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Abstract

The video compression algorithms based on the 3D wavelet trans-
form obtain excellent compression rates at the expense of huge memory
requirements, that drastically affects the execution time of such appli-
cations. Its objective is to allow the real-time video compression based
on the 3D fast wavelet transform. We show the hardware and soft-
ware interaction for this multimedia application on a general-purpose
processor. First, we mitigate the memory problem by exploiting the
memory hierarchy of the processor using several techniques. As for in-
stance, we implement and evaluate the blocking technique. We present
two blocking approaches in particular: cube and rectangular, both of
which differ in the way the original working set is divided. We also
put forward the reuse of previous computations in order to decrease the
number of memory accesses and floating point operations. Afterwards,
we present several optimizations that cannot be applied by the com-
piler due to the characteristics of the algorithm. On the one hand, the
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Streaming SIMD Extensions (SSE) are used for some of the dimensions
of the sequence (y and time), to reduce the number of floating point
instructions, exploiting Data Level Parallelism. Then, we apply loop
unrolling and data prefetching to specific parts of the code. On the
other hand, the algorithm is vectorized by columns, allowing the use of
SIMD instructions for the y dimension. Results show speedups of 5x
in the execution time over a version compiled with the maximum opti-
mizations of the Intel C/C++ compiler, maintaining the compression
ratio and the video quality (PSNR) of the original encoder based on
the 3D wavelet transform. Our experiments also show that, allowing
the compiler to perform some of these optimizations (i.e. automatic
code vectorization), causes performance slowdown, demonstrating the
effectiveness of our optimizations.

Keywords: 3D wavelet transform, video compression, blocking, reuse,
Streaming SIMD extensions, vectorization

1 Introduction

In the last few years there has been a considerable increase in the volume
of medical images and video generated in hospitals. Medical multimedia
information is different from other multimedia data because of its particular
properties. There are legal and strict regulations applied to medical multi-
media information, since the health of a patient depends on the correctness
and the accuracy of this information. Moreover, the integrity, confidentiality
and security of medical data is crucial to protect it from accidental or mali-
cious alteration during interchange and storage. Another critical property is
that any information on a patient must be available immediately, whenever
or wherever, it is required and especially in cases of emergency.

Most of a patient’s medical history must be kept and stored as legislation
requires all healthcare information to be preserved for a certain period of
time (typically 5-10 years) before it can be deleted. Thus, hospitals have to
deal with very high storage requirements. On the other hand, tele-diagnosis
is becoming a popular technique among hospitals. A doctor may ask for
the advice of a colleague who works in another hospital, and even another
country, by means of real-time transmission of medical images and video.
Due to the huge amount of transmitted data, high-bandwidth networks are
needed to maintain the quality of the video and allow for accurate diagnosis.
In both cases (storage and transmission), compression techniques are used to
drastically reduce the amount of information needed to be handled. Finally,
the quality of the compressed data must be good enough to allow for correct
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diagnostic when it is reconstructed.
Lately, wavelet transform [16] has been used to acquire the previous

features, summarized in the three main areas below:

a) High-quality compression of the medical video.

b) Real-time compression and decompression of the medical video.

c) Real-time transmission of the medical video.

The last problem is outside of the scope of this paper. To find a so-
lution to the first topic, the application of the wavelet transform has been
developed drastically on the last few years. The wavelet transform has been
applied mainly to image compression. Several coders have been developed
using 2D wavelet transform [3][25][35]. Moreover, the last image compres-
sion standard, JPEG-2000 [28][34], is also based on the 2D discrete wavelet
transform with a dyadic mother wavelet transform.

The 2D wavelet transform has also been used for compressing video [19].
However, three dimensional (3D) compression techniques seem to offer better
results than two dimensional (2D) compression techniques that operate in
each frame independently. Muraki introduced the idea of using 3D wavelet
transform to approximate efficiently 3D volumetric data [29][30]. Since one
of the three spatial dimensions can be considered similar to time, a 3D
subband coding using the zerotree method (EZW) was presented to code
video sequences [11] and posteriorly improved with an embedded wavelet
video coder using 3D set partitioning in hierarchical trees (SPIHT) [21].
Today, the standard MPEG-4 [4][5] supports an ad-hoc tool for encoding
textures and still images based on a wavelet algorithm.

In previous works [7][8], we have presented the implementation of a lossy
encoder for medical video based on the 3D Fast Wavelet Transform (FWT).
This encoder achieves both high compression ratios and excellent quality,
so that medical doctors can not find longer differences between the original
and the reconstructed video.

With regard to the second problem, one of the main drawbacks of using
the 3D wavelet transform to code and decode medical video is its excessive
execution time. Since three dimensions are exploited to obtain high com-
pression rates, the working set becomes huge and the algorithm becomes
limited by memory (memory bound).

In this article, we show the hardware and software interaction for a multi-
media application on a general-purpose processor. The manuscript presents
a number of approaches to speed up the 3D wavelet transform by reducing
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memory bandwidth and exploiting Data Level Parallelism and Instruction
Level Parallelism without producing a degradation of the video quality and
preserving the compression ratio of the original encoder. Therefore, we
present a memory conscious 3D FWT that exploits the memory hierarchy
by means of blocking algorithms, reducing the final execution time. We
propose and evaluate several blocking approaches that differ in the way that
the original working set is divided. We also propose the reuse of some com-
putations to save floating point (FP) operations as well as memory accesses.

Moreover, we attempt to take efficient advantage of the Streaming SIMD
Extensions [10] by using the new Intel C/C++ Compiler [15]. We also em-
ploy others classic methods like data prefetching and loop unrolling. Finally,
we examine the source code to exploit the temporal and spatial locality in the
memory cache. A method to enhance the locality of the memory hierarchy,
based on the compute of the wavelet transform in the x and y dimensions
is presented, taking into account that the mother wavelet function is the
Daubechie’s of four coefficients (Daub-4).

Results show that the rectangular overlapped approach with the different
optimizations provide the best execution times among all tested algorithms,
achieving for optimal block size (512x64x16) a speedup of 5 over the non-
blocking non-overlapped wavelet transform. Therefore, the final proposed
approach maintains both the high compression ratio and the excellent video
quality of the original encoder [8].

This article is a major revision of two papers published in [9] and [6].
The rest of this article is organized as follows. The background is presented
in Section 2. Section 3 describes several approaches to reduce the execution
times in the 3D-FWT algorithm in which we will present the main details
of each method. In Section 4, we show several techniques using the new
Intel C/C++ Compiler and the Streaming SIMD Extensions to reduce the
execution times of the rectangular overlapped approach, presented in the
previous section. Experimental Results on some test medical video are an-
alyzed in Section 5. Finally, Section 6 summarizes the work and concludes
the paper.

2 Background

In this Section, we review the framework on top of which our enhancements
have been built. We will first present the general techniques needed to
compress medical video and the ways for measuring it. We will then review
the theory behind wavelets and finally, introduce the blocking techniques
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along with the advanced multimedia extensions.

2.1 Medical Video

There are two ways for compressing medical video: lossy and lossless com-
pression techniques. Higher compression ratios can currently be obtained
by means of lossy compression techniques, but radiologist are very reluc-
tant to use them, as they might potentially introduce compression artifacts
to ensure complicating diagnosis. Doctors normally prefer to use lossless
compression techniques (JPEG-LS [20]) so that the quality is preserved.

However, lossless compression achieves compression ratios significantly
lower than those achieved by lossy techniques. Therefore, following the legal
rules and keeping medical video for ten years may become prohibitive for
most hospitals due to the storage requirements. In addition, the constant
increase of network traffic may the use of tele-diagnosis difficult if images
are not sufficiently compressed. All of this makes the research on lossy
compression techniques particularly interesting, especially, if oriented so as
to exploit the behavior of the medical video, usually encoded in gray scale,
using just 1 byte per pixel, offering very small interframe variations.

In addition, we need to measure the quality of reconstructed video. A
numerical evaluation of the quality is achieved by computing the peak signal-
to-noise ratio (PSNR) in the reconstructed video.

The PSNR, of an image, is defined as follows

PSNR = 10log10
f2

max

α2
(1)

where fmax stands for the highest possible value of pixel, that is 255 for
images that use 8-bits to represent a pixel (e.g. gray-scale images), whereas
α2 stands for the Mean Square Error (MSE).

The PSNR of a reconstructed video has been calculated by computing
the arithmetic mean of the PSNR for all of frames of the video. We use
PSNR as it is the most simple way of comparing the performance among
different schemes.

In addition to the PSNR value, the reconstructed video must be evalu-
ated by doctors. Therefore, it is common practice to visually test the quality
of the reconstructed video.

2.2 The Wavelet Transform Foundations

The basic idea behind the wavelet transform is to represent any arbitrary
function f as a weighted sum of functions; referred to as wavelets. Each
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wavelet is obtained from a mother wavelet function by conveniently scaling
and translating it. The result is equivalent to decomposing f into different
scale levels (or layers), where each level is then further decomposed with a
resolution adapted to that level.

In multiresolution analysis, two functions exist: the mother wavelet and
its associated scaling function. Therefore, the wavelet transform can be
implemented by quadrature mirror filters (QMF), G = g(n) and H =
h(n) nεZ. H corresponds to a low-pass filter and G is a high-pass filter.
The reconstruction filters have impulse response h∗(n) = h(1 − n), and
g∗(n) = g(1 − n). For a more detailed analysis of the relationship between
wavelets and QMF see [27].

The filters H and G correspond to one step in the wavelet decomposition.
Given a discrete signal, s, with a length of 2n, at each stage of the wavelet
transformation, the G and H filters are applied to the signal and the filter
output downsampled by two, generating two bands: G and H. The process
is then repeated on the H band to generate the next level of decomposition
and so on. It is important to note that the wavelet decomposition of a set of
discrete samples has exactly the same number of samples as in the original,
due to the orthogonality of wavelets. This procedure is referred to as the
1D Fast Wavelet Transform (1D-FWT).

The inverse wavelet transform can be obtained in a way similar to that
of the forward transform, by simply reversing the above procedure following.
However, the order of the g’s and h’s has to be reversed.

It is not difficult to generalize the one-dimensional wavelet transform to
the multi-dimensional case [27]. The wavelet representation of an image,
f(x, y), can be obtained with a pyramid algorithm. It can be achieved
by first applying the 1D-FWT to each row of the image and then to each
column. That is, the G and H filters are applied to the image in both the
horizontal and vertical directions. The process is repeated several times as
in the one-dimensional case. This procedure is referred to as the 2D Fast
Wavelet Transform (2D-FWT).

As in 2D, we can generalize the one-dimensional wavelet transform for
the three-dimensional case. Instead of one image, there is now a sequence of
images. Thus a new dimension has emerged, time (t). The 3D-FWT can be
computed by successively applying the 1D wavelet transform to the value of
the pixels in each dimension.

It is common in wavelet compression to recursively transform the average
signal. The number of transformations performed in each dimension depends
on several factors, for example the amount of compression desired, the size of
the original video and the mother wavelet function. In general, the higher the
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desired compression ratio, the more times the transform is performed. Note
that applying the wavelet transform too many times, may have a significant
impact on quality. Hence, this parameter must be chosen carefully.

In this paper, we have considered Daubechies W4 (Daub-4) [16] as the
mother wavelet function. We have chosen this function because some previ-
ous works have proved its effectiveness [7][8].

2.3 Blocking and Streaming SIMD Extensions (SSE)

Blocking is a well-known optimization technique for improving the effec-
tiveness of memory hierarchies [1][23][26]. Instead of operating on entire
rows, columns or frames of the working set, blocking algorithms operate on
working subsets or blocks, so that data loaded into the faster levels of the
memory hierarchy is reused. Blocking has been shown to be useful for many
algorithms in linear algebra like BLAS [17], LAPACK [2] and most recently,
ATLAS [38]. Blocking has also been used for the computation of the 2D
and 3D wavelet transform, splitting the image or video in several blocks and
then perform the transform on tiles such as the standard image compres-
sion JPEG-2000 [28] which uses a line based wavelet transform [12] or the
reduced memory versions of the embedded wavelet video coder using 3D
set partitioning in hierarchical trees (SPIHT) [22] and the 3D scan-based
wavelet transform [32]. SPIHT avoids the blocking artifacts in the block
bounds at the expense of some extra processing of pixels overlapped of the
following blocks whereas the 3D scan method allows the computation of
the temporal wavelet decomposition duplicating the input frames by a sym-
metrical extension. Our technique uses the overlapped approach as we will
present in the next section.

The introduction of Multimedia Extensions (MMX
TM

Technology) [24]
and the Streaming SIMD Extensions (SSE) [14] available on modern pro-
cessors, provide a technology designed to accelerate multimedia and com-
munications software, able to reduce the execution time of the applications.
Ranganathan et al. [33] show the Sun VIS media ISA extensions provide
an additional 1.1 to 4.2 performance improvement over several image and
video processing applications. Nachtergaele et al. [31], proposed a software
implementation of the MPEG-4 based on the integer wavelet transform us-
ing Multimedia Extensions. Conte et al. [13] evaluated several applications
obtaining substantial speed-ups with MMX/SSE code.

TM
MMX is a trademark of Intel Corporation or its subsidiaries in the United States and

other countries.
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The Pentium III processor introduced the 128-bit streaming SIMD ex-
tensions [37], which support floating-point operations on 4 single-precision
floating-point numbers, implemented through of eight 128-bit data registers,
called xmm0, xmm1, . . . , xmm7.

Two options are available when carrying out these extensions: by means
of an adequate compiler (automatic vectorization) or by hand. The Intel
C/C++ Compiler for Linux (v5.0.1) [15], follows the standard approach
to the vectorization of inner loops [39]. First of all, statements in a loop
are reordered according to a topological sort of the acyclic condensation of
the data dependence graph for this loop. Statements involved in a data
dependence cycle are then either recognized as certain idioms that can be
vectorized or distributed out into a loop that will remain serial. Finally,
vectorizable loops are translated into SIMD instructions.

However, automatic vectorization is still difficult to achieve due to the
high restrictions imposed by compilers and the nature of the algorithm of
the wavelet transform. Instead, and as will be shown in Section 4, we have
manually vectorized the code, as it was simple and more effective than giving
hints to help the compiler.

3 Blocking the Wavelet Transform

Our previous Wavelet-based encoder obtained excellent results both in com-
pression rate and quality (PSNR), as observed in [7][8]. Results were ob-
tained with the 3D-FWT working on video sequences of 64 frames of 512x512
pixels (16 MBytes of working set). This huge working set limits the perfor-
mance of such algorithm making it unfeasible for real-time video compression
and transmission. Initial results showed that this algorithm is completely
memory bound, therefore, blocking techniques could be an interesting ap-
proach to reduce its memory requirements and consequently the execution
time.

The aim behind blocking algorithms, is to exploit the locality exhibited
by memory references by means of partitioning the initial working set in
limited chunks that fit into the different levels of the memory hierarchy. In
this way, two positive effects appear: on the one hand, memory accesses
are accelerated, since data is actually at the higher levels of the memory
hierarchy (closer to the processor core). On the other hand, traffic between
the main memory and the processor chip is drastically reduced, obtaining
better use of the bandwidth provided by the baseline computer system.

However, applying blocking algorithms to video coders is a challenge;
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Figure 1: Cube approach

not only the memory hierarchy must be exploited by means of an optimum
data partitioning but quality must also be preserved. Note that partitioning
the working set into independent blocks may lead to unexpected reductions
to the quality of the resulting video due to artifacts in the block bounds.

In this section, we present two different approaches to the blocking ver-
sion of the 3D-FWT transform: cube and rectangular, both of which differ
in the way the original working set is divided.

3.1 Cube approach

In this first approach, we propose to divide the original sequence. For ex-
ample, a video sequence of 64 frames of 512x512 pixels is split into several
subcubes as we can see in figure 1 and the wavelet transform is indepen-
dently applied to each of these subcubes. With regards to the size of these
subcubes, X and Y axis are the same size (different block sizes have been
evaluated), whereas the number of frames in the time dimension is fixed to
16, the minimum number of frames needed to apply the transform twice.

However, this approach has two disadvantages. In the first instance,
as the compression ratio increases, the Peak Signal to Noise Ratio (PSNR)
drops significantly; in the second, an increasing degree of visibility in the dis-
continuity of the reconstruction at adjacent subcubes boundaries is detected
because artifacts effects appear. This is due to the way the computation is
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/* c0, c1, c2, c3: Daub-4 coefficients */
/* pixels 1..8 = p[0..7] */
/* temporal vector: low-pass */
float low[8], high[8];
n = 8;
for(i = 0, j = 0; j < (n/2)− 1; i+ = 2, j + +) {

low[j]=c0*p[i]+c1*p[i+1]+c2*p[i+2]+c3*p[i+3];
high[j+n/2]=c3*p[i]-c2*p[i+1]+c1*p[i+2]-c0*p[i+3];

}
low[j]=c0*p[n-2]+c1*p[n-1]+c2*p[0]+c3*p[1];
high[j+n/2]=c3*p[n-2]-c2*p[n-1]+c1*p[0]-c0*p[1];

Figure 2: Algorithm of 1D-FWT with Daub-4

performed in the FWT, since for a particular pixel, the value of its coefficient
after the transform is correlated with the original values of its neighboring
pixels.

To illustrate this problem, Figure 2 shows how the wavelet transform is
applied for an unidimensional signal of 8 pixels using the Daubechie’s of four
coefficients as a mother function (Daub-4). This signal is divided into two
blocks of 4 pixels where the FWT is computed independently. The resulting
coefficient for the first pixel depends on the second, third, fourth and itself,
all belonging to the same block. However, the second pixel depends on the
third, fourth, fifth and the sixth pixel (the last two pixels belong to a different
block unavailable in this original partitioning). The same happens to the rest
of the pixels. Since additional pixels are needed to compute the transform in
any dimension, two different alternatives can be considered to provide this
information. Non − Overlapped approaches utilize pixels from the same
block (for instance replicating last pixels, or using first pixels). Overlapped
approaches use pixels from the following block. Although the latter does not
seem to exploit memory locality, it provides better compression and better
quality results as we will demonstrate later on.

Furthermore, the 3D-FWT implies the computation of the 1D-FWT in
the time dimension. When following the aforementioned approach, informa-
tion from additional frames is needed, and can be obtained from the block
itself or from the following blocks. The amount of frames depends on the

10



number of steps of wavelet transform. Taking as an example the W4 mother
wavelet, applying the wavelet transform just once needs two more frames,
six frames are necessary for two wavelet transforms, and fourteen frames are
needed for three wavelet transforms.

Thus, choosing between the overlapped and non−overlapped approaches
for the 3D-wavelet transform is one of the main decisions that must be taken
to achieve a good trade-off between execution time and quality. Whereas
the non− overlapped approach seems more memory efficient, since compu-
tations are carried out using the working set of the block, the quality of
the reconstructed video is clearly affected by the artifacts that appear in
the block bounds. This is because the coefficients of the block bounds are
computed without taking into account their neighbors.

Subsequently, to avoid the artifacts caused by discontinuities in any re-
construction between adjacent coding subcubes, the X, Y and time axis are
overlapped. We refer to this cube modified approach as cube overlapped.
Since the FWT is applied twice, six rows, six columns and six frames must
be overlapped (e.g. for subcubes of 256 rows-columns of 16 frames, subcubes
of 262 rows-columns of 22 frames are now needed).

3.2 Rectangular approach

The 3D-FWT algorithm is programmed in C and frames are thus stored
in the memory according to row order. For the space locality of memory
references to be better exploited, it might be interesting to analyze a different
data distribution. In this section, we present the rectangular partitioning;
where the original cube is divided into several rectangles, as we can observe
in figure 3.

The overlapped wavelet transform as in the cube approach can be
applied to avoid the artifacts and the decrease of PSNR, however, only Y
and time dimensions are overlapped. For example, a video sequence of 64
frames of 512x512 pixels can be divided into 8 rectangles of 16 frames of
512x256 or 32 rectangles of 16 frames of 512x128 pixels. After overlapping,
rectangles of 22 frames of 512x262 pixels or 22 frames of 512x134 pixels are
obtained.

4 Optimizing the Rectangular Overlapped Approach

In this Section, several enhancements to the original blocking algorithms
are illustrated, with the aim of reducing both the number of FP instructions
and the pressure on the memory subsystem.
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4.1 Reuse Operations

In the latter approach, we found another contribution of this work: the reuse
of some computations to reduce the number of floating point operations
and memory accesses. When the overlapped wavelet transform is used,
operations are repeated across different blocks. For example, for the previous
video sequence, if divided into 8 rectangles of 16 frames of 512x256 pixels, 6
rows and 6 frames must be overlapped in the first rectangle. When the first
wavelet transform is applied to the Y dimension, 130 low and 130 high rows
are obtained. The last two low and high rows are the first ones in the next
rectangle, so they should not be computed again in the following block. As
seen in figure 4, some computations carried out for the first block are reused
for the second block. For instance, if we divide into several rectangles of 16
frames of 512x32 or 512x16 pixels, 12% and 25% of the operations will be
reused respectively in the Y dimension.

4.2 SSE Extensions for the Wavelet Transform

The SSE extensions are used to exploit fine-grained parallelism by vectoriz-
ing loops that perform a single operation on multiple elements in a data set.
Therefore, we can apply the SSE in our wavelet overlapped transform algo-
rithm for an unidimensional signal (1D-FWT) of n pixels with the Daub-4
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Figure 4: Reuse in Rectangular approach

as the mother wavelet function.
As we can be observed in Figure 2, the value of each resulting wavelet

coefficient depends on four pixels, and 8 floating point multiplications and
6 floating points additions are needed to obtain the low and high pass for
each pixel. For 4 coefficients, 32 floating point multiplications and 24 floating
points additions are then necessary.

Figure 5 shows the computation of the first four low-pass resulting wavelet
coefficients. We refer to this optimization as SSE vectorization by hand.
First, four SSE registers (xmm0, xmm1, xmm2 and xmm3) are initialized
with the Daub-4 coefficients. Second, the pixels are loaded in groups of four
into the SSE registers (xmm4, xmm5, xmm6 and xmm7). Finally 4 floating
point multiplications and 3 floating point additions, are performed among
the SSE registers to obtain the same wavelet coefficients as in the algorithm
of 1D-FWT overlapped with Daub-4. We can obtain the high-pass wavelet
coefficients in the same way; with 4 floating point multiplications and 3
more floating point additions. Therefore, the total number of floating point
instructions has been reduced from 56 to 15 instructions2.

2Each instruction contains operations that are executed in parallel
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C0 C0 C0C0

C1 C1 C1C1

_mm_set_ps(C0, C0, C0, C0)

_mm_set_ps(C1, C1, C1, C1)

_mm_set_ps(C2, C2, C2, C2)

_mm_set_ps(C3, C3, C3, C3)

XMM0

XMM1

XMM2

XMM3

C2 C2 C2C2

C3 C3 C3C3

_mm_set_ps(p[6], p[4], p[2], p[0])

_mm_set_ps(p[7], p[5], p[3], p[1])

_mm_set_ps(p[8], p[6], p[4], p[2])

XMM4

XMM5

XMM6

XMM7

p[2] p[8]

p[3]

p[0] p[4] p[6]

p[1] p[5] p[7]

p[2]

p[3]

p[4] p[6]

p[5] p[7] p[9] _mm_set_ps(p[9], p[7], p[5], p[3])

C0*p[0] C0*p[2] C0*p[4] C0*p[6]

mulps xmm3, xmm7

mulps xmm1, xmm5

mulps xmm2, xmm6

XMM0

XMM1

XMM2

XMM3

C1*p[1] C1*p[3] C1*p[5] C1*p[7]

C2*p[2] C2*p[6] C2*p[8]

C3*p[3] C3*p[9]

C2*p[4]

C3*p[5] C3*p[7]

mulps xmm0, xmm4

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +

C1*p[3] C1*p[5] C1*p[7]C1*p[1]

C2*p[6]C2*p[4]C2*p[2] C2*p[8]

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +

C1*p[3] + C1*p[5] + C1*p[7] +C1*p[1] +

XMM0

XMM0

C3*p[3] C3*p[5] C3*p[7] C3*p[9]

C2*p[6] +C2*p[4] +C2*p[2] + C2*p[8] +

C0*p[0] + C0*p[2] + C0*p[4] + C0*p[6] +

C1*p[3] + C1*p[5] + C1*p[7] +C1*p[1] +XMM0 addps xmm0, xmm3

addps xmm0, xmm1

addps xmm0, xmm2

b) Load pixels in group of 4 into the SSE registers.

a) Initialize SSE registers with Daub−4 coefficients.

c) Floating point multiplications among SSE registers.

d) Floating point additions among SSE registers.

Figure 5: Phases for the computation of the first four low-pass wavelet
coefficients with the SSE registers

4.3 Loop Unrolling and Prefetching Data

Loop unrolling is usually applied by the compiler if there is a clear room
for improvement. However, due to the nature of the Wavelet algorithm (3
nested loops for the time dimension) and the compiler constraints, we have
had to unroll the time dimension manually. In this dimension, if the wavelet
transform is applied twice, the first iteration will be applied over 22 frames
and the second iteration over 10 frames (for blocks of 16 frames).

Therefore, the loop is unrolled for the time dimension, because when
using the SSE, the loop is only executed three times in the first iteration (4
low-pass and 4 high-pass coefficients are calculated in each time) and once
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more in the second.
Another feasible optimization is data prefetching which improves the

performance due to accelerated data delivery. In this way, data prefetching
can, in part, hide the memory latency. If we predict which memory page
our program will request next, we can fetch that page into cache (if it is not
already in cache) before the program asks for it. In our wavelet transform
algorithms, it is necessary to reference a lot of data and we can predict what
are the next data in order to drop down the latency.

4.4 Columns Vectorization

In the 3D-FWT, the wavelet is applied in the x, y and time dimensions.
In previous subsections, we analyzed the time dimension and applied the
SSE vectorization by hand, loop unrolling and data prefetching. In the
x dimension, the wavelet transform is applied successively for all rows of
each frame. As the video sequence is stored in the memory according to a
row order, spatial locality is exploited when the transform is applied in this
dimension. The main problem with memory appears when the transform
is applied in the y dimension. Pixels from successive rows are needed to
compute the coefficients of each column of the y dimension, causing many
cache misses even for the blocking version of the algorithm (for this version,
L1 data cache still presents a high number of misses).

In this Section, we give ”columns vectorization”, as an effective way to
apply the transform in the y dimension, exploiting the locality of references
and the fact that the transform was already applied in the x dimension.

As the wavelet transform is applied by rows in the x dimension, to com-
pute the first coefficient in the y dimension, only the resulting wavelet coef-
ficients of the first four rows are needed, since each coefficient of the Daub-4
mother function depends on four pixels, as we can observe in Figure 2. To
compute a new row in the y dimension, two more rows of wavelet coefficients
in the x dimension are needed.

Figure 6 is an example of a piece of frame of 6 rows by 12 columns. Once
the wavelet transform is applied for the four first rows in the x dimension, it
can be applied to the first row in the y dimension (i.e. in order to compute
a coefficient, values obtained for rows 0,1,2,3 are needed). Furthermore, this
computation is carried out using SSE extensions (4 coefficients fit in a XMM
register). The second row in the y dimension depends on rows 2, 3, 4 and
5. Therefore, only two new rows in the x dimension are necessary.
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Figure 6: Columns vectorization

TLBs L1 instr TLB, 4K page, 4-way, 32 entries
L1 data TLB, 4K page, 4-way, 64 entries

Level 1 L1 instr cache, 16 KB, 4-way, 32 byte line
L1 data cache, 16 KB, 4-way, 32 byte line

Level 2 L2 unified cache, 256 KB, 8-way, 32 byte line
Level 3 512 Mbytes DRAM

Table 1: Description of the memory hierarchy

5 Experimental Results

5.1 Workbench Environment

The evaluation has been carried out on a 1GHz-Intel Pentium-III processor
with 512 Mbytes of RAM. The main properties of the memory hierarchy are
summarized in table 1. The operating system used was Linux 2.2.14. The
programs have been written in the C programming language.

Performance has been measured using the monitoring counters available
in the P6 processor family. The Intel Pentium-series processors include
a 64-bit cycle counter and two 40-bit event counters with a list of events
and additional semantics dependent on the particular processor. We have
used a library, Rabbit (v.2.0.1) [18], to read and manipulate Intel processor
hardware event counters in C under the Linux operating system.

We compared execution time consumed by the 3D-wavelet transform
for the different blocking approaches proposed in section 3, with the origi-
nal 3D-FWT lossy compression method [7], and the different optimizations
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Figure 7: Execution Time for the different approaches for the Heart video
sequence

presented in section 4 on a heart video medical sequence of 64 frames of
512x512 pixels coded in gray scale (8 bits per pixel).

5.2 Evaluating the Execution Time

Figure 7 shows the execution time obtained with two levels of the fast wavelet
transform to compute 64 frames of 512x512 pixels and for the different
blocking approaches: cube non-overlapped, cube overlapped and rectangular
overlapped (Rectangular) compiled with the gcc/gnu compiler. Intel C/C+
+ represents the same blocking rectangular approach compiled with the Intel
Compiler [15]. SSE includes SSE vectorization by hand as well as loop
unrolling and data prefetching, all of them for the time dimension. Finally,
Columns includes Columns Vectorization and the SSE vectorization by hand
in the computation of wavelet coefficients for the y dimension. Results are
presented according to different block sizes, from 16x16x16 to 512x512x16
in the cube approaches and from 512x16x16 to 512x512x16 in the other
approaches and optimizations. We have also included the execution time
without blocking for reference, using the non-overlapped and the overlapped
wavelet transform, plotted as dotted lines, taking the same execution time
for all configurations because there are not divisions into different blocks.

First of all, we can observe that blocking approaches clearly reduce the
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execution time of the original algorithm for all configurations. The opti-
mal block size in the cube non-overlapped approach (64x64x16) obtains a
speedup of 2.71 over the original non-overlapped wavelet transform, whereas
overlapped blocking approaches, cube (optimal block size 32x32x16) and
rectangular (optimal block size 512x64x16), provide a speedup of 1.77 and
2.42 respectively, compared to the non-overlapped wavelet transform.

As we expected, the rectangular approach obtains the best results among
the different blocking approaches. This behavior is due to the better ex-
ploitation of the locality of its memory accesses and the reuse of floating
point operations. This reuse improves the execution time over an average
of 6% for all configurations.

Higher execution times on overlapped blocking approaches compared to
the non-overlapped ones are caused by the increase of the working set of
blocks since data from the following blocks must be incorporated. However,
these overlapped approaches obtain much better quality, which makes them
more attractive to be used.

For instance, in the rectangular approach, the optimal configuration is
512x64x16, obtaining a speedup of 1.48 over the 64x64x16 in the cube
overlapped approach. In some configurations (16x16x16, 32x32x16 and
64x64x16), the cube non-overlapped approach obtains faster times than the
rectangular approach. However this approach presents artifacts and a de-
crease of the PSNR (from 37 to 33) in the reconstructed video, that it then
discards to obtain a higher quality compression of the medical video.

In summary, overlapped approaches maintain the compression rate and
quality of the video whereas the non-overlapped approach produces an un-
acceptable degree of visibility in the reconstructed video.

As for the blocking overlapped approaches, the rectangular approach
better exploits the memory hierarchy than the cube and consequently the
execution time is significantly reduced. Rectangular or cube blocking achieve
execution times 12% (512x64x16) and 33% (32x32x16) faster than blocks of
512x512x16.

5.3 Analyzing the Effects of further Optimizations

Furthermore, it can be observed that each new optimization clearly reduces
the execution time of previous approaches for all configurations. The opti-
mal block size (512x64x16) is maintained in all approaches. For this block
size, the version just compiled with the Intel C/C++ obtains a speedup of
1.18 to that the one compiled with gnu/gcc. From this point on, we will
refer to the Intel C/C++ version as the baseline, since it represents our
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previous proposal, re-compiled with a better compiler. Combining SSE ex-
tensions with prefetching and loop unrolling, obtain a speedup of 1.31 for
the baseline and a speedup of 1.54 for the Columns vectorization. It is im-
portant to note that all of these optimizations in the algorithm, maintain the
same compression rate and quality as the rectangular overlapped approach
confirming the potential of these methods.

The results in Intel C/C++ are obtained with the −tpp6 options which
generates a code optimized for Pentium III processors and the advantages
of the new compiler, improving the original execution time. In addition, we
have enabled the automatic vectorization with the −xK and −axK options,
generating a code specialized for Streaming SIMD extensions. Although the
execution times are better than those of the original rectangular overlapped
approach (i.e. that compiled with gnu/gcc), they are worse than without
automatic vectorization for the Intel C/C++ compiler. The reason for the
decrease in performance experienced with automatic vectorization is that the
vectorization of the Wavelet Transform is tricky, i.e. it has to be carefully
applied to the computations that could obtain benefit from it. Remember
that there are three nested loops and that, for instance, vectorizing the
innermost loop does not provide any benefit. Thus, manually vectorizing
the code, as proposed in this work is, so far, the best option for achieving
benefits when SIMD extensions are applied in the Wavelet Transform.

In SSE optimizations, to achieve performance benefits there are three
different ways: first, the utilizations of SSE extensions for the time dimen-
sion, second, the effect of loop unrolling to increase Instruction Level Par-
allelism, and third, the effect of data prefetching. At the same time as
the four wavelet coefficients are being calculated, pixels needed for the next
coefficients are being prefetched.

Finally, with Columns optimization, execution times are significantly
reduced for all configurations. This optimization allows the real-time video
compression and transmission (24 frames per second) for all but the block
sizes 512x512x16 and 512x256x16. The configurations from block sizes
512x16x16 to 512x128x16 obtain 25.7, 26.6, 27.4 and 25.0 frames per second
respectively. This is due to better exploitation of the temporal and spatial lo-
cality of the cache memory by the columns vectorization. We also manually
vectorized the computations of the y dimension without the Column opti-
mization (i.e coefficients in the y dimension are computed after the wavelet
has been completed in the x dimension). This optimization does not provide
any performance benefit thus, to obtain improvement from SSE extensions
in the y dimension, the code reordering that we propose in this work must
be carried out.
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5.4 Analyzing the Memory Cache Behavior

To gain some insight into the speedups obtained by the previous approaches,
Figures 8 and 9 present the memory cache behavior for the heart video
sequence. This behavior is measured using Data Cache Unit (DCU) Lines
In and L2 Lines In events of the performance counters, which represent the
number of lines allocated in the L1 Data Cache and the L2 cache respectively
(i.e. the number of accesses that miss in each cache respectively). The block
size is presented as a number of times the size of each cache.

The trend of the curve illustrating the rectangular overlapped approach,
is quite simple; the smaller the block, the lesser the misses in the L1 Data and
L2 Cache, until a certain block size. The other approaches also produce very
similar curves; a blocking factor of 32 the size of the L1 Data or two times the
L2 Cache size, are the best configurations, that is, to say an optimal block
size of 512x64x16. Smaller block sizes do not improve the misses because
when the block size decrease, the overlapped wavelet transform needs a
higher number of pixels in the following blocks implying an overhead of data
in the L1 Data and L2 Cache. In figures 10 and 11, we can observe that
the DCU Lines In and L2 Lines In belonging to the rectangular overlapped
approach divided by axis for the first iteration of the wavelet transform. In
both cases, the time and y axis show the same behavior of all the misses in
the L1 Data and L2 Cache, while in the x axis, the smaller the block, the
higher misses in the L1 Data and L2 Cache by the overhead of the overlapped
wavelet transform in the smaller blocks. This confirms that smaller block
sizes that fit into the caches, reduce the number of L1 and L2 misses until
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a configuration where the overhead of pixels of the following blocks become
very important, implying a higher number of misses in L1 Data and L2
Cache than higher block size configurations.

It can be observed that the rectangular approach allocates a lesser num-
ber of L1 and L2 lines than the cube overlapped approach justifying the
decrease in the execution time in the blocking approaches. Remember that
data is stored by rows, since the rectangular approach retains more coeffi-
cients in a row than the cube approach; spatial locality is better exploited
and the number of compulsory misses is drastically reduced.

The Intel C/C + + approach also allocates less L1 and L2 lines than
the rectangular overlapped approach for all configurations, justifying the
decrease in the execution time. With respect to SSE vectorization by hand,
we observe that in most configurations, this approach produces less L1 and
L2 misses than the Intel C/C++ but the difference is not very significant.
Note that the main benefit provided by SSE optimizations comes from the
reduction in the number of Floating Point Instructions, as we can observe
in Figure 12, due to manual vectorization. Applying SSE extensions does
not reduce the overall number of FP operations, which only depends on the
algorithm, but it does reduce the number of FP instructions, since operations
are performed in parallel in single SIMD instructions. Thus, what we are
exploiting is Data Level Parallelism. Furthermore, the benefit provided by
data prefetching cannot be measured in the number of L1 or L2 misses, as
prefetching instructions do cause cache misses. However data is prefetched
enough in advance so that misses do not cause dependent instructions to
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wait on the processor.
Finally, in the Columns approach, there is a significant increase in the

number of lines allocated in L1 and L2 caches compared with previous ap-
proaches. Although the columns vectorization better exploits the spatial
and temporal locality for the calculation of the x and y dimension. This in-
crease in L1 and L2 misses is due to an implementation issue. When columns
vectorization is applied, two rows are generated for the y dimension, a low-
pass and a high-pass. High pass coefficients must be saved in another space
different to the frame itself so as not to delete the original pixels, already
required for the rest of the x computations. This increases the number of
memory lines used for the transform (the original ones, plus those needed
for the temporal location of high-pass coefficients). Also, because of data
movements back and forth to temporal locations, locality is not so exploited,
affecting the end performance of memory operations.

However, taking into account this problem of the memory instructions,
the execution time have been drastically reduced for all configurations. This
reduction is due to two reasons. First, since this optimization is built on
top of the previous ones (the original blocking, prefetching and so on), the
original 3D-FWT is not as memory bound even with the latter’s memory
”inefficiency”. Second, since the algorithm is not memory bound and fol-
lowing the Amdahl Law, any optimization in the computation side has a
great impact on performance. Note that with the Columns approach, the
number of FP instructions executed have dropped spectacularly, 71%, 53%,
48% and 34% regarding to Cube Overlapped, Rectangular compiled with
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gnu/gcc, rectangular compiled with Intel C/C++ and SSE vectorization
by hand respectively, as we can see in Figure 12. This reduction in the
number of instructions occurs again by exploiting Data Level Parallelism,
achieved by manually vectorizing computation in the y dimension.

Finally, it can be observed that the behavior of FP instructions executed
in the Cube Overlapped approach is very different to that of the other ap-
proaches in the configurations. This is due to the division of the original
sequence into subcubes implying an increase in FP instructions executed
when the block sizes drop down, because the overlapped wavelet transform
needs rows, columns and frames of the following blocks implying the com-
pute of a higher number of operations in the smaller blocks. Therefore, it
is very important the reuse of floating point operations introduced by the
rectangular approach, which decreases the number of FP instructions exe-
cuted for all configurations from 2% to 20%. This reuse also helps maintain
a similar number of FP operations for all configurations.

6 Conclusions

In this work, we have focused on reducing the execution time of the 3D-
Fast Wavelet Transform when it is applied to code medical video. We have
presented six proposals. First, we have developed and evaluated several
blocking algorithms to exploit the memory hierarchy. Second, we have pro-
posed the reuse of computations to decrease the number of floating point
operations and memory accesses. Third, we have proposed and evaluated
the automatic and SSE vectorization by hand, that exploits Data Level Par-
allelism by collapsing FP operations on single SIMD instructions. We have
showed that the native compiler, Intel C/C++, is not able to obtain per-
formance benefits through automatic optimizations and we have proposed
several modifications on the algorithm that provide significant benefits by
vectorizing computations in the y and time dimensions. Fifth, we have man-
ually unrolled the time dimension loop and inserted prefetching instructions,
both to reduce the impact of cache misses and exploit Instruction Level Par-
allelism. Sixth, we have proposed and evaluated the columns vectorization
in the y dimension, in order to reduce the floating point instructions and the
memory accesses exploiting the spatial and temporal locality of the memory
hierarchy.

Results have showed that the columns vectorization approach, which in-
cludes the different optimizations, has obtained the best results, achieving
a speedup of 5 for optimal block size (512x64x16) over the non-blocking
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non-overlapped wavelet transform, 2.68 over the optimal (64x64x16) cube
overlapped approach, 1.81 over the rectangular overlapped wavelet trans-
form (compiled with gnu/gcc), 1.54 compared to the rectangular overlapped
wavelet transform compiled with the Intel C/C++ compiler and 1.17 with
respect to SSE vectorization by hand. Furthermore, all the approaches pre-
sented maintain the video quality and the compression ratio of the original
encoder. Finally, the execution time achieved via the columns vectorization
approach allows for real-time video compression and transmission.

Furthermore, the presented techniques could be generalized to other mul-
timedia applications based on the computation of a transform such as JPEG-
2000 [28], MPEG-2 [36] (based on the DCT transform) or MPEG-4 [4][5] on
general-purpose processors. All transforms follow a common computation
model. Therefore, the memory bandwidth requirement could be reduced
through exploiting the memory hierarchy, the Data Level Parallelism could
be exploited by the multimedia extensions available in all current general-
purpose processors and others classic methods like data prefetching and loop
unrolling could exploit the Instruction Level Parallelism.
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