
CORBA Components Demonstration

Frank Pilhofer

February 21, 2002

Abstract

The CCM Implementors Group intends to demonstrate availability of several implementations of the
CORBA Component Model at the OMG Meeting in Yokohama (April 2002). This document defines
the demo scenario as well as the hardware environment. The demo will focus on the interoperability of
existing components.

1 Procedures

Frank Pilhofer will act as the coordinator for the demonstration. Participants that want to join the demon-
stration shall contact the coordinator. Parties that are unable to come to Yokohama but still want to demon-
strate their implementation shall register through a participant that agrees to host their implementation. The
demonstration will take place on Tuesday afternoon; a preliminary meeting will be held on Monday for a
live test.

2 Hardware Environment

The demonstration will be run on multiple computers interconnected by a TCP/IP network. There will be
a 100 MBit Ethernet Hub; each participant shall bring their own compouter and a “10 Base T” cable of
appropriate length (3 meters or more). Each participant will be assigned one or more static IP address.
Participants that wish to hook up more than one computer shall bring additional hubs.

I will bring some extension cords to provide sockets for all of us. Please bring adapters that match
german sockets (in other words, I will use a single japanese socket / german plug adapter and german
extension cords), or else be prepared to bring some extension cords to directly hook up to Japanese plugs.
In any case, the power will be 100 Volts at 50 Hertz.

3 Software Environment

We do not expect that interoperable assembly and deployment tools will be available in time. Therefore,
the demonstration will be limited to the interoperability of existing (already deployed) components. All
participants will deploy components using their own, vendor-specific tools, and then register their homes
in a common Naming Service. Of course, each participant is welcome to demonstrate their deployment
software in a separate scenario.

Each participant will be provided with a corbaloc: or http: style object reference of the Root
Naming Context. Each participant will then create a new Naming Context with the name of their imple-
mentation as the new node’s name. Within that Naming Context, each participant will register all homes
required by the demonstration. Each home will be registered using its IDL name in the name field; the
kind field shall be left empty, or shall carry a sequential number if you wish to run multiple homes of the
same type.

A tool will be provided that traverses the Naming Service, creating components from their homes,
interconnecting them, and then calling configuration_complete on each component’s equivalent
interface.

1



module DiningPhilosophers {
exception InUse {};

interface Fork {
void get () raises (InUse);
void release ();

};

component ForkManager {
provides Fork the_fork;

};

home ForkHome manages ForkManager {};
};

Figure 1: IDL for the ForkManager Component

4 Scenario

The “Dining Philosophers” scenario will serve as an example.
A number of Philosophers is sitting around a circular table. Between each two is a fork, so there is an

equal number of philosophers and forks. Philosophers think until they become hungry, then they need both
forks (the one on their left and the one on their right side) in order to eat. Obviously, this can cause conflicts,
because there are not enough forks for all philosophers to eat at the same time. An unlimited amount of
food on each plate is assumed. Some means of fairness must be implemented to avoid deadlocks, livelocks
and starvation.

Philosophers and forks will be implemented as components; forks are facets offered by a ForkManager
component; fork references are then used by the philosopher components.

At regular intervals, philosophers shall publish an event that contains status information. An observer
component will consume these events to produce a global status display.

4.1 ForkManager Component

The ForkManager component offers a single facet by the name of the_fork of type Fork. The Fork
interface has two operations called get and release. The full IDL for the ForkManager component
is shown in figure 1.

A hungry philosopher, in acquiring a fork, will call the fork’s get operation. This will lock the fork
for other use until the philosopher calls the fork’s release operation. If a fork is already in use, and the
get operation is called again, the operation will throw the InUse exception.

Note that this scenario assumes fair philosophers that do not call release on a fork that they have not
locked themselves.

4.2 Philosopher Component

A Philosopher component has two receptacles; one of type Fork for each fork (left and right). In
addition, a philosopher has an event source port to publish events of type StatusInfo. The full IDL for
the Philosopher component is shown in figure 2.

Philosophers are autonomous in that they act by themselves rather than just reacting to invocations
from the outside. Their behavior can be partially described by a state machine as shown in figure 3. State
transitions happen at discrete points in time, called ticks. There is at most one state transition per tick.

The “real time” per tick is a per-philosopher constant; each philosopher shall select a random time
between 1000 and 3000 milliseconds for each tick.

2



module DiningPhilosophers {
component Philosopher {
attribute string name;
uses Fork left;
uses Fork right;
publishes StatusInfo info;

};

home PhilosopherHome manages Philosopher {
factory new (in string name);

};
};

Figure 2: IDL for the Philosopher Component

Thinking

Inactive

Activation

DeadEating

Hungry Starving

Gets Both Forks

Figure 3: Philosopher State Machine

3



Note: The rationale behind using a different, random tick interval for different philosophers is
that this is an easy measure to avoid livelocks, which might happen if all philosophers pick up
and drop forks simultaneously. You could say that philosophers have an individual metabolic
rate.

Each tick, philosophers publish a StatusInfo event on their info port.
In the following, each state is described:

Inactive After deployment and before activation, philosophers are inactive. Upon activation (i.e. after
configuration_complete has been called on the external interface and ccm_activate has
been called on the internal interface), the philosopher enters the Thinking state.

Thinking Upon entering the Thinking state, the philosopher initializes an internal counter to zero. This
counter is incremented each tick while in the Thinking, Hungry and Starving states and therefore
measures the philosopher’s “hungryness.” This value is later used to compute the time spent eating,
and also for possible display in the observer. In the Thinking state, the philosopher does nothing (but
publishing StatusInfo events). After three (3) ticks, the philosopher enters the Hungy state.

Hungry In the Hungry state, the philosopher would like to eat, so the philosopher attempts to acquire both
forks. If the philosopher succeeds getting both forks, the philosopher enters the Eating state. If the
philosopher does not succeed getting both forks within seven (7) ticks (i.e. if the hungryness counter
becomes 10), the Starving state is entered.
To prevent deadlocks, a philosopher is not allowed to hold a single fork for an extended amount
of time; if a philosopher decides holding one fork while waiting for the other, the fork held by the
philosopher shall be released after at most five (5) ticks.

Starving In the Starving state, the philosopher acts the same as in the Hungry state, but may implement
more desperate measures to hold on to a fork for an extended amount of time while waiting for the
other. If the philosopher succeeds getting both forks, the Eating state is entered. If the philosopher
does not succeed getting both forks within thirty (30) ticks (i.e. if the hungryness counter becomes
40), the Dead state is entered.

Dead Upon entering the Dead state, the philosopher releases all forks. There is no way out of the Dead
state. However, a dead philosopher keeps sending StatusInfo events.

Eating In the Eating state, the philosopher holds on to both forks. While in the Eating state, the hungryness
counter is decremented by three (3) each tick, so that the philosopher spends one-third of the time
eating that the philosopher has been thinking, hungry or starving. If the hungryness counter reaches
zero, the philosopher drops both forks and enters the Thinking state.

This section has introduced a number of constants, and the notion of a variable metabolism. The choice
of constants has proven effective for the author’s implementation of the example (i.e. the philosophers
can run for an extended amount of time without dying). Configuring the constants might be intellectually
interesting, to see how well the philosophers will perform with a given set of parameters, but that would
add little value to our demonstration.

4.3 StatusInfo Event

The StatusInfo eventtype carries information that each philosopher publishes each tick. The IDL for
the StatusInfo eventtype is shown in figure 4.

The fields should be self-explanatory. The ticks_since_last_meal field is the same as the hun-
gryness counter that was mentioned in the previous section (i.e. initialized to zero upon entering the Think-
ing state, then incremented each tick). This value can be used by the observer to display the hungryness in
a graphical manner.

4



module DiningPhilosophers {
enum PhilosopherState {
EATING, THINKING, HUNGRY, STARVING, DEAD

};

eventtype StatusInfo {
public string name;
public PhilosopherState state;
public unsigned long ticks_since_last_meal;
public boolean has_left_fork;
public boolean has_right_fork;

};
};

Figure 4: IDL for StatusInfo event

module DiningPhilosophers {
component Observer {
consumes StatusInfo info;

};

home ObserverHome manages Observer {};
};

Figure 5: IDL for Observer Component

4.4 Observer

The Observer component has a single event sink port to consume StatusInfo events that are published
by each philosopher each tick. The IDL for the observer component is shown in figure 5. The observer
may display the information in any way it wants.

5 Running the Demo

As mentioned, there will be a tool that finds out about existing components (i.e. their homes) by traversing
the single Naming Service, where all homes need to be registered.

The tool will create an equal number of philosophers and forks, e.g. using one philosopher and one
fork from each party, depending on the number of participants and the desired number of philosophers.

One instance of the observer component will be created for each participant, which is then subscribed
to all philosophers, so that all participants can monitor the philosophers’ states simultaneously.

Once running, the demo is expected to run in perpetuity, without manual intervention. However, fre-
quent restarts are likely, if only to demonstrate the deployment and start-up process. Participants should
therefore prepare scripts to restart the demo quickly (i.e. starting daemons, deploying components, Naming
Service registration).

5


