
Journal of Systems Architecture 51 (2005) 251–264

www.elsevier.com/locate/sysarc
Evaluating IA-32 web servers through simics:
a practical experience

F.J. Villa *, M.E. Acacio, J.M. Garcı́a

Departamento de Ingenierı́a y Tecnologı́a de Computadores, Universidad de Murcia, 30071 Murcia, Spain

Received 11 November 2003; received in revised form 26 July 2004; accepted 14 September 2004

Available online 7 January 2005
Abstract

Nowadays, the use of multiprocessor systems is not just limited to typical scientific applications, but these systems

are increasingly being used for executing commercial applications, such as databases and web servers. Therefore, it

becomes essential to study the behavior of multiprocessor architectures under commercial workloads. To accomplish

this, we need simulators able to model not only the CPU, memory and interconnection network but also other aspects

that are critical in the execution of commercial workloads, such as I/O subsystem and operating system. In this paper,

we present our first experiences using Simics, a simulator which allows full-system simulation of multiprocessor archi-

tectures covering all the topics previously mentioned. Using Simics we carry out a detailed performance study of a static

web content server, showing how changes in some architectural parameters, such as number of processors and cache

size, affect final performance. The results we have obtained corroborate the intuition of increasing performance of a

dual-processor web server opposite to a single-processor one, and at the same time, allow us to check out Simics lim-

itations. Finally, we compare these results with those that are obtained on real machines.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Simics; Commercial applications; Full system simulators; Multiprocessor systems
1. Introduction

Multiprocessor systems have been traditionally

used in scientific areas: weather study and model-
1383-7621/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.sysarc.2004.09.003

* Corresponding author. Tel.: +34 968 364665; fax: +34 968

364151.

E-mail addresses: fj.villa@ditec.um.es (F.J. Villa), meaca-

cio@ditec.um.es (M.E. Acacio), jmgarcia@ditec.um.es (J.M.

Garcı́a).
ling, universe modelling, molecular algorithms,

etc. This kind of problems can be easily repro-
duced and studied using user-level simulators like

RSIM [8] and scientific benchmarks as those pro-

vided by the SPLASH-2 suite [17].

However, multiprocessor systems are also cur-

rently being used for executing other kind of appli-

cations, usually known as commercial, among

which we can find web servers, for example. It is

well-known that the importance of the Internet
ed.

mailto:fj.villa@ditec.um.es
mailto:meacacio@ditec.um.es
mailto:meacacio@ditec.um.es
mailto:jmgarcia@ditec.um.es

252 F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264
has grown exponentially in the last years, to the

point of becoming a part of our every day lives.

Nowadays, all the medium-sized and large-scale

companies, even the small ones, have a web portal

that is suitable as a ‘‘shop window’’ for customers
around the world. This situation can be extended

to all types of organizations: governments, aca-

demic institutions, etc. Large organizations, which

expect to receive a huge number of user connec-

tions everyday, need to have a powerful server,

which usually is implemented as a multiprocessor.

As a consequence of the increasing use of mul-

tiprocessors in this field, simulating multiproces-
sor architectures running web servers accurately

becomes important. Opposite to scientific applica-

tions, there are some characteristics of commercial

workloads that make challenging their simulation.

In particular, the activity of the operating system is

very important in these applications, as well as the

interaction with memory hierarchy, storage system

and communication network. It is thus required
that the simulators used in these studies model

all these aspects if accurate simulation results

want to be obtained. Simics [10] is a full-system

simulator which allows to simulate operating

system, memory hierarchy, storage, buses, micro-

processor, communication network, and so on.

Simics is increasingly being used as a platform

for simulating multiprocessor architectures run-
ning commercial applications, and it is currently

used in more than 300 universities all over the

world.

In this paper, we study the possibilities Simics

offers to characterize web servers. First of all, we

describe the main characteristics of the simulator.

Secondly, using Simics we evaluate the perfor-

mance of a dual-processor web server and we com-
pare it with the performance obtained when using

a single-processor one. The results that are ob-

tained corroborate the intuition that a dual-pro-

cessor web server obtain higher performance.

Finally, we repeat the experiments using real ma-

chines which allows us to highlight some of the

current limitations of Simics.

The rest of the paper is organized as follows.
Next Section presents some related work in the

evaluation of commercial applications with Simics.

Section 3 deals with the simulator�s main charac-
teristics. Section 4 describes the commercial work-

load we have used: a static web content server,

being Apache the web server and httperf the utility

which places the workload at the server. Section 5

contains the evaluation results. Section 6 compares
the results obtained using Simics with those ob-

tained using real web servers. Finally, Section 7

concludes the paper.
2. Related work

Up to not long ago, the methodology used for
evaluating commercial workloads in multipro-

cessors consisted in generating firstly memory

references of applications, and then, using these

references to feed a user-level simulator such as

RSIM [8]. For example, in [13] Ranganathan et

al. study the performance of On-Line Transaction

Processing (OLTP) and Decision Support Systems

(DSS) based on this methodology.
The appearance of full-system simulators like

SimOS [14] or Simics [10] has significantly simpli-

fied the evaluation of commercial workloads, as

these simulators allow modelling elements such

as the operating system, the I/O subsystem and

so on. Recently, several studies have appear that

use Simics as the simulation tool used for their

evaluation. In [2], it is presented an exhaustive
study of the TPC-C benchmark using this simula-

tor. The authors also identify one of the problems

concerned with simulation of commercial applica-

tions: the variability they show. A deeper analysis

of this problem appears in [4], where the variability

is found to be caused by the following reasons:

(1) The operating system can take different sched-
uling decisions.

(2) The locks may be acquired in different order,

which can lead to significant resource conten-

tion in one run, but not another.

(3) A transaction can be finished during a mea-

surement interval in one run, but no another.

Alameldeen et al. [3] study five commercial
applications, including a static content web server,

stressing again the indeterministic behavior of

commercial workloads.

F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264 253
The Java-based middleware is characterized in

[9]. In this work, Karlsson et al. study memory sys-

tem behavior of ECperf and SPECjbb benchmarks

using Simics. As the main result, they find that the

memory primary working sets of these workloads
are small compared to other commercial work-

loads such as On-Line Transaction Processing,

and that a large fraction of the working sets are

shared between processors.

All the previous works use the UltraSparc pro-

cessor architecture as the CPU model of the simu-

lated system. It is one of the most important

differences between these works and ours, as we
pretend to analyse the behavior of a web server

based on the x86 Simics simulated architecture.

To the best of our knowledge no other work has

addressed this issue.
1 The last release of the simulator includes a more detailed

model of the x86 family of processors.
3. Simics simulator

Simics is a platform which allows us to develop

both hardware and software, providing the neces-

sary components for the simulation of both ele-

ments in the same context. The different

functionalities offered by Simics are grouped into

modules. A module is a file written in C which

implements a class that defines an object type.

This tool allows simulating several architectures
(single-processor and SMPs), as well as to execute

upon them operating systems and commercial

applications, which can vary from benchmarks

such as SPEC CPU2000 [15] or TPC-C [16], to

desktop applications or games. This is actually

one of the most interesting characteristics of the

simulator, since it allows that commercial work-

load running on a multiprocessor system can be
easily and accurately simulated, which is much

harder to achieve with other simulators like RSIM.

3.1. Simulated architectures

Simics simulates nine processor architectures:

UltraSparc II, UltraSparc III, x86, AMD x86-64,

Alpha, PowerPC, IA-64, ARM and MIPS. Using
the UltraSparc III architecture, we can achieve a

theoretical limit of up to 384 processors. The

experiments we have performed in this work are
based on the x86 architecture, which allows for

up to 15 processors.

3.1.1. The Simics/x86 class family of processors

Simics/x86 simulates various x86 class proces-
sors, ranging from 486 to Pentium 4, and is capa-

ble of booting Linux up to version 2.4, Windows

NT 4.0, 2000 and XP in both single-processor

and multi-processors (SMP) mode. Simics/x86 in-

cludes various PC devices needed to boot the vir-

tual PC such as graphic controllers, bus

controllers, floppy and hard disks.

The x86 processors are modelled with a rough
level of detail: 1 microarchitectural issues such as

the reorder buffer, branch predictor or number of

functional units are not considered. Thus, the only

difference between processors is the instruction set

supported by each model.

3.2. Execution modes and timing interfaces

Simics is an event-driven simulator, which em-

ploys a maximum time resolution of one clock

cycle. The length of the clock cycle is an user-de-

fined parameter. An event is an interrupt of one

device or the execution of one instruction, for

example. Events can be scheduled to occur once

a specific number of steps have been executed. A

step means a completed instruction, an instruction
generating an exception, or an external interrupt.

The execution time of an instruction is an impor-

tant definition. In a single-processor machine, there

will be exactly one notion of time with an execution

mode defining instruction execution, and timing

interfaces controlling the latency of the global execu-

tion. When multiprocessors are simulated, this be-

comes somewhat more complex as each processor
could have its own notion of time. Simics serializes

execution when simulating multiprocessors in order

to improve performance. This is achieved by divid-

ing the time into segments and by serializing the exe-

cution of separate processors within a segment.

The simulator provides two execution modes:

in-order and out-of-order execution modes. The

254 F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264
latter is only available for SPARC processors. We

focus on in-order execution mode, since our simu-

lations use x86 processors. In this mode, each

instruction becomes a single event and instructions

are scheduled sequentially in program order. So,
when an instruction is stalled a certain number of

cycles (due to a cache miss, for example), the

instructions that follow it are also stalled until the

preceding instruction is completed. When simulat-

ing a multiprocessor, it is possible that an instruc-

tion is stalled in those cases in which its execution

extends across a quantum boundary. In such cases,

it is possible for another processor to observe and
manipulate the instruction partially executed.

Simics provides two generic abstractions that

relate simulated time with the number of executed

instructions. When using in-order execution mode,

each instruction takes exactly one clock cycle by

default. In the multiprocessor case, this means that

at any time all the processors have executed the

same number of instructions. By default, there
are no timing memory system models, so memory

access are stalled zero cycles, and each instruction

only takes one cycle to complete. The simulator

offers the possibility of creating a memory

hierarchy, through which this limitation can be

removed.

3.3. Memory hierarchy creation

There is a module that implements the generic-

cache class, which defines the cache type object.

Each object of the generic-cache class has some

attributes that can be configured by the user.

Through the next-level attribute, it is possible to

create a cache hierarchy, making this attribute to

point to the next object in the memory hierarchy.
The number of levels in the cache hierarchy is not

limited, and the only limitation is that the cache

memory cannot be shared by two processors.

There are other attributes to control the num-

ber of cache rows, row size, associativity, write

policy (write-back or write-through), hit time and

miss penalty. Likewise, we must indicate which

processor is each cache connected to. When a
SMP multiprocessor is to be modelled, the simula-

tor employs a four-state memory coherence proto-

col and snooping caches.
3.4. Network simulation

Simics is also able to simulate several nodes

interconnected through a local area network. To

this end, it is provided the ethernet-central module,
which can be considered as the interconnection

network (a simulated network). Every time the

ethernet-central module is executed, it remains

waiting for incoming connections. Subsequently,

each one of the nodes are simply connected to

the network using the suitable command.
4. Working environment

4.1. Apache web server

Apache [5] is a static and dynamic web content

server, although in the evaluations performed in

this paper it has been used only as static server.

The server has been compiled including all the op-
tions indicated by the server development group in

order to increase performance [6]. Among these

options, it is recommended the use of the worker

multiprocessing module instead of the prefork

one, which is the default option. After compiling

the server with the worker module, the incoming

connections are dispatched using threads instead

of processes. The server has also been configured
to maintain a pool of inactive threads, so that re-

quests are dispatched without waiting for the cre-

ation of a new thread.

4.2. Benchmarks used

The httperf utility [11] is a tool to measure web

server performance. In its basic operation mode,
httperf generates a fixed number of GET HTTP re-

quests and measures the number of responses and

their latency. The most important options offered

by this program are:

• it allows simulating different users, that is, it

models the concept of session. It can specify

the number of requests emitted in each session,
as well as the frequency of the emissions.

• it allows specifying the rate of connections or

sessions created.

Table 1

Basic parameters of the simulated systems

Processor speed 500 Mhz

Model Pentium 3

Cache line size 64 bytes

L1 cache WB Direct mapped, 32 KB

L1 hit time 2 cycles

L2 cache WB 4-way associative, 512 KB/1024 KB

L2 hit time 10 cycles

Memory size 512 MB

Memory access time 50 cycles

Operating system Red Hat Linux 7.3

Kernel version 2.4.18-3

Network Ethernet 10 Mb/s

F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264 255
• N different requests can refer to N different

pages. The performance metric used is the mean

response time, which is defined as the mean time

between sending the first byte of the request and

receiving the first byte of the response.

4.3. Methodology

The evaluations performed have been based on

varying the configuration of the server using Si-

mics and then, by means of httperf, executing the

same test for every configuration. This allows car-
rying out comparisons among the architectural

configurations that have been evaluated. Unfortu-

nately, we noted that httperf generated requests

randomly, which caused that consecutive execu-

tions of the tool showed different request traces.

In order to ensure the repeatability of the tests,

we had to modify httperf so that it could generate

a file with request traces. This way, making a base
test we firstly caught requests that were generated

and write them in a file; later tests used this file to

retrieve requests in the same order they were gen-

erated in the base test.

We solved the variability problem mentioned in

Section 2 applying standard statistic techniques

[4]. Each test was repeated five times, and the

arithmetic average was taken as the result of the
test. It was also necessary to use standard devia-

tion as a metric that allows us to discard those

tests whose results were too far away from the

mean.

4.4. Hardware configuration

In our evaluations, we have considered three
different server architectures: two single-processor

architectures with L2 cache size of 512 KB and

1024 KB, respectively and a dual-processor archi-

tecture in which each processor has a L2 cache

of 512 KB. All these servers use Pentium three pro-

cessors. Table 1 summarizes the basic parameters

of the simulated systems.

Both the server and client are virtual hosts sim-
ulated by Simics; these hosts are interconnected

using a 10 Mb/s Ethernet network, which is also

simulated by Simics.
5. Simulation results and analysis

In this Section, we present the results that have

been obtained using Simics. First of all, we show

the variations in Apache response time as a func-

tion of the number of requests that are simulta-

neously sent to the server. Using this metric, we

compare the three hardware configurations pre-
sented. Then we provide detailed statistics of the

CPU and caches for each one of the configurations.

Clearly, this comparison could have been car-

ried out using real computers (as we will see later);

however, the use of Simics provides more flexibil-

ity to easily change system configuration. It is also

possible to obtain detailed CPU and cache statis-

tics, something that is harder in a real environment
and that allows us to analyse in a deeper way the

obtained results.

5.1. Apache response time as a function of the

number of requests received

In order to compare the different hardware con-

figurations of the servers, we measure the response
time of Apache in each case as a function of the

number of requests that are received. For this,

we have executed two kind of tests:

(1) First, we have executed 1000 requests referred

to 10 web pages whose sizes vary between

338 KB and 545 KB, with an average page size

of 110 KB.

256 F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264
(2) Second, we have also executed 1000 requests,

but these refer 10 web pages with an average

page size of 537 bytes.

The motivation behind these two different tests
is to check the influence of the interconnection net-

work on the results. In both cases we have firstly

generated a file containing the requests that are

sent (remember that these requests are generated

randomly). Additionally, we must take into ac-

count the use of timeouts for requests: if after a

lapsed time, a response from the server has not

been received, the connection is given up for dead
and closed, and the total number of timeout errors

is increased. The httperf program allows specifying

a timeout value, and automatically control it. In

general, it is suggested a timeout value between 5

and 15 s [12]; we have used a value of ten seconds

in the tests.

We have carried out eight tests for each sever

architecture, in which the total number of requests
that Apache must process has been set to 25,

50, 75, 100, 125, 150, 175 and 200, respectively.

Fig. 1 shows the average response time. This

metric is provided by httperf. On the other hand,

Fig. 2 presents the evolution of dispatched re-

quests as a function of the total number of re-

quests. This metric is provided by the Apache

server. In both cases, results are shown for large
and small pages.

From Fig. 1(a), we can see how from the htt-

perf�s perspective, the two single-processor archi-
(a)

0

 500

 1000

 1500

 2000

 2500

 3000

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Requests/s

512KB
1024KB

Dual

Fig. 1. Average response time as a function of the number of rec
tectures have almost the same performance than

the dual-processor one. However, if we take a look

to Fig. 2(a), we notice that the dual-processor ser-

ver is able to process from 7% to 30% more re-

quests than the single-processor one with a L2
cache of 1024 KB. The difference is even larger

when we compare the dual-processor server with

the single-processor one with a L2 cache of

512 KB (from 25% to 39%). This behavior is moti-

vated by the communication network that connect

the host running httperf and the server. The reason

is that network requirements for these tests are

greater than the bandwith offered by the Simics

simulated network.

We can also see in Fig. 2(a) that the number of

requests dispatched per second decreases once the

point of 175 requests per second has been reached,

and it happens for all the configurations. This phe-

nomenon is also a consequence of the saturation

found in the network, which causes that lower

rates of arriving requests are obtained as we in-
crease the rate of requests per second that httperf

generates.

Comparing the results of Figs. 1(a) and 2(a)

with those of Figs. 1(b) and 2(b) we can conclude

that the communication network was indeed satu-

rated. In the tests performed over the pages of

average size of 537 bytes we can see how the

dual-processor server has greater performance
than those that employ a single-processor, with

an average response time of half the response time

of the single-processor severs.
0

 50

 100

 150

 200

 250

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Requests/s

512KB
1024KB

Dual

(b)

eived requests per second. (a) Large pages; (b) small pages.

0

5

 10

 15

 20

 25

 30

 35

 40

0 50 100 150 200

D
is

pa
tc

he
d

R
eq

ue
st

s/
s

Requests/s

512KB
1024KB

Dual

0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 50 100 150 200

D
is

pa
tc

he
d

R
eq

ue
st

s/
s

Requests/s

512KB
1024KB

Dual

(a) (b)

Fig. 2. Dispatched requests per second as a function of the number of received requests per second. (a) Large pages; (b) small pages.

Table 2

CPU statistics for the single-processor architectures and large

pages

Executed instructions

Req/s User mode Supervisor mode

(a) L2 cache of 1024 KB

25 60.672.719 24.674.350.265

50 64.306.550 14.970.932.911

75 64.334.396 11.758.236.372

100 63.820.362 10.066.423.534

125 63.036.580 10.916.560.146

150 63.973.983 12.197.420.294

175 62.724.364 10.824.982.548

200 62.392.239 11.760.974.821

(b) L2 cache of 512 KB

25 60.644.606 24.749.847.588

50 64.532.373 14.331.897.533

75 63.997.248 12.609.442.919

100 63.351.220 11.998.445.012

125 62.783.306 11.524.716.694

150 62.551.989 12.013.025.991

175 62.343.761 12.886.153.678

200 62.092.364 12.774.560.372

F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264 257
5.2. Detailed statistics obtained with Simics

5.2.1. Server statistics for large pages

CPU statistics. Table 2(a) and (b) show the

number of instructions executed by the CPU of

the 2 single-processor server architectures. In the

same way, Table 3 presents the instructions that

are executed by the CPUs of the dual-processor

server. In all the cases, the instructions executed

in user mode and those executed in supervisor
mode are shown in the tables. The first important

fact is that the number of instructions executed in

user mode is 200 times smaller than the number of

instructions executed in supervisor mode. If we

compare Tables 2(a) and 3, we notice that the

number of instructions executed in user mode is al-

most the same in the two cases, but it is distributed

between the two processors in the case of the dual-
processor server.

It does not happen the same with the instruc-

tions executed in supervisor mode, since in this

case each CPU executes the same number of

instructions that the single-processor server. These

numbers corroborates the great influence that the

operating system has on the final results.

In the case of the single-processor machine with
a L2 cache of 512 KB, we see that the number of

instructions executed is slightly larger than when

a L2 cache of 1024 KB is employed. This increase

would be justify by a larger cache miss rate, as we

will see next.

Looking at Table 2(a) (or Table 2(b)) we notice

that the results are not predictive: 50 requests per
second causes 64.306.550 instructions to be exe-

cuted in user mode while 200 requests per second

causes 62.392.239 instructions to be executed.

Something similar happens for the instructions

executed in supervisor mode. This lack of predict-
ability is mainly motivated by the influence of the

operating system.

To understand this influence, we must review

the process of serving HTTP requests. When a re-

quest comes in, a thread is associated to it. This

Table 3

CPU statistics for the dual-processor architecture and large pages

Req/s CPU1 user mode CPU1 supervisor mode CPU2 user mode CPU2 supervisor mode

25 36.390.337 24.691.231.835 25.184.939 24.702.438.061

50 39.683.545 14.999.605.554 24.870.596 15.014.419.404

75 39.895.103 11.753.254.897 25.331.670 11.767.818.330

100 27.013.742 11.184.858.132 37.279.986 11.174.592.014

125 38.362.852 10.414.023.825 25.219.142 10.427.167.858

150 39.533.435 11.003.628.789 24.228.880 11.018.934.120

175 38.612.952 11.003.658.048 24.098.889 11.618.172.111

200 38.702.460 12.257.364.894 24.062.891 12.272.005.109

258 F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264
thread reads the request, parses the URL, finds the

file name corresponding to the URL, checks

the file states, performs security checking, opens

the file, reads its content, and finally, sends the
content to the client. Additionally, the thread

writes the information of the request to a log file

and waits for the next request to come.

In the previous processing, the operating system

executes most of the time, performing operations

belonging to six main categories [7,18]:

• Low-level networking: Ethernet interrupt and
device driver routines.

• High-level networking: TCP, IP, and socket

routines.

• Low-level file system: disk interrupt and device

driver routines.

• High-level file system: read, write and buffer

cache routines. This includes calls to the open,

read and stat functions, which are used to open,
read and determine file states.

• Timer management: timer routines used by

TCP and device drivers. Calls to alarm and

other similar functions.

• Other: routines for system calls, interrupt han-

dling, scheduling and memory management

(including data page faults). This includes calls

to the getpid and exit functions.

If we take a look at Table 2(a) again we notice

that the number of instructions executed decreases

as the number of requests per second increase.

This phenomenon is motivated by the saturation

of the network: less requests reach the server,

and then, the low-level and high-level networking

components described previously appear to a les-
ser extent. This is true always except in the case

of 25 requests per second. In this case, the number

of instructions executed in supervisor mode is

much larger than in the rest of cases, while the
number of instructions executed in user mode is

smaller. The explanation for the increased number

of instructions being executed in the supervisor

mode is that in this test the operating system runs

for longer time. As the simulator accounts all the

instructions executed by the operating system

(not only those implied in executing our test), the

overall number is larger than in the rest of the
tests. Regarding the number of instructions exe-

cuted in user mode, it is smaller because the num-

ber of threads accessing simultaneously to the

resources that are shared (such as the log file) is

also smaller, and then, the Apache server executes

less synchronization instructions.

Cache statistics. The results showed in Tables 4

and 5 correspond to the experiments when 25 re-
quests per second are emitted. Since similar results

have been obtained for the rest of the experiments,

we just show those that are obtained for one of the

cases. Table 4(a), (b) are referred to the single-pro-

cessor server with 1 MB and 512 KB L2 caches,

respectively. On the other hand, Table 5 presents

the results that are obtained for the dual-processor

server. If we compare the results presented in
Table 4(a) with those that are shown in Table

4(b) we see that the most notable difference is the

increase in the second level cache miss rate. The in-

crease of 2.5 times in the number of L1 cache

invalidations is also a remarkable result. This fact

is a consequence of the increase in the number of

replacements (what is caused by the increase in

the miss rate), which leads to invalidate more

Table 4

Cache statistics for the single-processor architectures and large

pages

L1 Cache L2 Cache

(a) L2 cache of 1024 KB

Total accesses 853.019.931 59.572.430

Reads 202.450.622 13.986.825

Writes 148.847.460 18.408.032

Instruction fetches 501.721.849 16.181.040

Read misses (%) 6 065% 32021%
Write misses (%) 4 058% 14065%
Inst. fetch misses (%) 3 023% 7091%
Miss rate 4 027% 14024%
Replacements 36.424.934 8.436.345

Copy backs 10.996.533 3.731.791

Invalidates 24.639 0

(b) L2 cache of 512 KB

Total accesses 849.761.691 59.572.421

Reads 201.546.686 13.947.106

Writes 148.236.166 18.369.073

Instruction fetches 499.978.839 16.300.024

Read misses (%) 6 064% 39085%
Write misses (%) 4 057% 18061%
Inst. fetch misses (%) 3 026% 15036%
Miss rate 4 029% 19027%
Replacements 36.398.294 11.401.900

Copy backs 10.956.218 4.596.250

Invalidates 60.191 0

F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264 259
L1 blocks in order to maintain the inclusion
property.

Finally, we observe results corresponding to the

dual-processor server configuration (Table 5). In

this case, the large number of L1 cache invalida-

tions must be considered again, although the
Table 5

Cache statistics for the dual-processor architecture and large pages

CPU1 L1 Cache CPU1 L2 Ca

Total accesses 519.494.022 35.505.482

Reads 111.218.129 8.355.003

Writes 81.950.556 10.293.278

Instruction fetches 326.265.992 10.574.259

Read misses (%) 7 005% 36 01%
Write misses (%) 4 054% 18 006%
Inst. fetch misses (%) 3 024% 14 018%
Miss rate 4 026% 17 095%
Replacements 22.100.601 6.325.123

Copy backs 6.223.927 2.512.316

Invalidates 33.774 0
explanation is just as the previous one. Referring

to miss rates, they are just like the preceding ones

for first level caches, whereas for the second level

caches this rate ranges between the values that

are obtained for the single-processor configuration
with a L2 cache of 1024 KB and the values ob-

tained for the configuration with a L2 cache of

512 KB.

5.2.2. Server statistics for small pages

CPU statistics. We can see again the dispropor-

tion between the number of instructions executed

is user mode and supervisor mode in Tables 6
and 7; in this case, the number of instructions exe-

cuted in supervisor mode is more than 50 times the

instructions executed in user mode. As in previous

Section, the instructions executed in user mode are

divided among the two processors, but not the

instructions executed in supervisor mode.

Cache statistics. As we could have expected, the

greater miss rate belongs to the single-processor
server with a L2 cache of 512 KB, although it is

very similar to the miss rate of the dual-processor

server (see Tables 8 and 9). One more time, the sin-

gle-processor server with a L2 cache of 1024 KB

has the lower miss rate.

If we compare these data with those that were

obtained for large pages, the main difference is

found in the second level cache miss rate; this miss
rate decreases in a factor of 3.5 times for the case

of a single-processor architecture with a L2 cache

of 1024 KB, for example. This reduction is a
che CPU2 L1 Cache CPU2 L2 Cache

435.295.180 30.508.935

97.576.046 7.167.021

71.646.618 8.896.988

266.012.222 9.897.637

4036% 17 064%
404% 17 019%
3034% 13 052%
4036% 17 064%
18.946.037 5.339.169

5.486.995 2.117.483

28.784 0

Table 6

CPU statistics for the single-processor architectures and small

pages

Executed Instructions

Req/s User mode Supervisor mode

(a) L2 cache of 1024 KB

25 110.531.147 10.531.130.567

50 110.219.010 10.089.023.129

75 110.146.230 13.426.854.778

100 109.556.549 10.094.852.236

125 110.095.832 8.095.070.541

150 110.992.009 6.705.120.689

175 110.566.335 5.809.750.245

200 110.008.766 5.097.114.227

(b) L2 cache of 512 KB

25 111.263.145 31.864.745.123

50 110.556.012 20.088.956.124

75 110.322.015 9.817.170.458

100 110.066.187 10.094.368.779

125 110.737.588 2.257.630.148

150 110.605.288 6.761.849.447

175 110.658.169 1.555.847.129

200 110.691.369 5.095.747.259

Table 8

Cache statistics for the single-processor architectures and small

pages

L1 Cache L2 Cache

(a) L2 cache of 1024 KB

Total accesses 343.139.000 23.850.521

Reads 81.586.315 5.800.108

Writes 52.531.261 4.756.823

Instruction fetches 209.021.714 10.321.827

Read misses (%) 6076% 4 076%
Write misses (%) 2088% 5 073%
Inst. fetch misses (%) 4094% 1 089%
Miss rate 5006% 3 012%
Replacements 17.350.585 725.114

Copy backs 2.071.763 389.351

Invalidates 24.205 0

(b) L2 cache of 512 KB

Total Accesses 388.210.015 21.542.644

Reads 84.329.449 6.047.956

Writes 53.795.289 4.800.681

Instruction fetches 250.099.513 10.655.567

Read misses (%) 6085% 8 07%
Write misses (%) 2077% 6 052%
Inst. fetch misses (%) 4026% 7 076%
Miss rate 4062% 7 073%
Replacements 17.922.942 1.656.343

Copy backs 3.038.440 482.331

Invalidates 243.310 0

260 F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264
consequence of the small page sizes that we have

used in these experiments, as loading a large page
into the L2 cache causes a lot of lines associated

with other pages to be replaced. We confirm this

observation seeing the number of replacements of

the second level cache. There were 8.436.345

replacements for the 1024 KB L2 cache in the

experiments with large pages, and only 725.114

in the experiments with small pages.

Regarding the number of L1 invalidations, we
notice again a significant increase for the single-

processor with 512 KB L2 cache and the dual-pro-

cessor architectures; as in previous Section, this
Table 7

CPU statistics for the dual-processor architecture and small pages

Req/s CPU1 user mode CPU1 supervisor mode

25 56.418.325 20.043.568.234

50 87.483.114 13.349.235.177

75 91.424.012 10.013.200.025

100 55.158.326 19.021.256.214

125 58.265.905 8.047.090.235

150 67.867.524 6.705.120.523

175 56.953.145 5.763.010.215

200 78.363.600 5.028.520.456
phenomenon is motivated by the need for main-
taining the inclusion property.
6. Comparing simulation results to real servers

Once we have seen how Simics can help us to

analyse the behavior of a commercial web server,

we want to check how accurate are the results that
the simulator provides. In order to accomplish
CPU2 user mode CPU2 supervisor mode

54.264.897 20.045.741.115

22.946.114 13.413.745.125

18.818.906 10.085.876.125

54.788.951 20.015.625.559

51.207.354 8.045.145.169

42.228.847 6.730.764.125

53.228.415 5.766.763.585

31.469.012 5.075.421.064

Table 9

Cache statistics for the dual-processor architecture and small pages

CPU1 L1 Cache CPU1 L2 Cache CPU2 L1 Cache CPU2 L2 Cache

Total accesses 294.767.000 19.339.960 99.172.100 6.423.026

Reads 66.055.838 4.856.005 20.571.934 1.605.217

Writes 41.668.672 3.771.544 13.253.933 1.352.386

Instruction fetches 187.013.184 8.295.460 65.312.828 2.566.539

Read misses (%) 7% 10 071% 7058% 14 011%
Write misses (%) 2 072% 9 03% 3006% 13 063%
Inst. fetch misses (%) 4 044% 5 063% 3093% 3 066%
Miss rate 4 075% 6 091% 4057% 7 086%
Replacements 13.909.760 1.319.439 4.279.917 495.379

Copy backs 2.386.793 643.346 862.778 343.545

Invalidates 85.563 0 136.619 0

F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264 261
this, we have repeated the experiments presented in

Section 5, but this time we have employed real

computers. In particular, we have evaluated only

the single-processor architecture with an L2 cache

of 512 KB, and the dual-processor server. Hard-

ware configurations of the computers used in these

experiments are the same as the ones used in the

previous case. The operating system used in the
experiments also coincide with the employed previ-

ously, as well as the versions of the Apache web

server and the httperf tool. Figs. 3 and 4 show

the results we have obtained in these experiments.

Comparing these results to the obtained with

Simics, we find that there are notable differences

between them. In the case of the response time, it

is scaled down by a factor of almost 100 times in
the study of small pages (Figs. 1(b) and 3(b)). In
 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Requests/s

 512KB
Dual

(a)

Fig. 3. Average response time as a function of the number of received

pages.
fact, the performance difference between dual

and single-processor real servers is negligible, in

contrast to the results obtained in the simulations,

where the response time for the dual-processor ser-

ver is approximately one half of the response time

for the single-processor architectures (Fig. 1(b)).

In the experiments performed on real machines

we have observed that issuing 200 requests per sec-
ond does not stress the CPU of the single-proces-

sor server, so we cannot take advantage of using

two CPUs.

Something similar occurs with the number of

requests that are dispatched. Although simulation

results showed that the dual-processor server

could sustain a larger requests per second rate than

the single-processor one (Fig. 2(a)), in the real
environment we find that for the experiments we
1

 1.2

 1.4

 1.6

 1.8

2

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Requests/s

 512KB
Dual

(b)

requests per second for the real case. (a) Large pages; (b) small

 10

 15

 20

 25

 30

 35

0 50 100 150 200

D
is

pa
tc

he
d

R
eq

ue
st

s/
s

Requests/s

 512KB
Dual

0

 50

 100

 150

 200

0 50 100 150 200

D
is

pa
tc

he
d

R
eq

ue
st

s/
s

Requests/s

 512KB
Dual

(a) (b)

Fig. 4. Dispatched requests per second as a function of the number of received requests per second for the real case. (a) Large pages;

(b) small pages.

262 F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264
have carried out, single and dual-processor servers

provide almost the same results in terms of the

number of requests that are dispatched (Fig. 4).

In this way, we can conclude from the results

that the rough detail level when modeling in-order

execution x86-like processors prevents Simics from

be able to reproduce the results that would be
reached in the real world. In this way, we think

that the in-order execution x86-Simics machine is

appropriate as functional simulator but not as tim-

ing simulator.
7. Conclusions

Multiprocessor systems are increasingly being

used for executing commercial applications, such

as databases and web servers, so it becomes essen-

tial to study the behavior of multiprocessor archi-

tectures under commercial workloads. For this, we

need simulators able to model not only the CPU,

memory and interconnection network but also

other aspects that are critical in the execution of
commercial workloads, such as I/O subsystem

and operating system.

In this paper we have introduced the evaluation

of a functional simulator which allows us to simu-

late all these elements and we have also shown how

the simulator can help us to obtain CPU and mem-

ory hierarchy statistics of the simulated system.

However, we have found that the simulator does
not provide an accurate model of the x86 family
of processors when using the in-order execution

mode, which leads to obtain different results that

those that would be obtained using real comput-

ers. We think that the impossibility of using an

out-of-order execution model for this family has

a negative influence in the results that we have ob-

tained. This does not happen with the UltraSparc
family of processors, as we can see in [2,3]. Other

limitations that prevent us to do a more rigorous

study of commercial workloads execution are the

impossibility of simulating cc-NUMA architec-

tures and obtaining a detailed cache miss taxon-

omy. In short, we think Simics is insufficient in

order to evaluate commercial workloads at the

present time, and that it has to be extended with
more functionality if we want to use it for this

purpose.

As future work we are modifying the source

code of the simulator in order to include new mod-

ules that will allow us to extend the work presented

in this paper. Specifically, we are extending the

cache model of the simulator in order to obtain a

cache miss taxonomy similar to the proposed in
[1]. We also want to include a mechanism that inte-

grates Simics with a user-level simulator, in partic-

ular with RSIM.
Acknowledgments

The authors would like to thank the anony-
mous referees for their comments and suggestions,

F.J. Villa et al. / Journal of Systems Architecture 51 (2005) 251–264 263
which have helped to improve the quality of the

paper. This work has been supported in part by

the Spanish Ministry of Ciencia y Tecnologı́a

and the European Union (Feder Funds) under

grant TIC2003-08154-C06-03.
References

[1] M.E. Acacio, J. González, J.M. Garcı́a, J. Duato, A novel

approach to reduce l2 miss latency in shared-memory

multiprocessors, in: International Parallel and Distributed

Processing Symposium (IPDPS 2002), Fort Lauderdale,

Florida, April 2002.

[2] A.R. Alameldeen, M.M.K. Martin, C.J. Mauer, K.E.

Moore, M. Xu, M.D. Hill, D.A. Wood, D.J. Sorin,

Simulating a $2M Commercial Server on a $2K PC, IEEE

Computer (February) (2003).

[3] A.R. Alameldeen, C.J. Mauer, M. Xu, P.J. Harper,

M.M.K. Martin, D.J. Sorin, M.D. Hill, D.A. Wood,

Evaluating non-deterministic multi-threaded commercial

workloads, in: 5th Workshop Computer Architecture

Evaluation using Commercial Workloads (CAECW-02),

February 2002.

[4] A.R. Alameldeen, D.A. Wood, Variability in architectural

simulations of multi-threaded workloads, in: 9th Interna-

tional Symposium on High-Performance Computer Archi-

tecture (HPCA-9), Anaheim, CA, February 2003.

[5] Apache HTTP Server Project. Available from <http://

httpd.apache.org>.

[6] Apache Performance Notes. Available from <http://

httpd.apache.org/docs/misc/perf-tuning.html>.

[7] Y. Hu, A. Nanda, Q. Yang, Measurement, analysis and

performance improvement of the apache web server, in:

18th IEEE International Performance, Computing and

Communications Conference (IPCCC�99), Phoenix/Scotts-
dale, Arizona, February 1999.

[8] C.J. Hughes, V.S.P. Pai, P. Ranganathan, S.V. Adve,

RSIM: simulating shared-memory multiprocessors with

ILP proccesors, IEEE Computer (February) (2002) 68–

76.

[9] M. Karlsson, K.E. Moore, E. Hagersten, D.A. Wood,

Memory system behavior of java-based middleware, in: 9th

Annual International Symposium on High-Performance

Computer Architecture (HPCA-9), Anaheim, CA, Febru-

ary 2003.

[10] P.S. Magnusson, M. Christensson, J. Ekilson, D. Forsgren,

G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, B.

Werner, Simics: a full system simulation platform, IEEE

Computer (February) (2002) 50–58.

[11] D. Mosberger, T. Jin, httperf: A tool for measuring web

server performance, Performance Evaluation Review

(December) (1998) 31–37.

[12] D. Mosberger and T. Jin. httperf man pages, March

1998.
[13] P. Ranganathan, K. Gharachorloo, S.V. Adve, L.A.

Barroso, Performance of database workloads on shared-

memory systems with out-of-order processors, in: 8th

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS-VIII), October 1998, pp. 307–318.

[14] M. Rosemblum, S. Herrod, E. Witchel, A. Gupta, Com-

plete computer system Simulation: the SimOS approach,

IEEE Parallel & Distributed Technology: Systems &

Applications (Winter) (1995) 34–43.

[15] SPEC CPU2000 User�s Guide, 2000.

[16] Transaction Processing Performance Council. TPC

Benchmark C, Standard Specification, Revision 5.0,

2001.

[17] S.C. Woo, M. Ohara, E. Torrie, J.P Singh, A. Gupta, The

SPLASH-2 programs: characterization and methodologi-

cal considerations in: 22nd International Symposium on

Computer Architecture, June 1995, pp. 24–36.

[18] D.J. Yates, V. Almeida, J.M. Almeida, On the interaction

between an operating system and web server. Technical

Report CS 97-012, Boston University, July 1997.

Francisco J. Villa received the MS
degree in Computer Science in 2003
from the University of Murcia in
Spain. Since 2003 he is a PhD student
at the Research Group on Parallel
Computing Architecture, working on
evaluating and designing high-perfor-
mance memory hierarchies for multi-
processor-on-a-chip architectures. His
research interests are multiprocessor
memory systems, chip-multiprocessor
architectures, and power-aware cache-
coherence protocol design.
José M. Garcı́a received the MS and
the PhD degrees in electrical engi-
neering from the Technical University
of Valencia (Spain), in 1987 and 1991,
respectively. At present, Dr. Garcı́a is
a Full Professor at the Computer
Engineering Department of the Uni-
versidad de Murcia (Spain), and also
the Head of the Research Group on
Parallel Computing Architecture. He
specializes in computer architecture,
parallel processing and interconnec-
tion networks. He has developed sev-

eral courses on computer structure, peripheral devices,

computer architecture, and multicomputer design. Dr. Garcı́a
served as Vice-dean of the School of Computer Science from
1995 to 1997, and also as Director of the Computer Engineering
Department from 1998 to 2004. His current research interests
lie in high-performance coherence protocols for shared-memory
multiprocessor systems, and high-speed interconnection net-
works. He has published more than 60 refereed papers in dif-
ferent journals and conferences in these fields. Dr. Garcı́a is
member of several international associations such as the IEEE
and ACM, and also member of some European associations
(Euromicro and ATI).

http://httpd.apache.org
http://httpd.apache.org
http://httpd.apache.org/docs/misc/perf-tuning.html
http://httpd.apache.org/docs/misc/perf-tuning.html

tems Architecture 51 (2005) 251–264
Manuel E. Acacio received the MS and
PhD degrees in computer science from
the Universidad de Murcia, Spain, in
1998 and 2003, respectively. He joined
the Computer Engineering Depart-
ment, Universidad de Murcia, in 1998,
where he is currently an Assistant
Professor of computer architecture
and technology. His research interests
include prediction and speculation in
multiprocessor memory systems, mul-
tiprocessor-on-a-chip architectures,
and power-aware cache-coherence
protocol design.

264 F.J. Villa et al. / Journal of Sys

	Evaluating IA-32 web servers through simics: a practical experience
	Introduction
	Related work
	Simics simulator
	Simulated architectures
	The Simics/x86 class family of processors

	Execution modes and timing interfaces
	Memory hierarchy creation
	Network simulation

	Working environment
	Apache web server
	Benchmarks used
	Methodology
	Hardware configuration

	Simulation results and analysis
	Apache response time as a function of the number of requests received
	Detailed statistics obtained with Simics
	Server statistics for large pages
	Server statistics for small pages

	Comparing simulation results to real servers
	Conclusions
	Acknowledgments
	References

