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Abstract. In this paper we present an exhaustive evaluation of the
memory subsystem in a chip-multiprocessor (CMP) architecture com-
posed of 16 cores. The characterization is performed making use of a new
simulator that we have called DCMPSIM and extends the Rice Simula-
tor for ILP Multiprocessors (RSIM) with the functionality required to
model a contemporary CMP in great detail.

To better understand the behavior of the memory subsystem, we pro-
pose a taxonomy of the L1 cache misses found in CMPs which subse-
quently we use to determine where the hot spots of the memory hierarchy
are and, thus, where computer architects have to place special emphasis
to improve the performance of future dense single-chip multiprocessors,
which will integrate 16 or more processor cores.

Keywords: Dense chip-multiprocessors, memory subsystem, snoop-based
cache-coherence, high-performance interconnection networks.

1 Introduction

As integration scales grows, the number of transistors available on a die is in-
creasingly becoming larger, and billion transistor chips will soon be possible. The
role of computer designers is to translate all this raw potential into increased
computational power. For this, efficient architectures must be designed. One of
the approaches recently proposed in the literature to make efficient use of this
huge number of transistors are single chip-multiprocessors [1,2]. A CMP inte-
grates several processor cores onto a chip, as well as other resources such as the
cache hierarchy and the interconnection network. As a result of this, the tradi-
tional advantages of parallel architectures are kept, but some of their drawbacks,
such as wire delays or network latencies, are minimized.

The viability and importance of chip multiprocessors is further supported
by a number of recently announced commercial, small-scale CMP designs [3,4].
However, nowadays the best organization of the components in this kind of
architecture is not clear, and there is still much work to be done in order to
improve the performance and maximize the utilization of the resources in a
CMP. Besides, state-of-the-art CMPs and recent commercial releases integrate
2, 4 or at most 8 processor cores onto the chip, but they do not deal with future
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dense-CMPs (or D-CMPs), in which 16 processor cores or more are expected to
be integrated. D-CMPs impose new restrictions that do not appear in current
chip-multiprocessors and, thus, it is necessary to evaluate the problems of this
kind of architecture.

This paper presents an exhaustive evaluation of the memory subsystem in a
chip-multiprocessor (CMP) architecture composed of 16 cores. To the best of our
knowledge this is the first characterization for a dense-CMP architecture with a
detailed execution model for each core. As we are specially interested in the be-
havior of the memory hierarchy, we propose a taxonomy of the private L1 cache
misses in terms of how these misses are satisfied. This taxonomy provides sta-
tistics which help us to identify the bottlenecks of a future chip multiprocessor.
The evaluation is accomplished making use of a new simulator which is an exten-
sion of the well-known RSIM (Rice Simulator for ILP Multiprocessors) [5] and
that we have called DCMPSIM. It models accurately a CMP with a configurable
number of cores, private L1 caches connected together via a split-transaction bus
and a shared, multibanked L2 cache.

The key contributions of this work are:

– We perform a detailed memory subsystem evaluation of a 16-core snoop-
based CMP architecture when executing parallel workloads. This contrasts
with the majority of previously published works, as CMPs has been used
usually to execute multiprogrammed workloads.

– We present a novel taxonomy of the L1 cache misses found in a CMP.
– We show that the main bottleneck of a 16-core snoop-based D-CMP is the

shared bus. Besides, we see that the vast majority of transactions snooped
by the cache controllers are not concerned with the lines in that cache, which
induces too much unnecessary work.

The rest of the paper is organized as follows. Section 2 summarizes the re-
lated work. Section 3 describes briefly some implementation issues of the new
simulator. We present a taxonomy of L1 cache misses found in CMPs in Section
4. In Section 5 we show a detailed performance evaluation of a CMP composed
by 16 cores. Finally, Section 6 contains our main conclusions and outlines some
future work.

2 Related Work

Some works have evaluated the usefulness of the coherence actions obtaining
similar results than ours in the context of a 4-way SMP in [6] and in the context
of a 16-core CMP [7]. There are some other recent works in the literature dealing
with the performance of the memory hierarchy in CMP architectures. Beckmann
and Wood present several proposals to reduce the impact of wire delays on
large, shared L2 caches in future CMPs [8]. They implement a directory-based
coherence protocol and a 2D-mesh interconnection network, evaluating a CMP
composed of 8 processor cores.
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Liu et al. [9] study several L2 cache organizations in order to increase the
utilization (and in last term, the performance of the memory hierarchy) of this
structure. They propose a mechanism that dynamically assigns L2 splits to each
processor. In this way, they obtain better utilization of the L2 cache, taking into
account the demands of each processor at every moment. However, they do not
consider other possible bottlenecks, such as the presence of the shared bus. As in
the previous work, they simulate a CMP composed of 8 cores. In [10] the authors
propose a central coherence unit and a new cache coherence protocol in order to
reduce shared-bus transaction time. They evaluate several configurations with
a variable number of processors, ranging from 2 to 8. However, the integration
scale and memory subsystem latencies assumed in the paper differ highly from
those found nowadays, so their results are not comparable with ours.

Finally, some other authors have studied the memory hierarchy when combin-
ing chip-multiprocessing with speculative multithreading, although most of them
focus on the support for thread-level memory speculation [11,12,13]. Among
them, Yanagawa et al. [14] perform a complexity analysis of a cache controller
designed by extending a MSI controller to support thread-level memory specula-
tion. They use a directory-based mechanism to maintain coherence, and find that
the main component of memory latency is the delay incurred when accessing the
directory.

3 DCMPSIM: A Detailed CMP Simulator Based on
RSIM

DCMPSIM models the architecture shown in Figure 1. In this architecture, we
have an arbitrary number of processor cores, each one with its unified L1 instruc-
tion/data cache. All the cores share a unified, multibanked L2 cache through a
split-transaction bus. Finally, main memory is interleaved, and each L2 bank is
connected to a main memory module.

CPU CPU CPU

L1 cache L1 cache L1 cache

Bank 1 Bank 2 Bank 3

Bank 1 Bank 2 Bank 3

1 2 N

1 2 N

Split−transaction Bus

L2 cache
Multibanked

Bank M

Bank M
Interleaved

main memory

Fig. 1. The CMP architecture implemented
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As we stated in Section 1, our tool has been derived from Rice Simulator for
ILP Multiprocessors (RSIM) [5]. RSIM implements a directory protocol [15] in
order to keep cache-coherence between nodes; directory protocols are commonly
employed in machines composed of a large number of processors (in these cases,
it is imperative that the coherence protocol scales with the number of processors,
which is not possible with snoop-based protocols) or when there is an unordered
interconnection network, such as a mesh or a torus, so it is not possible to rely
in the network to ensure a partial order of the memory references.

However, our CMP architecture interconnects the private L1 caches via a
shared, ordered, split-transaction bus. In this case, cache-coherence can be main-
tained by using a snoop-based protocol. As most CMPs do, we have implemented
the MOESI snooping protocol [16]. MOESI protocol introduces an owned state
which is used when one or more caches have a valid copy of the line, main mem-
ory does not hold a valid copy, and thus, one of the caches with a copy of the line
is responsible for providing the line when it is requested by another processor.
This mechanism is an optimization of the MESI protocol, which tries to take
advantage of the shorter access time of a small cache when compared with a
bigger memory structure.

When implementing a snoop based protocol, it is necessary to adopt some
design decisions concerning how conflicting requests are managed. In our design,
the L1 cache controllers snoop replies as well as requests (this is not the case of
L2 cache controller, which only snoops requests), so read requests to the same
location are optimized. When a cache controller sees that there is an outstanding
read to the same line, it does not put the new request into the bus, but obtains
the value through the reply to the original request. In the case of an outstanding
write, subsequent reads or writes are not allowed to proceed until the previous
write is completed. These design decisions are commonly taken in most SMP
designs [17].

4 A Taxonomy of the L1 Cache Misses Found in CMPs

We are interested in measuring the latency of L1 misses in order to evaluate
the performance of the memory subsystem. L1 miss latency can be divided into
three categories, corresponding to the cycles spent at the L1 cache controller,
the shared bus and those spent obtaining data. More specifically, these three
components are the following:

– Tcontroller is the time spent in the L1 cache controller. It includes the time
spent until the request is inserted in the bus as well as the time spent process-
ing the corresponding reply.

– Tbus includes the time taken to obtain the bus and to transmit the packets.
– Tmem is the time needed to get data from the structure which provides it

(it can be another L1 cache, one of the L2 cache banks or main memory).

Furthermore, to identify more clearly where the hot spots of the memory
hierarchy are, we present a taxonomy of the L1 cache misses found in a CMP
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architecture (more generally, a taxonomy of the misses of the lower level of
private caches) in terms of which memory structure provides the requested data.
In this way, we can determine whether a structure is more critical than another
and, even more, how future memory hierarchy optimizations will affect each
memory component. The classification assumes a MOESI coherence protocol
and identifies four categories:

1. Misses satisfied by another L1 cache (or $-to-$ misses): the line is in a single
cache, or the line is in several caches and one of them has the line in Owned
state.

2. Misses satisfied by the L2 cache (Hit L2 misses): no L1 cache can provide
the line, and the L2 has a valid copy of it.

3. Misses satisfied by main memory (Mem misses): neither L1 caches nor the
L2 cache have a copy of the line, so data must be obtained accessing main
memory.

4. Invalidation or upgrade misses (Inv misses): the faulting cache has a valid
copy of the line in Shared state but it tries to write the memory line, for which
exclusive access is needed. It is necessary to place a BusUpgrade request in
the bus to invalidate the rest of the copies of the line (if any) and gain
exclusive access to it. For this kind of misses, the Tmem component of the
latency is zero because no data is needed.

5 Experimental Results

In this section, we present a detailed performance evaluation of a CMP composed
of 16 out-of-order processor cores similar to the MIPS R10000 processor with
an optimized implementation of the sequential consistency memory model that
includes load speculation and allows stores to graduate before completion. The
architecture is similar to Piranha [1] but twice as many processors are simulated.
In Table 1 we can see the configuration of the architecture we have evaluated.
L1 cache sizes have been set commensurate to the total number of cores.

Table 1. Base architecture configuration

Parameter Value
Number of cores 16

L1 size 8KB
L1 associativity 4-way

L1 latency 1 cycle tags + 1 cycle data
L2 size 2MB

Number of L2 banks 8
L2 associativity 8

L2 latency 2 cycles tags + 8 cycles data
Line size 32 bytes

Memory latency 120 cycles
Bus Arbitration 3 cycles

Bus cycle 3 cycles
Bus width 32 bytes
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Table 2. Applications and input sizes used in this work

Application Input size
BARNES-HUT 4096 bodies, 4 time steps

EM3D 38400 nodes, degree 2, 15% remote, 25 time steps
FFT 256K complex doubles

OCEAN 130x130 ocean
RADIX 1M keys, 1024 radix

UNSTRUCTURED Mesh.2K, 5 time steps
WATER-NSQ 512 molecules, 4 time steps

Table 3. Classification of L1 accesses (on average)

Application L1 hit MSHR Bus $-to-$ L2 Hit Mem. Inv.Coalesced Coalesced

BARNES-HUT 75.6% 11.1% 0.25% 0.09% 13.17% 0.002% 0.03%
(0.67%) (99.1%) (0.02%) (0.2%)

EM3D 74.6% 9.5% 0.001% 0.46% 10.05% 15.42% 0.004%
(1.77%) (38.74%) (59.47%) (0.02%)

FFT 82.58% 11.16% 0% 0.0006% 2.95% 3.31% 0.0003%
(0.01%) (47.13%) (52.85%) (0.005%)

OCEAN 75.87% 12.87% 0.06% 0.71% 8.5% 1.75% 0.24%
(6.38%) (75.94%) (15.59%) (2.1%)

RADIX 89.02% 3.11% 0% 0.06% 5.74% 2.06% 0.01%
(0.71%) (72.95%) (26.2%) (0.13%)

UNSTRUCT 81.42% 6.37% 0.05% 6.88% 4.34% 0.01% 0.91%
(56.62%) (35.7%) (0.12%) (7.56%)

WATER-NSQ 86.56% 9.95% 0.002% 1.91% 1.57% 0.0001% 0.02%
(54.66%) (44.84%) (0.001%) (0.5%)

Table 2 describes the benchmarks we have used in our experiments. This
set of parallel scientific applications covers a variety of computation and shar-
ing patterns. BARNES-HUT, FFT, OCEAN, RADIX and WATER-NSQ belong
to the SPLASH-2 benchmark suite [18]. EM3D is a shared memory implemen-
tation of the Split-C benchmark [19]. UNSTRUCTURED is a computational
fluid dynamics application [20]. The input sizes for the applications have been
chosen taking into account the cache sizes and number of cores in the baseline
architecture.

We can see, in Table 3, a classification of how the accesses to the L1 cache are
solved. Most of these accesses are captured at the L1 cache, whose hit rates range
from 74.6% to 89.02%. The number of occasions in which an access matches an
outstanding request issued by the same processor (MSHR Coalesced) is greater
than 10% for some applications (this is a consequence of using an optimized im-
plementation of sequential consistency); however, the number of accesses match-
ing an outstanding request issued by another processor (Bus Coalesced) is zero
or near to zero for all the applications. The last four columns correspond to the
taxonomy presented in Section 4. We show the percentage over the total num-
ber of accesses to the L1 caches and, in brackets, the percentage over the total
number of misses.

For two applications (UNSTRUCTURED and WATER-NSQ) a significant
number of misses are satisfied by another L1 cache ($-to-$ misses). For the
remaining applications, most misses are satisfied by the L2 cache, except in



Memory Subsystem Characterization 229

B
ar

ne
s

E
m

3d

FF
T

O
ce

an

R
ad

ix

U
ns

tr
uc

t
W

at
er

-n
sq

B
ar

ne
s

E
m

3d

FF
T

O
ce

an

R
ad

ix

U
ns

tr
uc

t
W

at
er

-n
sq

B
ar

ne
s

E
m

3d

FF
T

O
ce

an

R
ad

ix

U
ns

tr
uc

t
W

at
er

-n
sq

B
ar

ne
s

E
m

3d

FF
T

O
ce

an

R
ad

ix

U
ns

tr
uc

t
W

at
er

-n
sq

0

100

200

300

400

500

600

700

800

900

1000

L
at

en
cy

 (
cy

cl
es

)

T_controller
T_bus
T_mem

$-to-$ Hit L2 Mem Inv

Fig. 2. Average Latency for $-to-$, Hit L2, Mem and Inv misses

the case of EM3D, for which 59.47% of the misses reach main memory. In all
the applications (except in the case of UNSTRUCTURED), the number of Inv
misses represents a small fraction of the total.

Once we have seen this classification of the L1 accesses, we are going to
analyze the latencies suffered by each type of L1 miss. In Figure 2 we can see
the average latency for $-to-$, Hit L2, Mem and Inv misses divided into the
components described in Section 4 for all the applications. The main component
of the overall L1 miss latency for all the miss types is the time spent at the
bus. Logically, the miss type with lower latency is the Inv miss, as there is not a
memory component and we do not have to wait for a reply. We also see that the
time spent at the controller is negligible when compared with the bus latency.

We see that latencies are very variable, even for the same application if we
compare different miss types. To better understand this erratic behavior, we must
analyze the statistics in Table 4 (as well as those presented in Table 3). Table
4 shows the total number of requests and replies snooped by cache controllers
(columns 1 and 2). Columns 3 and 4 contains the average number and percentage

Table 4. Classification of the snooped requests and replies

Application Requests Replies Useful Useful L2 useful
snooped snooped requests replies requests

BARNES-HUT 3,758,643 3,749,512 198,456 251,489 97,541
(5.27%) (6.7%) (2.59%)

EM3D 9,475,489 9,424,412 10,052 587,125 1,145,478
(0.11%) (6.23%) (12.15%)

FFT 4,912,331 4,912,085 45 307,022 613,951
(0.0009%) (6,25%) (12,5%)

OCEAN 4,119,636 4,033,051 19,259 258,823 471,302
(0.47%) (6.42%) (11.44%)

RADIX 3,292,750 3,288,383 1,495 205,806 408,114
(0.05%) (6.26%) (12.39%)

UNSTRUCT 20,726,502 19,168,246 831,566 1,301,762 928,474
(4.01%) (6.79%) (4.48%)

WATER-NSQ 2,837,894 2,823,757 97,868 177,463 159,081
(3.45%) (6.28%) (5.61%)



230 F.J. Villa, M.E. Acacio, and J.M. García

of useful requests and replies snooped by each L1 controller. By useful request
we mean a request that implies some action over the local copy of the line at the
L1 cache, and by useful reply we mean a reply that contains data and the cache
is waiting for. Finally, column 5 shows the number of useful requests snooped
by each L2 cache bank (the L2 cache does not snoop replies). The main result
is the small number of useful requests (very insignificant in most applications).
This implies that in the vast majority of occasions, it is not necessary that the
L1 cache controllers snoop the requests that appear in the bus, as these requests
are referred to a line that it is not in the cache. We can also see, comparing
columns 1 and 2, how the number of snooped requests does not match exactly
the number of snooped replies. This is caused by the Inv misses, which do not
need a reply.

We have seen that one of the main hot spots in this architecture is the bus,
so in order to evaluate the potential of future techniques aimed at alleviating
this bottleneck, we simulate the same architecture but with an ideal network, in
which the arbitration delay is zero cycles and the bus cycle duration is equal to
the processor cycle. This network is equivalent to have one bus working at the
same frequency than the processor for each private L1 cache.
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Fig. 3. Average Latency for $-to-$, Hit L2, Mem and Inv misses with an ideal network

When we use an ideal interconnection network, bus latencies are drastically
reduced (see Figure 3). The overall latency for $-to-$, Hit L2 and Inv misses
is reduced by a factor of 10 on average. Reductions for Mem misses are less
impressive, as the memory component is hard limited by main memory latency.
We can also see that the Tmem component of the latency is approximately 30%
greater for Mem misses. As we have removed the bus bottleneck, requests ar-
rive at a higher rate to memory controllers and, thus, these controllers are more
loaded than in the baseline architecture. These results demonstrate the potential
savings of future proposals using a high-performance point-to-point interconnec-
tion network providing more bandwidth than a bus, although different cache
coherence protocols are to be implemented.
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6 Conclusions

In this paper we have presented a L1 cache miss taxonomy of a snoop-based
D-CMP (dense chip-multiprocessor) based on how the misses are satisfied. Our
results point out that the main bottleneck of this kind of architecture is the
shared bus, concluding that this type of interconnection does not provide enough
bandwidth for a CMP composed of 16 cores. We have shown that a snoop-based
coherence protocol induces too much unnecessary work at the cache controllers,
as the majority of snooped transactions are not concerned with the lines in that
cache. By simulating a perfect interconnection network, we have seen that it is
possible to reduce the latencies of L1 misses by a factor up to 20 in some cases.
This gives us a theoretical limit for future proposals in which the bus is replaced
by a higher-performance interconnection network.

As future work, we are interested in modeling some different point-to-point
interconnection networks and evaluate their performance. This may require some
modifications in the coherence mechanism, so it will be necessary to design a
cache-coherence protocol tailored to the particularities of a CMP architecture.
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