
The Tag Filter Cache: An Energy-Efficient

Approach

Joan J. Valls*, Julio Sahuquillo*, Alberto Ros†, Marı́a E. Gómez*

*Department of Computer Engineering †Dept. de Ingenierı́a y Tecnologı́a de Computadores

Universitat Politècnica de València (Spain) Universidad de Murcia (Spain)

joavalmo@fiv.upv.es, {jsahuqui,megomez}@disca.upv.es aros@ditec.um.es

Abstract—Power consumption in current high-performance
chip multiprocessors (CMPs) has become a major design concern.
The current trend of increasing the core count aggravates this
problem. On-chip caches consume a significant fraction of the
total power budget. Most of the proposed techniques to reduce
the energy consumption of these memory structures are at
the cost of performance, which may become unacceptable for
high-performance CMPs. On-chip caches in multi-core systems
are usually deployed with a high associativity degree in order
to enhance performance. Even first-level caches are currently
implemented with eight ways. The concurrent access to all the
ways in the cache set is costly in terms of energy.

In this paper we propose an energy-efficient cache design,
namely the Tag Filter Cache (TF-Cache) architecture, that filters
some of the set ways during cache accesses, allowing to access only
a subset of them without hurting the performance. Our cache
for each way stores the lowest order tag bits in an auxiliary bit
array and these bits are used to filter the ways that do not match
those bits in the searched block tag. Experimental results show
that, on average, the TF-Cache architecture reduces the dynamic
power consumption up to 74.9% and 85.9% when applied to the
L1 and L2 cache, respectively, for the studied applications.

I. INTRODUCTION

As silicon resources become increasingly abundant, core

counts grow rapidly in successive chip-multiprocessors

(CMPs) generations. These CMPs usually accelerate their

memory access by using one or more levels of caches, being

them responsible of a significant percentage of the overall

CMP die area [4] and of an important consumption of the

overall power budget. Most of that power is due to dynamic

power (the switching of transistors during accesses). Some

of that power is referred to as static power (current leaking

even when the cache is not being accessed). Cache designers

must provide a compromise among performance, cost, size,

and power/energy dissipation.

Concerning dynamic energy consumption, it is dominated

by the first levels of the cache hierarchy because they are

more highly accessed than last level caches (LLC), e.g.,

L3 caches, which usually are scarcely accessed. Moreover

this high consumption is also due to the fact that both tag

and data are accessed in parallel, because the first levels

of caches have a strong influence on the overall processor

performance. This concern is even more important in CMPs

than in monolithic processors since caches can be accessed

both from the processor side and from the interconnection

network side (i.e., coherence requests), increasing the number

of cache accesses.

Due to performance reasons, these caches are deployed with

a high associativity degree. In high-performance microproces-

sors, all the ways in the target set are concurrently accessed

on a cache access. Therefore, the associativity degree defines

the number of tags that are looked up in parallel in each

access. Caches include one comparator per way and compare

as many tags as number of ways. As a consequence, the

dynamic energy dissipated per access increases with the cache

associativity.

Generally, the design of low-dynamic power cache focuses

in minimizing the internal transistor activity during a cache

access. That activity comes from reading and comparing tags

in tag arrays, and from reading or writing data in data arrays.

Ideally, on a cache hit, the cache would read and compare

only one tag entry, and accessed one data entry without losing

performance. Furthermore, on a miss, ideally the cache would

have no need to access neither the tag array nor the data array.

In fact, on a miss, the cache does not even have to access a

complete tag entry, since just one mismatched tag bit is enough

to determine a miss.

Many cache energy reduction approaches have focused on

monolithic processors in the past (such as Cache Decay [10],

Drowsy Caches [7] and Way Guard [9]). Some of them, e.g.,

[6], were originally developed to reduce cache access time,

but subsequent research has proven that these schemes provide

important energy savings. However, since these schemes are

not directly applied to CMPs or can be improved, recent

research has dealt with energy savings on CMPs when running

parallel workloads.

In this paper we propose the Tag Filter Cache (TF-Cache),

a cache architecture that reduces the number of tags and data

blocks checked when accessing the cache hierarchy. TF-Cache

can be applied to any level of the cache hierarchy with the

aim of reducing dynamic power consumption in the cache

structures. It is based on using the least significant bits (LSB)

of the tag part of the address in order to discern which ways

of a set-associative cache may contain the searched block.

Only those ways that may contain the block are accessed,

thus saving the energy required to access the other ways.

The TF-Cache is deployed with minimal hardware complex-

ity. Moreover, tags and data arrays can be accessed in parallel

so no performance degradation rises, which is a major concern

in L1 caches. Unlike other approaches such as [19] no way-

alignment across sets must be done.



Experimental results show that the TF-Cache architecture

can reduce dynamic power consumption up to 74.9% and

85.9% in the L1 and L2 cache, respectively, achieving better

results than recent works.

The remainder of this work is organized as follows. Sec-

tion II describes the main reasons that motivate us to carry out

this research. Section III discusses the related work. Section IV

presents the proposal. Section V describes the simulation

framework. Section VI presents way accesses and energy

results. Finally, Section VII draws some concluding remarks.

II. MOTIVATION

Cache memories, especially first- and second-level caches,

are frequently accessed, since memory reference instructions

represent a significant percentage of the executed instructions.

A significant fraction of the total power budget is often

consumed by on-chip caches such as in the Niagara2 [13]

processor, where 44% of the chip power is consumed by the

L2 cache. Reducing dynamic power consumption in caches

of CMPs is an actual problem that is being under research

[12] [19]. To deal with this problem, this paper proposes an

architectural approach with the aim of taking advantage of the

homogeneous distribution of the least significant bits of the

tag address across the ways of a set-associative cache.

We launched experiments to verify this hypothesis in the

studied workloads. Figure 1 shows the average distribution of

the blocks across a 8-way L1 cache and a 16-way L2 cache

on a 16-core CMP system1. As can be seen in Figures 1(a)

and 1(b) on average there are 1 and 2 ways in an invalid state,

under the implemented MOESI protocol, in the L1 and L2

cache, respectively. Meanwhile, the remaining ways share a

quite homogeneous distribution considering the lowest order

tag bits of the allocated blocks. There is no need to access all

ways in a set if there is some mechanism that is able to filter

the access to only the subset of ways which might allocate

the requested block. An homogeneous distribution as the one

just mentioned (i.e. the tag lowest order bits) makes therefore

a perfect candidate method for a filtering mechanism.

The aim of this paper is to save dynamic energy by reducing

the number of lookups on each cache access. More precisely,

the proposal saves significant energy by looking up only those

set ways whose least significant bits of the tag match the ones

of the requested block.

III. RELATED WORK

This paper presents an energy-efficient cache design that

takes advantage of the least significant bits of the tags of the

blocks referenced by the applications. Hence, this section re-

views some related work about energy-efficient cache designs.

Caches consumption comes from both leakage (or static)

and dynamic power consumption. Regarding leakage savings,

Powell et al. [17] proposed a Gated-Vdd technique that aims

to reduce leakage for instruction caches by reconfiguring them

and turning off unused lines. Kaxiras et al. [10] proposed the

1Experimental environment, system parameters and cache hierarchy are
described in Section V.

Cache Decay, an approach that reduces the leakage power of

processor caches by turning off those cache lines that are

predicted to be dead, i.e., not referenced by the processor

before they are evicted. Alternatively, Flautner et al. [7]

exploited the fact that in a particular period of time only a

subset of the cache lines are accessed to propose Drowsy

Caches. Different from the previous proposals, the voltage is

reduced but not cut off for those cache lines that are not being

accessed. Consequently, the content of the cache line is not

preserved.

While techniques that aim to save leakage focus on reducing

(or cutting off) voltage, dynamic energy saving techniques try

to minimize the number of data read and written on every

cache access. For example, Albonesi [3] proposed Selective

Cache Ways, a cache design that enables only a subset of the

cache ways when the cache activity is not high. The prediction

of ways was previously proposed by Calder et al. [6] to reduce

the access time of set-associative caches. This approach works

well in L1 caches with a relatively small associativity which

present very predictable access patterns; however, as we show

in the evaluation, this mechanism presents poor results for

lower level caches since locality is hidden by previous cache

levels.

Zhang et al. [22] proposed the way-halting cache that filters

lines accessed in the corresponding set by comparing the four

least significant bits of the tag during the index decoding. This

approach performs a fully-associative search in the first com-

parison which negatively affects power consumption. Unless

our proposal, the way-halting cache scheme does not work

in virtually-indexed physically-tagged (VIPT) caches, since it

requires the tags to be available no later than the set index. If

the tag address needs to be translated by a translation look-

aside buffer (TLB), then the halt array, where the low order

bits are stored, lookup cannot proceed. We do not compare

against this scheme. Even though it filters the ways accessed

in a similar manner as ours, the performance is expected to

be worse and the number of bits looked in the halt array is

greater than the bits looked in our proposal in order to do the

filtering.

Ghosh et al. [9] proposed Way Guard, a mechanism for large

set-associative caches that employs bloom filters to reduce

dynamic energy by skipping the look up of cache ways that do

not contain the requested data according to the bloom filter.

This scheme requires the addition of a large decoder and a

two fields per way: one segmented bloom filter, previously

proposed by the same authors to filter accesses to the whole

cache [8], and another bloom filter to filter accesses to ways.

This may result in excessive overhead and critical complexity.

Way Guard shows performance gains with respect to the way-

halting cache. A quantitative comparison with Way Guard is

shown in the evaluation section.

Valls et al. [20] proposed PS-Cache, a mechanism that

filters the ways looked up on each cache access by classifying

each block as private or shared, according to the page table

information. On a cache access, only the ways containing

blocks that match with the classification of the requested block



Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptions

Average
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

A
ve

ra
ge

 s
ta

te
 o

f w
ay

s 
in

 L
1

000
001
010

011
100
101

110
111
Invalid

1. One Tag Bit
2. Two Tag Bits

3. Three Tag Bits
 

(a) Average number of ways in a set of each type in the L1 cache

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptions

Average
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

A
ve

ra
ge

 s
ta

te
 o

f w
ay

s 
in

 L
2

000
001
010

011
100
101

110
111
Invalid

1. One Tag Bit
2. Two Tag Bits

3. Three Tag Bits
 

(b) Average number of ways in a set of each type in the L2 cache

Fig. 1. Average number of ways in a set of each type in the cache hierarchy.

are searched. The PS-Cache has been also implemented and

compared quantitatively against our TF-Cache.

Finally, other recently proposed techniques focus on re-

ducing both leakage and dynamic consumption, for example,

by reducing the area of the cache tags, like in the TLB

Index-Based Tagging [12], by employing direct mapped caches

along with mechanisms to remove conflict misses, like in

ASCIB [18], or by performing run-time partitioning, like in

the Cooperative Caching scheme [19] or in the ReCaC scheme

[11].

IV. THE TAG FILTER CACHE

The main goal of the Tag Filter Cache is to reduce the

number of tags that are compared on each cache access and

also the number of ways that are accessed in parallel in the

data array. The aim is to reduce dynamic power consumption

in these structures. In a typical cache access, to check if the

searched block is in cache, the entire tags in the target set are

compared and, at most, one of those tags will match, while the

other ones will mismatch. In first level caches, all the ways

of the set in the data array are looked up at the same time,

before knowing whether or not the target block is in the set.

This paper proposes filtering the access to those ways (tag and

data) that are expected to mismatch the tag comparison.

Figure 2 depicts a block diagram of the proposed approach

for a L1 cache. The filter consists in comparing only a subset

of bits of the tags, say X . For this purpose the tag array is

decoupled in two structures: one X-bit wide and the other one

N −X bits wide. The TF-Cache employs the least significant

bits of the tags stored in the X-bit wide structure to reduce

the number of accessed ways.

The proposed mechanism performs the tag comparison in

two stages. At the first stage, only the X least significant bits

are checked in all the ways of the target set. The few number

of least significant bits used in the mechanism, allows the

first comparison to be done faster, introducing negligible time

penalty. At the second stage, the remaining bits of the tag are

compared to the corresponding tag bits of the virtual address



Virtual

Address
Virtual Page Set Block

Offset

X Page Offset

Physical Page
Physical

Address

Data Array

TLB

X

Dec

MUX=

Tag Hit

N-X

Filter Hit

...

...

...

X

Tag Array

WL

WL

WL

WL

WL

WL

Fig. 2. The TF-Cache architecture for L1 caches.

of the block that is being searched. This second comparison,

which implies more bits, is only performed in the ways that

succeed the first comparison.

To allow the mechanism to work in current VIPT (virtually

indexed physically-tagged) caches like those of Intel proces-

sors, the first comparison must start before the TLB output is

known. For this purpose, we assume that the operating system

is responsible to ensure that the X least significant bits of the

virtual address are the same as those of the physical address.

This assumption is reasonable since a uniform page address

distribution is expected and main memory capacities are by

four orders of magnitude bigger than page sizes (e.g. a 32GB

main memory [1] and a 4KB page size), which allows the

OS to have some allocation flexibility. Under this assumption,

the first comparison can be done once the output of the set

decoder is provided, while the address translation in the TLB

is still pending. Once the TLB provides the result, then the

remaining N −X bits of the tag array are compared with the

N−X provided by the TLB in a second comparison, but only

for those ways not filtered in the first comparison.

TF-Cache only accesses those ways in the data array that

succeed the first comparison. Notice that in a conventional

cache, all the tag bits are compared in parallel in all the

set ways and all the data ways are accessed. As proven in

the evaluation section, the mechanism may provide important

energy benefits.

Regarding complexity, the proposal requires minimal hard-

ware to be adapted to current caches. As mentioned above the

tag array is decoupled in two independent structures. Then a

simple logic is required to drive the wordline (WL) signal to

both the N −X tag structure and the data array. As observed

in Figure 2, the wordline is allowed to drive both the wide

tag structure and the data array for a given way, in case the

first comparison for that way succeeds. Notice that the AND

gates do not remove the power supply since this would not

preserve the data contents. This design allows significantly

TABLE I
SYSTEM PARAMETERS

Memory Parameters

Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 64KB, 8-way
L1 cache access time 2 cycles
Shared single L2 cache 512KB/tile, 16-way
L2 cache access time 6 cycles (2 if only tag accessed)
Directory cache 256 sets, 4 ways (same as L1)
Directory cache hit time 2 cycles
Memory access time 160 cycles

Network Parameters

Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

reduce dynamic energy consumption across the cache accesses

since in general, as experimental results will show, only a small

fraction of ways is compared in most of the accesses.

V. SIMULATION ENVIRONMENT

We evaluate our proposal with a full-system simulation

using Virtutech Simics [14] and the Wisconsin GEMS toolset

[15], which enables detailed simulation of multiprocessor

systems. GARNET [2], a detailed network simulator included

in the GEMS toolset, models the interconnection network.

Table I shows the values of the main system parameters

that correspond to our base system, which is a 16-tile CMP

architecture. We use the CACTI 6.5 tool [16] to estimate

access time, area requirements, and power consumption of the

different cache structures for a 32nm technology node and

high performance transistors.

Our evaluation analyzes a cache hierarchy with private L1

caches and a shared L2 NUCA distributed among all tiles. A

directory-based cache coherence protocol keeps coherence for



the data within the private caches.

The proposal has been evaluated with a wide range of sci-

entific applications. Barnes (16K particles), Cholesky (tk15),

FFT (64K complex doubles), FMM (16K particles), LU

(512×512 matrix), Ocean (514×514 ocean), Radiosity (room,

-ae 5000.0 -en 0.050 -bf 0.10), Radix (512K keys, 1024 radix),

Raytrace (teapot –optimized by removing locks for unused ray

ids–), Volrend (head), and Water-Nsq (512 molecules) are from

the SPLASH-2 benchmark suite [21]. Tomcatv (256 points)

and Unstructured (Mesh.2K) are two scientific benchmarks.

Blackscholes (simmedium) and Swaptions (simmedium) be-

long to PARSEC suite [5]. The experimental results reported

in this work correspond to the parallel phase of the evaluated

benchmarks.

VI. EXPERIMENTAL EVALUATION

This section briefly explains the schemes used for a com-

parative evaluation and analyzes the experimental results ob-

tained.

A. Compared Schemes

We compare the proposed scheme against other proposals

that also reduce dynamic energy consumption by accessing a

subset of the cache ways instead of all of them. These schemes

are Way Prediction and two recent approaches: Way Guard and

PS-Cache.

Way Prediction techniques [3], [6] predict the way to be

accessed in advance, typically the way containing the MRU

block, and only that way is accessed first. The problem lies

when the prediction fails; in such a case, all the remaining

ways are accessed at a second phase to look up the target

block. This means that on missprediction, both energy wasting

rises and latency increases, since additional cycles are required

to solve the memory request.

Way Guard [9] has been proven to work efficiently in highly

associative caches. The mechanism implements a counting

bloom filter associated to each cache way. Way Guard works

as follows. First, a hash function is applied to a subset of bits

of the address of the target block. The output of the hash is a

m-bit index that is decoded to access the 2m− 1 entry bloom

filter vector. If the bit is set to 1 then the associated cache way

is accessed (both tags and data arrays), otherwise that way is

not searched. Each entry of the bloom filter has associated

an up/down counter (e.g., 3-bit in the original work), that is

decremented each time a cache line whose address maps to

that position is evicted from the cache and increased when the

block is written in the cache. In the original paper, results are

shown for m equal to four times the number of blocks in a

cache. We will refer to this configuration as WayGuard-4×.

This approach requires a decoder with 4 times more outputs

than the already implemented in the cache to index the target

set.

The PS-Cache [20] tags cache blocks at run-time as shared

or private according to a simple classification mechanism

based on the page table information. Upon an access to the PS-

Cache, only those ways having the same type as the requested

block are accessed.

B. Experimental results

Benefits of the proposal depend on the average number of

ways that are looked up by the cache accesses. This number

mainly changes depending on the accessed cache (L1 or L2)

and on the applications behavior.

Figure 3(a) shows the average number of searched ways in

the 8-way L1 cache for the different studied techniques. As

can be seen, the more bits (from 1 to 4) we use in the bit-array

for filtering the ways, the less ways are accessed. On average,

for a 8-way cache when using a single tag bit 3.53 ways are

accessed, 1.82 with two bits, 1.06 with three bits and 0.98 with

four. This means that accesses follow a uniform distribution

when considering the less significant bits. As expected using

three bits suffices to limit the number of ways needed to be

looked up to only a single one, since our first-level cache has 8

ways, therefore allowing the consumption of a set-associative

cache that uses this mechanism to be similar to that of a

direct-mapped cache. There is no high difference in the results

obtained between the different applications for a same number

of tag bits. Notice that, it is possible to have an average number

of ways accessed lesser than 1. It might happen that the least

significant bits of the tag address have no match in the tag

array. In this case, no way has to be accessed and the cache

miss is triggered a bit earlier than it would be. This explains

the results obtained for four bits.

Compared to the PS-Cache, the proposal always achieves

better results even with just a single tag bit, that is, X equal

to 1 bit. The PS-Cache accesses on average to 4.6 ways and

the results greatly vary from one application to another. In

some cases like Ocean there is almost no access reduction,

whereas in others (i.e. Tomcatv) it can reduce it by more or

less 50%. The private-shared access pattern varies between

the applications greatly, hence these results. WayGuard and

Way-Prediction access on average 2.41 and 1.43 ways, which

remains mostly constant along all the studied applications.

Thus they perform better than the proposal with a single bit.

Two bits are enough to surpass WayGuard and a third one in

order to surpass Way-Prediction. Using the MRU way as a

prediction does prove to be good enough for first-level caches

providing a good hit ratio.

Figure 3(b) shows the average number of searched ways

in the 16-way L2 cache. The number of ways accessed on

average in this level of the cache hierarchy is 7.68, 4.04,

2.43 and 1.74 for X equal to one, two, three and four bits

respectively. As happened in the first-level cache, which was

previously discussed, the reduction distributes evenly across

all the studied applications. The trend shows that there is

still room for improvement, but there has to be a limit to

how big the tag array can be. In comparison, the PS-Cache,

Way-Prediction and WayGuard access 9.85, 12.7 and 4.34

respectively. Way-Prediction, which works really well for

the L1 cache, performs poorly in lower levels of the cache

hierarchy, since L1 filters many of the processor accesses, thus

application locality is much poorer. When the prediction hits,

only a way is accessed and when it misses the remaining ways



Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptions

Average
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

A
ve

ra
ge

 n
um

be
r 

of
 a

cc
es

se
d 

w
ay

s 
in

 L
1 PS-Cache

Way-Prediction
WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(a) Average number of ways accessed in the 8-way L1 cache.

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptions

Average
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

A
ve

ra
ge

 n
um

be
r 

of
 a

cc
es

se
d 

w
ay

s 
in

 L
2 PS-Cache

Way-Prediction
WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(b) Average number of ways accessed in the 16-way L2 cache.

Fig. 3. Average number of ways accessed in the cache hierarchy.

have to be accessed. The figure then shows a poor hit ratio in

the LLC. Also it is worth to note, that a failed prediction also

means additional cycles in order to get the data information.

Way-Prediction then is a hindrance for performance when

applied in this level. Both Way-Prediction and the PS-Cache

perform worse than our proposal even with one bit, whereas

WayGuard performs almost as well as the proposal when

employing a two-bit tag array.

Figure 4(a) shows the dynamic energy consumed by the

first-level cache evaluated in this work. Results have been

normalized to those of a set-associative cache in which all

ways are accessed. The Tag Filter Cache is able to reduce

the dynamic energy consumed by 48.1%, 65.8%, 73.2%,

and 74.9% for a tag filter with one, two, three and four

bits respectively. It can be seen that the marginal benefits

of adding additional bits to the filter are fewer with each

additional step. We can assume that results for a five-bit

filter will not differ much from the ones shown for a four-

bit one. As was expected due to the results previously shown,

Way-Prediction achieves the best results, being able to reduce

energy consumption up to 82.1%. Meanwhile, the PS-Cache

obtains the worst results, since it is also the scheme that

accesses more ways. Analogously, Figure 4(b) depicts the

same results, but for the L2 cache. The Tag Filter Cache is

able to reduce consumption by 51.8%, 72.2%, 81.1% and

85.9% for a tag filter with one, two, three and four bits

respectively. Again one can see the diminishing benefits of

further increasing the tag filter. WayGuard achieves reductions

similar to a two bit TF-Cache, whereas PS-Cache and Way-

Prediction display no such improvements in comparison to

the proposed architecture, reducing energy consumed only by

38.4% and 20.4% respectively.

In summary, the Tag Filter Cache achieves significant en-

ergy gains, the more bits we use in the tag filter the better, that

surpass recent approaches like WayGuard, Way-Prediction and

PS-Cache. Furthermore, this idea can be applied to any level

of the cache hierarchy without inquiring in any performance

degradation, which is the case for Way-Prediction in lower

level caches.



Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptions

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
yn

am
ic

 e
ne

rg
y 

co
ns

um
ed

 in
 L

1
PS-Cache
Way-Prediction

WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(a) Dynamic energy consumed in the 8-way L1 cache normalized to a conventional cache.

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity
Radix

Raytra
ce-opt

Volrend

Water-N
sq

Tomcatv

Unstru
ctured

Blackscholes

Swaptions

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
yn

am
ic

 e
ne

rg
y 

re
du

ct
io

n 
in

 L
2

PS-Cache
Way-Prediction

WayGuard
One Tag Bit

Two Tag Bits
Three Tag Bits

Four Tag Bits

(b) Dynamic energy consumed in the 16-way L2 cache normalized to a conventional cache.

Fig. 4. Dynamic energy consumed in the cache hierarchy.

VII. CONCLUSIONS

One of the major design concerns in current high-

performance chip multiprocessors is power consumption,

which increases as the core count grows. On-chip caches often

consume a significant fraction of the total power budget, and

important research has focused on reducing energy consump-

tion in these memory structures at the cost of performance.

In this work, we have proposed TF-Cache, an energy-

efficient cache design which only accesses a subset of the set

ways without hurting performance. The proposal divides the

tag array in two different segments. One of them, with few

of the least significant bits and the other with the rest of bits

of the tag. In order to filter the set ways, two comparisons

are performed. In the first comparison the least significant

bits in the tag of the searched block are compared to the

least significant bits stored in all the ways of the set. This

comparison is performed very fast without waiting for the TLB

output. Once we have the result of this comparison, the second

is performed, comparing the rest of bits in the tag, but only for

those ways that succeed the first comparison. If the data array

is accessed in parallel with the tag array, then only those ways

matching the first comparison are accessed in the data array.

This way filters cache accesses and allows achieving important

dynamic energy reductions. This filter choice is appropriate

since, as results show, there is rather homogeneous distribution

of the bit array field contents across the various ways of a set.

This cache design can be implemented in any cache level of

the cache hierarchy, although the most frequently accessed

one will achieve the best energy savings. Also, the higher the

associativity a cache implements, the more potential benefits

TF-Cache can bring.

Results have shown that TF-Cache can reduce up to 87.75%

and 89.13% the average number of looked up ways when

applied to the L1 and L2 cache, respectively. This translates

in energy savings, more specifically, the TF-Cache scheme

reduces dynamic consumption by 74.9% and 85.9% when ap-

plied to the L1 and L2 cache, respectively. Compared to other

state-of-the-art schemes, TF-Cache achieves better results than

the compared architectures, with the only exception of Way-

Prediction in first-level caches by a small margin. Regretfully,

Way-Prediction has proven to be ineffective when applied to

other levels of the cache hierarchy, whereas the proposal works



best at any level.

ACKNOWLEDGMENTS

This work has been jointly supported by MINECO

and European Commission (FEDER funds) under the

project TIN2012-38341-C04-01/03 and by Fundación Seneca-

Agencia de Ciencia y Tecnologı́a de la Región de Murcia under

the project Jóvenes Lı́deres en Investigación 18956/JLI/13.

REFERENCES

[1] 27-inch imac, technical specifications, available online (nov, 2014) at
http://www.apple.com/imac/specs/.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in IEEE Int’l

Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33–42.

[3] D. H. Albonesi, “Selective cache ways: On-demand cache resource allo-
cation,” in 32nd IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
Dec. 1999, pp. 248–259.

[4] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, Multi-Core
Cache Hierarchies, ser. Synthesis Lectures on Computer Architecture,
M. D. Hill, Ed. Morgan & Claypool Publishers, 2011.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72–81.

[6] B. Calder and D. Grunwald, “Predictive sequential associative cache,” in
2nd Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb. 1996, pp. 244–253.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, T. Mudge, S. Kaxiras,
Z. Hu, and M. Martonosi, “Drowsy caches: Simple techniques for
reducing leakage power,” in 29th Int’l Symp. on Computer Architecture

(ISCA), May 2002, pp. 148–157.
[8] M. Ghosh, E. Özer, S. Biles, and H.-H. S. Lee, “Efficient system-on-

chip energy management with a segmented bloom filter,” in 19th Int’l

Conf. on Architecture of Computing Systems (ARCS), Mar. 2006, pp.
283–297.

[9] M. Ghosh, E. Özer, S. Ford, S. Biles, and H.-H. S. Lee, “Way guard:
A segmented counting bloom filter approach to reducing energy for set-
associative caches,” in Int’l Symp. on Low Power Electronics and Design

(ISLPED), Aug. 2009, pp. 165–170.
[10] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gener-

ational behavior to reduce cache leakage power,” in 28th Int’l Symp. on

Computer Architecture (ISCA), Jun. 2001, pp. 240–251.
[11] K. Kedzierski, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and

M. Valero, “Power and performance aware reconfigurable cache for
cmps,” in 2nd Int’l Forum on Next-Generation Multicore/Manycore

Technologies, Jun. 2010, pp. 1–12.
[12] J. Lee, S. Hong, and S. Kim, “Tlb index-based tagging for cache energy

reduction,” in 17th Int’l Symp. on Low Power Electronics and Design

(ISLPED), Aug. 2011, pp. 85–90.
[13] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,

and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 42nd

IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2009, pp.
469–480.

[14] P. S. Magnusson, M. Christensson, and J. Eskilson, et al, “Simics: A
full system simulation platform,” IEEE Computer, vol. 35, no. 2, pp.
50–58, Feb. 2002.

[15] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[16] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0,”
HP Labs, Tech. Rep. HPL-2009-85, Apr. 2009.

[17] M. Powell, S. hyun Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-Vdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” in Int’l Symp. on Low Power Electronics and Design

(ISLPED), Jul. 2000, pp. 90–95.
[18] A. Ros, P. Xekalakis, M. Cintra, M. E. Acacio, and J. M. Garcı́a, “Ascib:

Adaptive selection of cache indexing bits for reducing conflict misses,”
in Int’l Symp. on Low Power Electronics and Design (ISLPED), Jul.
2012, pp. 51–56.

[19] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and
B. Franke, “Cooperative partitioning: Energy-efficient cache partitioning
for high-performance cmps,” in 18th Int’l Symp. on High-Performance

Computer Architecture (HPCA), Feb. 2012, pp. 311–322.
[20] J. J. Valls, A. Ros, J. Sahuquillo, and M. E. Gómez, “PS-cache: An

energy-efficient cache design for chip multiprocessors,” in 22nd Int’l

Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sep. 2013, pp. 407–408.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun. 1995,
pp. 24–36.

[22] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache
for low-energy high-performance systems,” ACM Trans. Archit. Code

Optim., vol. 2, no. 1, pp. 34–54, Mar. 2005.


