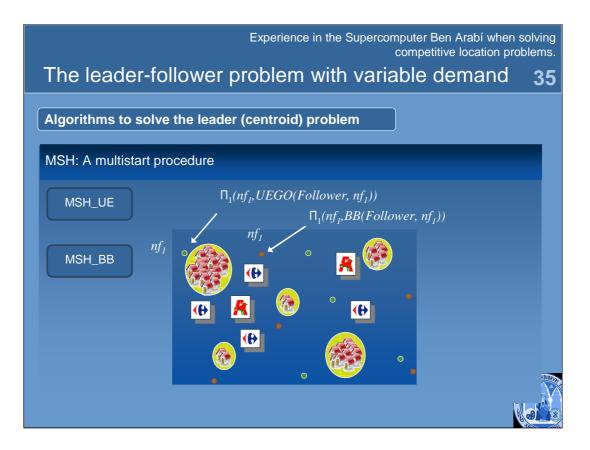
30

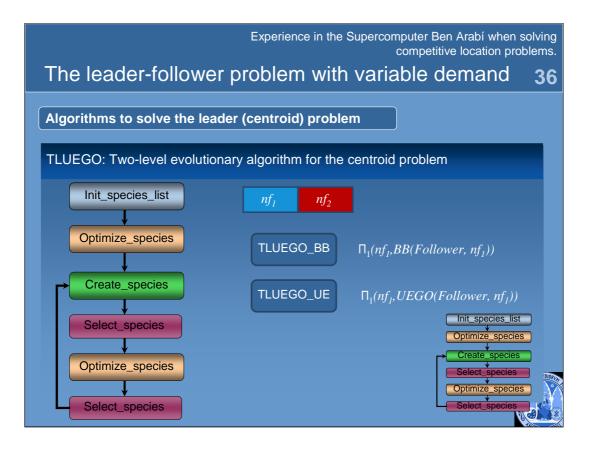


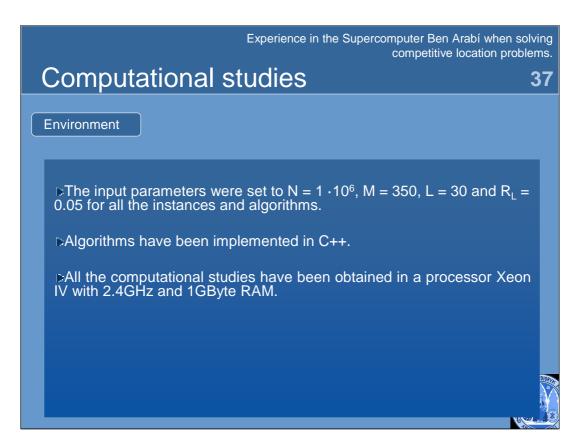
Experience in the Supercomputer Ben Arabi when solving competitive location problems 32 **Mathematical formulation** Market share attracted by the leader's chain $\begin{aligned}
& \int_{i=1}^{n} w_i(U_i) \frac{\int_{i} A_{i} A_{j}}{\int_{i} A_{i} A_{i}} + \sum_{j=1}^{k} \frac{A_{ij}}{B_{i}(d_{ij})} \\
& \int_{i} A_{i}(nf_{1}, nf_{2}) = \sum_{i=1}^{n} w_i(U_i) \frac{\int_{i} A_{i} A_{i}}{\int_{i} A_{i} A_{i}} + \sum_{j=1}^{k} \frac{A_{ij}}{B_{i}(d_{ij})} \\
& \int_{i} A_{i}(nf_{1}, nf_{2}) = \sum_{i=1}^{n} w_{i}(U_{i}) \frac{\int_{i} A_{i} A_{i}}{\int_{i} A_{i} A_{i}} + \frac{\chi_{i} A_{2}}{B_{i}(d_{iz})} + \sum_{j=1}^{m} \frac{A_{ij}}{B_{i}(d_{ij})} \\
& \text{Problem to solve}
\end{aligned}$











							Experie	nce in	the Su		outer Ben Arabí when solving ompetitive location problems.
	Co	om	puta	atio	na	l sti	Jdie	es			38
	Test	t prot	olems)							
	n		15			25			50		
	m	2	5	10	2	5	10	2	5	10	
	k	0,1	0,1,2	0,2,4	0,1	0,1,2	0,2,4	0,1	0,1,2	0,2,4	
	S				([0	, 10], [0	, 10])				
			Tab	1e 2. Se	ttings	of the	test pro	blems	5.		
								GS		2	$24 \times 1 \times 1 = 24$ executions
								MS	H_UE	2	$4 \times 1 \times 10 = 240$ executions
								MS	H_BB	24	$4 \times 1 \times 10 = 240$ executions
								TLU	JEGO_B	B 24	$4 \times 1 \times 10 = 240$ executions
n	Nui	nber o	of demano	d points				TLU	JEGO_U	E 24	$4 \times 1 \times 10 = 240$ executions
m			of existing								
k			of existing					ain -	Total		984 executions
S	Reg loca		the plane	e where t	the nev	v facility	can be				Instance per setting
	ioca	neu								Set	tings

Computational studies

39

Results

- GS is rather time-consuming and is not able to find the global optimum.
- TLUEGO and MSH behave similarly independent of whether iB&B or UEGO is employed.
- TLUEGO is both the algorithm giving the best and most robust results, and this using less computational time.
- MSH provides the worst objective function value and different runs may provide very different objective values.

Algorithm	Av(T)	Max		Objective	Function	
	Secs.	Dist	Min	Av	Max	Dev
TLUEGO BB	3674	0.099	28.149	28.189	28.230	0.033
TLUEGOUE	3690	0.123	28.151	28.219	28.264	0.043
MSH BB	4316	1.614	21.034	23.804	26.958	2.206
$MSH^{-}UE$	4528	1.528	20.845	24.834	27.283	2.371
GS –	1469370	-	-	27.052	-	-

Table 4. Average results considering all the problems (n=15,25, 50).

Conclusions

40

> The computational studies have shown that the evolutionary algorithm TLUEGO provides the best results and is more robust than the other strategies.

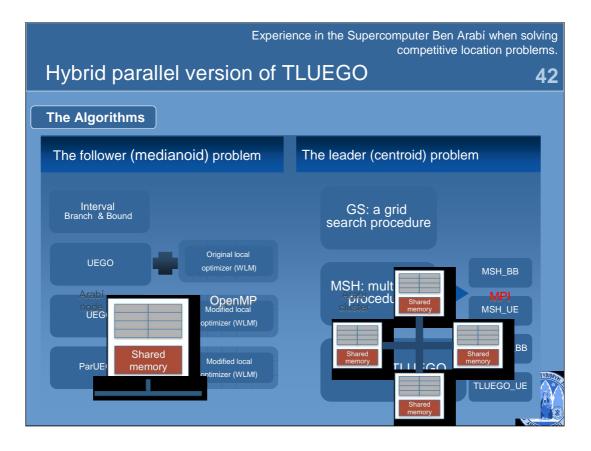
However, the computational time employed by TLUEGO for solving a problem with 50 demand points is in average more than 2.5 hours.

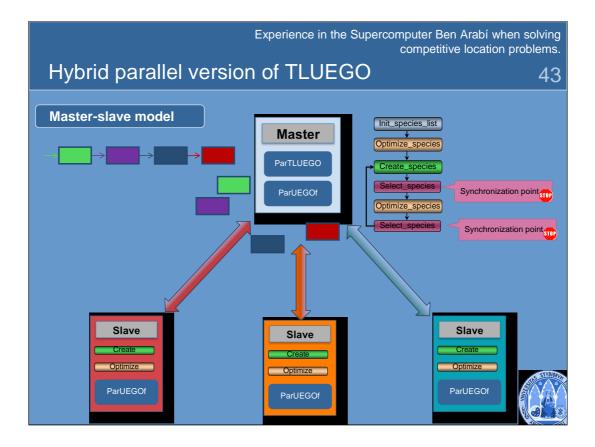
This clearly suggests that a parallelization of the algorithm is needed.

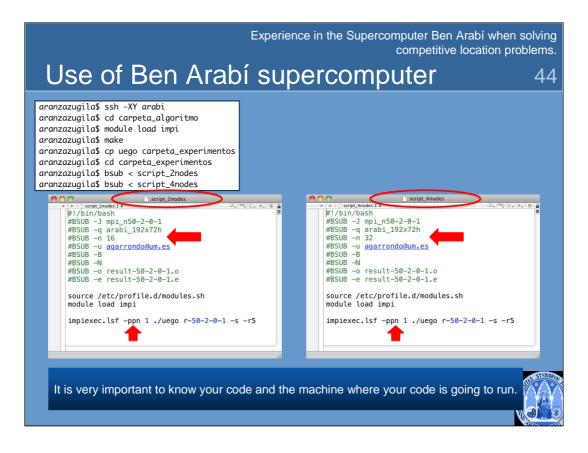
Publications

41

[3] J. L. Redondo, A. G. Arrondo, J. Fernández and P. M. Ortigosa, A Two-level evolutionary algorithm for solving the facility location and design (1/1)-centroid problem on the plane with variable demand. Journal of Global Optimization.







Conclusions

45

- Compiler
- Architecture of machine
- Synchronization points, load balance
- ⇒ Perform speedup with your serial code

Solving competitive location problems via evolutionary algorithms in Ben Arabí supercomputer.

A. G. Arrondo J. Fernández J. L. Redondo P. M. Ortigosa

University of Murcia, March 2012

