
ZEBRA: A Dataa-Centric, Hybrid-Policy
Hardware Transactional Memory Design

Rubén Titos-Gil
Universidad de Murcia, Spain

rtitos@ditec.um.es

Anurag Negi
Chalmers University of
Technology, Sweden

negi@chalmers.se

Manuel E. Acacio
Universidad de Murcia, Spain
meacacio@ditec.um.es

José M. García
Universidad de Murcia, Spain
jmgarcia@ditec.um.es

Per Stenstrom
Chalmers University of
Technology, Sweden

per.stenstrom@chalmers.se

ABSTRACT

Hardware Transactional Memory (HTM) systems, in prior research,
have either fixed policies of conflict resolution and data versioning
for the entire system or allowed a degree of flexibility at the level of
transactions. Unfortunately, this results in susceptibility to patholo-
gies, lower average performance over diverse workload character-
istics or high design complexity. In this work we explore a new
dimension along which flexibility in policy can be introduced. Rec-
ognizing the fact that contention is more a property of data rather
than that of an atomic code block, we develop an HTM system that
allows selection of versioning and conflict resolution policies at the
granularity of cache lines. We discover that this neat match in gran-
ularity with that of the cache coherence protocol results in a design
that is very simple and yet able to track closely or exceed the per-
formance of the best performing policy for a given workload. It
also brings together the benefits of parallel commits (inherent in
traditional eager HTMs) and good optimistic concurrency without
deadlock avoidance mechanisms (inherent in lazy HTMs), with lit-
tle increase in complexity.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming;
C.1.4 [Processor architectures]: Parallel Architectures

General Terms

Performance, Design, Experimentation

Keywords

Hardware Transactional Memory, Contention Management

1. INTRODUCTION
Fast implementations of transactional programming constructs

that provide optimistic concurrency control with stringent guar-

antees of atomicity and isolation are necessary for Transactional
Memory (TM) to gain widespread usage. Software TM (STM) im-
plementations impose too high an overhead and do not fare well
against traditional lock based approaches when performance is im-
portant. Hardware TM (HTM) systems showmuch greater promise.
Yet, within the design space of HTM systems, there are tradeoffs to
be made among various pertinent metrics like design complexity,
speed and scalability. Early work on HTM proposals [6] [19] fixed
critical TM policies like versioning (how speculative updates in
transactions are dealt with) and conflict resolution (how and when
races between concurrent transactions are resolved). These designs
choose a point in the HTM design space and analyze utilization
of available concurrency in multithreaded applications within that
framework.

Results in research so far do not show a clear winner or an op-
timal design point. Lazy HTMs, that confine speculative updates
locally and run past data races until a transaction ends, do seem to
be more efficient at extracting concurrency [16] but require elabo-
rate schemes [5][13] to make race free publication of speculative
updates (i.e. transaction commit) scalable. Eager HTMs, that ver-
sion data in place and resolve conflicts as they occur, make such
publication rather trivial at the expense of complicating behavior
when speculative execution needs to be undone to avoid data races
(i.e. transaction abort). Eager HTMs fit very naturally into ex-
isting scalable cache coherent architectures and can tolerate spills
of speculative data into the shared memory hierarchy, unlike their
lazy counterparts. When comparing the performance of the two
such designs, a clear winner cannot be established. With workloads
that demand high commit throughput eager systems perform sub-
stantially better, while with high contention workloads lazy designs
come out on top.

This reasoning suggests that a new HTM design that selects the
best performing policy (eager or lazy) depending on workload char-
acteristics would be close to the most suitable HTM design for
the scalable architectures under consideration. A key factor would
then be the complexity involved in realizing such a design in hard-
ware. Some solutions have been proposed that attempt to provide
a hybrid-policy HTM design. UTCP [8] is a cache coherence pro-
tocol that allows transactions in a multithreaded application run ei-
ther eagerly or lazily based on some heuristics like prior behavior
of transactions. Although it lays down an interesting approach, the
authors feel that the protocol is a significant departure from existing
cache coherence designs and the additional complexity involved for
just supporting TM represents too high a design cost. FlexTM [16]
allows flexibility in policy but it does so by implementing critical

53

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’11, May 31–June 4, 2011, Tucson, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0102-2/11/05...$10.00.

Figure 1: Behavioral differences between different HTM design points.

policy managers in software. It provides a significant improvement
in speed over software TM implementations by proposing the use
of Alert-On-Update (AOU) hardware, but the considerable cost of
software intervention renders a comparison with pure HTMs moot.
LV* [12], a proposal that utilizes snoopy coherence, allows pro-
grammer control over policy in hardware but with the constraint
that all transactions in an application must use the same policy at
any given time. A scalable alternative has not yet been proposed.
The requirement of programmer-assisted policy change is a draw-
back too since the same phase of an application can exhibit different
behavior with varying datasets.

In this work we propose a solution that is simple and yet pow-
erful and flexible. We recognize the fact that assuming all data ac-
cessed in a transaction possesses the same characteristics can lead
to sub-optimal solutions. Based on our study of conventional HTM
design points we infer that only a relatively small fraction of data
accessed inside transactions is actively contended. The rest is ei-
ther thread-private (stack or thread-local memory) or not actively
contended. Treating these two categories of data the same inside
transactions leads to inefficiencies – a prolonged publication phase
at commit when using a lazy design or increased contention lead-
ing to expensive aborts when using an eager approach. This work
attempts to break this restriction by choosing a granularity for data
at which minimal changes are required in existing scalable archi-
tectures – that of the cache line. Efficient scalable cache coher-
ence implementations exist and have been extensively studied for
a long time. Our design leverages these by annotating cache lines
as being either contended or not. Contended lines are managed
lazily thereby permitting greatest concurrency among transactions.
It should be noted that eager systems disallow reader-writer concur-
rency while in lazy systems it can occur quite naturally if the reader
commits before the writer. All non-contended lines are versioned
eagerly and thus, on transaction commit, only contended lines need
to be published. When contention is discovered (e.g. when aborting

or stalling) the offending cache line(s) is (are) marked as contended.
Over the course of execution of a workload, versioning of lines that
are contended transitions from eager to lazy. In the steady state we
can expect only the contended subset of the working dataset to be
managed lazily. As we shall show in the analysis presented here,
substantial gains over existing fixed policy HTM designs can be
seen. The incremental cost of implementing this approach is mini-
mal since only very modest behavioral changes are required in the
cache coherence protocol. We call this hybrid-policy HTM proto-
col ZEBRA. An African folktale speaks of how the white zebra fell
into a fire and burning sticks scorched black stripes on its flawless
coat. Here, transactions manage data purely eagerly (white) to be-
gin with but acquire lazy lines (black stripes) when they conflict
(fall into a fire).

Figure 1 depicts an interleaving of three concurrent transactions
and highlights some important behavioural aspects of our proposal.
In the eager case (Figure 1-a), we see that although transactions
T1 and T3 are independent, T3 is stalled because of a chain of de-
pendencies created via transaction T2. This does not occur in the
hybrid-policy ZEBRA design (Figure 1-b) or the purely lazy case
(Figure 1-c) and in the example shown all three transactions com-
mit without conflicts. It should be noted here that in the hybrid case
writes to A and B by T2 and T3 are managed lazily, since the lines
were annotated as contended at an earlier stage of the execution.
On the other hand, in the lazy case T2’s commit is delayed because
T1, having a relatively large write-set, has locked resources that T2
needs to publish its updates. This in turn delays T3’s commit. In the
hybrid scenario T1 is able to perform an instant commit since none
of the lines in its write-set are contended and, hence, are managed
eagerly, allowing T2 and T3 to proceed with their commit opera-
tions without any delay on account of T1.

There are certain other benefits that stem from using such an ap-
proach. Deadlock avoidance mechanisms are not required since
contended lines are eventually managed lazily, thereby guarantee-

54

Figure 2: ZEBRA – Salient architectural features

ing forward progress. Significant reductions in transaction com-
mit delays result in a major contraction of the window of con-
tention for concurrent transactions. The burden on lazy versioning
mechanisms is considerably reduced enabling much larger transac-
tions to run without resorting to safety nets (like serialization via
a single global lock). This effect combines synergistically with
a coherence-decoupled lazy version buffer – write-write conflicts,
downgrade and abort misses (defined later) can be largely elimi-
nated, amplifying gains achieved from the central idea. Since the
design does not lock policy it can adapt to changing workload con-
ditions and is resistant to pathologies that fixed policy HTMs suffer
from. The authors feel that this proposal touches upon a sweet spot
in the HTM design space that offers both simplicity of design and
robust performance.

The rest of this paper is organized as follows. Section 2 de-
scribes the salient architectural and behavioral features of the ZE-
BRA HTM protocol. Section 3 first describes the experimental
methodology adopted to evaluate our approach, and then presents
our results and analyses. Section 4 puts our work here in perspec-
tive of other work in HTM systems on related issues. Section 5
summarizes the paper and looks at future work that can be done to
build upon the ideas presented here.

2. DESIGN AND OPERATION

2.1 Conceptual Overview
We choose a tiled CMP (chip multiprocessor) architecture where

each tile comprises a processing core, a slice of a shared inclusive
L2 cache and corresponding directory entries. The tiles are inter-
connected by a mesh-based routing network. Figure 2 shows the
salient features of the architectural framework. Each processing
core has private Level 1 instruction and data caches. The direc-
tory keeps private caches coherent using a MESI protocol. Two
single-bit speculative access annotations are maintained at the pri-
vate caches for each cache line - SR (for speculatively read lines)
and SM (for speculatively modified lines). Such annotations have
been used by several prior HTM proposals [6, 11] to track trans-
actional reads and writes. Read set signatures [4] are employed to
permit speculatively read lines to be evicted from private caches.

In order to track contention in the ZEBRA HTM design, we
extend per-cache line metadata at the directory and at the private
caches with just one additional bit – "contended bit" – hereafter
referred to as the C-bit. The C-bit is transported with all coher-

ence requests and data responses. A C-bit value of "1" indicates
that the line has experienced contention in the past. The bit is re-
set if a line is flushed from the on-chip cache hierarchy or when a
non-transactional update is seen by the directory.

The number of contended lines accessed by a transaction is usu-
ally quite small in the workloads we have experimented with. Keep-
ing such writes away from the cache improves performance by re-
ducing the number of contamination misses[18] – misses due to
invalidation of speculatively updated lines on aborts – and redun-
dant permission downgrades from exclusive or dirty state to shared
state (which we term downgrade misses) that allow detection of
conflicts. Moreover, this also mitigates the effect of false writer-
writer conflicts. Therefore, we deemed it prudent to introduce a
Lazy Write Buffer (LWB) to contain speculative updates to con-
tended lines. This buffer is sized to be large enough to accom-
modate the contended fraction of the write set of a transaction in
the common case. We have found that a 32-word buffer is suf-
ficient to handle most commonly occurring cases. This buffer is
drained when committing a transaction and discarded when abort-
ing. Writes buffered in this structure do not participate in coherence
until the transaction starts commit. Occasional situations when the
buffer is completely filled up are handled by buffering subsequent
contended-line updates in the cache. Prior to such a cache line up-
date, non-exclusive (shared) access is acquired to the line (line-fill
if not present; or downgrade to shared with write-back if dirty) in
order to preserve its old value. Figure 4 shows how writes from the
processor are dealt with by the private cache controller. To mini-
mize the possibility of spilling lazy speculative state from the L1
cache we prioritize retention of such lines in the private cache and
add a small (4 cache lines) Lazy Victim Buffer (LVB) to contain rare
spills due to limited associativity. This approach works well for the
workloads considered here. In the rare case of spills of contended
lines, we enforce serialization.

C-bit
1 0 or unknown

Shared/

Miss
LWB full

YesNo

Buffer write in

LWB

Shared

in cacheNo

Downgrade to

shared;

Write in cache;

Set SM bit

Yes

Write in cache,

Set SM bit

YesNo

Copy line in

OVB;

Write in place;

C-bit

from

response

1

0

A

A

Retry or Write

in-place

Processor

Write

Perform

coherence

action

Figure 4: Write handling at the private cache.

Updates to lines that are either non-contended or have unknown
C-bit status bypass this buffer (see Figure 4) . This can cause coher-
ence requests to be issued to the directory if L1 line-fill or write per-
missions are required. If the result of a coherence operation indi-

55

Figure 3: ZEBRA – Key protocol actions.

cates that the line is contended, the write is buffered in the LWB. In
either case, the line is allocated in the cache (if not already present)
and its C-bit state is updated. If the C-bit is not set, the update
happens in place and the old contents of the line are recorded in an
Old Value Buffer (OVB) or written to a thread-private log in virtual
memory in case OVB capacity is exceeded. This aspect of eager
behavior is similar to that of LogTM [19].

A transaction with no updates to contended lines can commit
without delay, permitting true commit parallelism in such a case. If
there are some lazy updates, they must be validated and made glob-
ally visible. We adopt the simplest possible approach to do so by
having the committer acquire a global commit token. Our results
show that in workloads where lazy conflict resolution yields best
results we compete very well against or better the performance of
the more sophisticated scalable commit approach adopted by STCC
[5]. While a more scalable lazy commit scheme would further en-
hance our proposal, the design choice is orthogonal to the key ideas
described in this work. All writes in the LWB are made globally
visible at commit. All lines in the shared (S) state in cache with SM
indicator set are upgraded to modified (M) state after the directory
grants exclusive permissions to the line.

All coherence messages generated in response to speculative ac-
cesses by the core are distinguished from ordinary ones by setting
a special flag in such messages. An abort occurs when any non-
speculative coherence message hits a line speculatively accessed
by a transaction. It should be noted that invalidations that result
when lazily managed lines are committed are non-transactional.
For eagerly managed lines a requester-retry policy similar to the
one adopted by LogTM [19] is used. If a cyclic dependency on
eager lines is detected (refer usage of possible cycle flag in [19])
at one or more transactions in the dependency chain, they abort to
break the deadlock. No software intervention is required. A unique
aspect of our design is that offending cache lines will henceforth
be treated lazily during re-execution and, thus, will no longer have
the potential to cause deadlock. This effect renders LogTM’s usage
of TLR-like timestamps [14] unnecessary for guaranteeing forward
progress.

C-bits at the directory are set when unblock messages sent by

cores to indicate completion of in-flight coherence operations indi-
cate contention. Contention may be reported if a requester discov-
ers a conflict with another transaction or when a committer pub-
lishes its contended lines. The directory reports this status in all
subsequent coherence messages. The C-bit is cleared when a non-
transactional update to the line is completed allowing memory to
be recycled without the old C-bit value affecting behavior in the
new usage context. In most applications it is highly unusual to find
non-transactional updates to a cache line interleaved with transac-
tional accesses. The C-bit is also cleared if a line must be evicted
from the directory.

2.2 Protocol behavior
Standard directory-based MESI cache coherence is employed for

detecting and managing conflicts. Coherence messages now con-
tain two new flags - transactional status and contended status. An
additional flag, commit status is added to UNBLOCK requests in-
dicating whether they correspond to commit-time updates. Figure
3 depicts key protocol actions that occur when contended lines are
accessed. All cache lines are managed eagerly by default.

Figure 3-b shows steps taken when a switch to lazy manage-
ment occurs on encountering contention on a cache line for the first
time. The transaction interleaving considered here is the one be-
tween transactions T1 and T2 shown in Figure 3-a. Core 1 (run-
ning T2) initiates a write to line A (address 0x204, step 1). The
store misses in the private cache structures (step 2) and results in a
TGETX (GETX with transactional flag set) request to the directory
(step 3). This coherence request results in a TINV (transactional
invalidation) being sent to the reader, Core 0, and data being sent
from the L2 to Core 1 (step 4). Core 0, running transaction T1,
on receiving TINV checks if it is currently managing the line ea-
gerly. It finds that it has only read the line transactionally (SR is
set) (step 5). Hence it is in a position to forward data to Core 1
for lazy management (otherwise the requester would be stalled till
T1 commits or aborts). It marks the line as contended in its private
cache (step 6) causing any future write from Core 0 to be managed
lazily. A acknowledgment with contended status is sent to Core
1 (step 7). Core 1 on receiving such a response places the line in

56

Figure 5: Support for new transitions at L1 (left) and L2-

directory (right) controllers.

shared state in its cache and sets the local C bit. The write, instead
of updating the cache line, is now buffered in the LWB (step 8).
It then indicates completion of the coherence operation by sending
an UNBLOCK message with contended status to the directory (step
9). On finding a contended status in the UNBLOCK message the
corresponding C-bit is set at the directory (step 10). The line will
now be managed lazily by all accessors until a non-transactional
access causes a C-bit reset.

Figure 3-c shows protocol actions that occur when lazily man-
aged lines are published upon commit. The details correspond to
interactions between transactions T2 and T3 in Figure 3-a. Core 2
(running T3) initiates a write to line B (address 0x408, step 1). The
line is found in cache with C-bit set. Hence, the write is buffered
in the LWB (step 2). When T3 commits (step 3), it first acquires
a global commit token. It then drains the LWB (step 4) acquiring
exclusive ownership over line B by sending a non-transactional UP-
GRADE request to the directory (step 5).The directory responds by
sending a INV (non-transactional invalidation) set to Core 1 (step
6). T2 on Core 1 aborts when a non-transactional invalidation con-
flicts with a speculatively accessed line (SR is set, step 7). Since T2
had the lone lazy write to A in its write set, no old value restoration
is required. LWB is reset and re-execution of T2 can start imme-
diately or when deemed right by a back-off algorithm. It should
also be noticed that line C, also part of T3’s write set, does not
need to be published since it was managed eagerly. Core-1 com-
pletes its upgrade operation by sending an UNBLOCK message to
the directory. This message has the commit flag set, causing the di-
rectory to maintain a value of 1 for the C-bit. Ordinary requests for
exclusive ownership generated from non-transactional code result
in UNBLOCK messages without the commit-flag set and cause the
directory to reset the bit.

Cache controllers at both L1 and the L2-directory now support
a few new transitions summarized in Figure 5. New transitions are
represented by black dotted lines in the figure, while transitions
that already exist in the baseline MESI protocol are shown in light
grey. For clarity, only states and baseline transitions that aid in il-
lustrating the changes are shown. At the directory level, the behav-
ior of TGETX/TUPGRADE requests is similar to that of their non-
transactional counterparts, but the transactional variants can even-

tually result in the reception of contended UNBLOCK messages
that cause a transition to shared state (SS). For example, a TGETX
from Core 3 could cause a directory transition from SS@{1,2} (shared
by Cores 1 and 2) to SS@{1,2,3} if contention is detected. This per-
mits lazy versioning of contended data at the new requester while
still allowing conflict detection to happen. Similarly, the transition
fromMT@{2} (exclusive/dirty at Core 2) to SS@{1,2} is supported
when handling TGETX requests. Such a situation might arise if
Core 2 forwards a contended line to Core 1, behaving as if the re-
quest had been a GETS (the line is also written back to L2). At the
L1, we support transitions to shared state on local write misses and
upon receiving TGETX or TINV requests from the directory. This
allows coherence mechanisms to be used to detect conflicts on such
data after this event has occurred.

The examples above highlight key behavioral aspects of the ZE-
BRA protocol. Other cases are handled in a similar fashion. If a
transaction is managing a line eagerly, it is given a chance to reach
commit by permitting it to stall other requesters. When such events
occurred the C-bit for the line is set. This causes the line to be
managed lazily once the transaction commits or aborts. The risk
of deadlocks is avoided by using a LogTM-like possible-cycle bit,
but in a different way. The bit is set if the transaction has stalled
a requester attempting to access eagerly managed data. When a
transaction is stalled by another, it checks if possible-cycle flag is
set. An abort is triggered if so. The eagerly managed line will
henceforth be managed lazily and will no longer be able to cause
deadlocks. Transaction timestamps, employed by LogTM for con-
servative deadlock avoidance, are no longer transported in coher-
ence messages.

Coherence requests generated by non-transactional codes result
in an abort if they hit a transactionally accessed line. The flexibility
to ask for the requester to retry such requests can be incorporated
by transporting the commit status flag with invalidation messages.
This flag would be set for non-transactional invalidations sent out
when the lazy portion of a transaction’s write-set is being commit-
ted. The receiver, if transactional, would then know that it cannot
ask for a retry and must abort if such an invalidation is hits a spec-
ulatively accessed line.

3. METHODOLOGY AND EVALUATION

3.1 Experimental Setup
We use a full-system execution-driven simulator based on the

Wisconsin GEMS tool-set (v2.1) [10], in conjunction with Wind
River Simics [9]. We use the detailed timing model for the memory
subsystem provided by GEMS, with the Simics in-order processor
model. Simics provides functional simulation of the SPARC-V9
ISA and boots an unmodified Solaris 10 operating system. This
simulation infrastructure provides support for LogTM-SE [19], as
well as an implementation of a global commit token-based, lazy-
lazy (LL) HTM system described by Bobba et al. in [2]. We ex-
tend it with detailed implementations of STCC [5] and ZEBRA,
our hybrid-policy HTM protocol, allowing fair comparison of sev-
eral major HTM design points within the same architectural frame-
work. While Bobba’s LL system models a private, per processor
infinite write buffer, for this study we extended the simulator to pre-
cisely model finite buffering for transactional writes. Special sta-
tus bits are added to coherence messages. Behavior of cache and
directory controllers is suitably modified. We use an ideal book-
keeping scheme to track read sets (perfect signatures) even when
some speculatively read lines have been evicted, in an attempt to
isolate our study from the effects of false conflicts arising from
non-ideal signature schemes like bloom filters.

57

Table 1: System parameters.

MESI Directory-based CMP

Core Settings

Cores 16, single issue
in-order, non-memory IPC=1

Memory and Directory Settings

L1 I&D caches Private, 32KB, split
4-way, 1-cycle latency

Write Buffer Non-coherent, private, 128 bytes
L2 cache Shared, 512KB per tile, unified

8-way, 12 cycle-latency
L2 Directory Bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings

Topology 2D Mesh
Link latency 1 cycle
Link bandwidth 40 bytes/cycle
Flit size 16 bytes

Table 2: STAMPWorkload Characteristics.

Workload Trans Size Contention Commit rate

genome Moderate Moderate Moderate

intruder Small High Moderate

kmeans Small Low Low

labyrinth Large Moderate Low

SSCA2 Small Low High

vacation Large Low Moderate

yada Large High Moderate

Figure 6: Relative sizes of conflict sets for STAMP applications.

Experiments were performed on a 16-core tiled CMP system, as
described in Figure 1. We use a 16-core configuration with private
L1I and L1D caches and a shared, multi-banked L2 cache consist-
ing of 16 banks of 512KB each (one L2 slice per tile). For each
workload - HTM configuration pair we gathered average statistics
over 10 randomized runs designed to produce different interleav-
ings between threads. STAMP workloads were chosen as they are
among the most representative TM benchmarks available so far that
are suitable for architecture simulation and exhibit a fair diversity
in behavior. The parameters for applications have been taken from
[3]. We simulate both small and medium datasets for workloads
that exhibit differences in transactional behavior across various de-
sign points. This not only yields more credible statistics but also
allows the hybrid design to achieve steady-state performance.

3.2 Workload Characteristics
STAMP workloads cover a broad spectrum of transactional be-

havior. Table 2 shows some relevant qualitative characteristics. We
have excluded the application, bayes, from our analyses because

it exhibits significant variability in execution times. It should be
noted that even labyrinth, which implements Lee’s routing algo-
rithm, exhibits divergent executions that depend on thread inter-
leavings but these deviations are not so severe as in the case of
bayes and hence, we have retained it in this evaluation.
Conflict set sizes. To measure the proportion of contended data
in a typical transaction’s write set we define conflict set of a trans-
action as the set of lines that were written and managed lazily over
the duration of execution of a transaction. Figure 6 shows the cardi-
nality of the conflict set as a percentage of the corresponding write
set size averaged over an entire run. We see that even in applica-
tions with moderate to high contention, like yada and intruder, the
conflict set is far smaller than the write set. Workloads like ssca2,
that have both high concurrency and a high commit rate, experience
contention on less than 1% of the write-set. Moreover, as we move
to longer running workloads (small to medium in Figure 6), the ra-
tio of the two set sizes drops even further. The common case size of
less than 20% of the write-set bears out our choice to the separately
manage the large non-contended fraction of the write set.

3.3 Performance Analysis
Figure 7 shows the relative performance of the four HTMdesigns

evaluated in this study. Results are normalized to the execution time
of the LogTM system, represented throughout this evaluation by
the EE label. The Hybrid bar corresponds to the ZEBRA HTM de-
sign, while the two right-most bars are the lazy designs, the global
commit token scheme (LL-GCT) and Scalable TCC (LL-STCC), re-
spectively. The average for long running workloads (marked with
the suffix +) has been calculated separately (appears as Average+).
The ZEBRA HTM shows noticeable improvement in overall per-
formance. It closely tracks the performance of the best policy and
excels when applications show mixed transactional behavior – hav-
ing both contended and non-contended phases of execution. Figure
8 zooms in on TM protocol overheads for different designs, nor-
malized to the LL-GCT design. The hybrid policy shows remark-
able overall efficiency here – showing 25-30% improvement over
EE or LL-STCC. Figure 9 shows two measures – average devia-
tion from the best observed performance over all workloads and the
standard deviation of performance normalized to the best across all
workloads. The hybrid approach achieves by far the lowest swings,
implying consistent performance and robustness. Figure 10 shows
scalability of workloads and design points considered in this study
and validates the performance of the parallel architecture modeled
in the simulator.

We have further investigated the behavior of the hybrid approach.
Figure 11 shows the distribution of purely eager, partly-eager-partly-
lazy (hybrid) and purely lazy commits in each application. Table 3
shows utilization of LWB and OVB by each transaction (identified
by TID) in various STAMP benchmarks. Write-set sizes (WS in the
table) and OVB occupancy have been shown in cache lines. LWB
occupancy represents the number of bytes that were managed lazily
in the structure.

The discussion below highlights important observations and presents
insights gained from detailed study of interactions between HTM
policies and the behavior of individual workloads.
Genome. This workload exhibits a high contention phase early in
its execution where lazy designs outperform the EE system. This
phase involves removal of duplicates (hash-table insertions). Reader
- writer conflicts dominate at the beginning of the phase and lazy
approaches inherently allow greater concurrency in such a situa-
tion. The hybrid design quickly switches the management of con-
tended cache lines to lazy and completes the phase faster than EE,
but a bit slower than LL-GCT or LL-STCC. The second phase is

58

genome

genome+

intru
der

intru
der+

kmeans-high

kmeans-lo
w

labyrin
th

ssca2

ssca2+

vacatio
n-high

vacatio
n-lo

w
yada

yada+

Average

Average+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

1-barrier
2-non_txnal
3-tx_useful
4-tx_aborted

5-stall
6-backoff
7-arbitration
8-commit

9-rollback
EE || Hybrid || LL-GCT || LL-STCC2.1 1.8

Figure 7: Normalized execution time breakdown.

genome

genome+

intru
der

intru
der+

kmeans-high

kmeans-lo
w

labyrin
th

ssca2

ssca2+

vacatio
n-high

vacatio
n-lo

w
yada

yada+

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
a

liz
e

d
 o

v
e

rh
e

a
d

 c
y
c
le

s

1-backoff
2-stall
3-rollback
4-tx_aborted

5-arbitration
6-commit EE || Hybrid || LL-GCT || LL-STCC2.4 3.2

Figure 8: Protocol overheads.

dominated by transactions with moderate write-sets (3.4 cache lines
on average) with accesses to predominantly non-contended data
and is the determinant of overall performance. The eager approach
proves to be the quickest here. The hybrid system run most trans-
actions in a completely eager way and does not suffer from commit
overheads seen in the lazy designs. Occupation measurements of
the OVB and LWB structures shown in Table 3 confirm how the hy-
brid system adapts to the transactions of this second phase: TID1 is
always eagerly managed (OVB usage equals write-set size), while
TID2 and TID3 are purely eager in 70% and 80% of their com-
mits, respectively. No transaction in genome ever commits in a
purely lazy fashion (contended lines always comprise only a small
fraction of the Wset), demonstrating the benefits of the proposed
data-centric approach for policy selection on a per-cache line gran-
ularity. The third phase again exhibits low to moderate contention.
Since the application shows mixed behavior, the hybrid approach
outperforms all others, as depicted in Figure 7. Overall, we find
that this result demonstrates the efficacy of quick adaptability to

changing workload conditions in the hybrid approach. Genome+
(genome with a medium sized dataset) shows much less contention,
thereby widening the gap between the purely lazy and EE or Hy-
brid designs. As we show in Figure 11, in the hybrid system almost
90 % of commits happen eagerly for genome+.
Intruder. This workload shows high contention, even with large
input sizes. Eager transactions acquire exclusive ownership to data
before they are guaranteed to commit. This, in conjunction with a
high probability of conflicts, leads to prolonged stalls and patholog-
ical cases where transactions form chains of dependencies causing
aborts. In this contended scenario, lazy systems are able to ex-
ploit concurrency much better resulting in far fewer aborts. This
workload has 3 transactions. TID0 extracts elements from a highly
contended queue of packets, causing the EE system to experience
15K aborts (out of total of 29K aborts overall). Lazy designs re-
duce this number to 4K (13K aborts overall). The hybrid sys-
tem quickly discovers contended lines, and the conflicting location
(pointer to the head of the queue) becomes lazy (as indicated by an

59

Figure 9: Deviation from best observed performance.

genome

genome+

intru
der

intru
der+

kmeans-high

kmeans-lo
w

labyrin
th

ssca2

ssca2+

vacatio
n-high

vacatio
n-lo

w
yada

yada+

Applications

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

S
p
e
e
d
u
p
 o

v
e
r

1
-t

h
re

a
d

EE
HHTM
LL
STCC

Figure 10: Design scalability.

Figure 11: ZEBRA – Policy distribution at commit.

LWB occupancy of 4 bytes in this transaction) decreasing the num-
ber of aborts when preforming transactional dequeue operations to
3K (total of 11K). With the hybrid approach, the largest transac-
tion (TID1) can commit eagerly 25% of the time on average, even
though it accesses relatively large amounts of contended data (see
figure 6). A large fraction of TID1’s write set (6.1 lines) is still
non-contended and thus an average of 3.8 lines are managed ea-
gerly, as revealed by the OVB occupancy in Table 3. TID2 also
exhibits a predominantly eager behavior, committing eagerly about

Table 3: ZEBRA – LWB and OVB utilization.

TID0 TID1 TID2 TID3 TID4

Workload WS OVB LWB WS OVB LWB WS OVB LWB WS OVB LWB WS OVB LWB

genome+ 1.3 1.2 1.4 1.0 1.0 0.0 3.4 3.3 0.7 3.4 3.4 0.4 2.2 1.8 2.8

genome 1.3 1.1 1.6 1.0 1.0 0.0 3.5 3.1 1.9 3.5 3.3 0.6 2.5 1.4 6.1

intruder+ 1.0 0.0 4.0 5.7 4.5 7.1 1.2 1.0 0.9 - - - - - -

intruder 1.0 0.0 4.0 6.1 3.8 13 1.5 1.0 2.2 - - - - - -

kmeans-h 2.0 0.1 65 1.0 0.0 3.9 1.0 0.0 4.0 - - - - - -

kmeans-l 2.0 0.5 47 1.0 0.0 4.0 1.0 0.0 4.0 - - - - - -

labyrinth 0.9 0.1 3.1 217 8.0 41 3.8 2.9 4.1 - - - - - -

ssca2+ 1.0 0.1 3.6 1.0 0.0 4.0 2.0 1.9 0.2 - - - - - -

ssca2 1.0 0.1 3.8 1.0 0.0 4.0 2.0 1.8 0.7 - - - - - -

vacation-h 6.8 6.8 0.2 5.7 5.7 0.1 4.0 4.0 0.1 - - - - - -

vacation-l 6.1 6.1 0.1 5.3 5.3 0.1 2.5 2.5 0.0 - - - - - -

yada+ 2.5 0.0 11 0.0 0.0 0.0 70 8.0 18 1.0 0.8 0.7 1.3 0.3 5.1

yada 2.0 0.0 8.1 0.0 0.0 0.0 60 8.0 40 1.0 0.5 2.1 1.4 0.2 7.0

50% of the time, with one eagerly managed write on average (out
of 1.5 written lines). Hence, it outperforms lazy approaches since
commit durations for TID1 and TID2 are significantly shorter as
a large number of the transactionally modified lines are not con-
tended and, therefore, committed instantly. We can see in Figure
8 how the overhead due to the arbitration and commit is substan-
tially lower in the hybrid system, in comparison to both LL-GCT
and LL-STCC systems.
SSCA2. It has a large number of tiny transactions that demand
high commit bandwidth. Inherently parallel commits in eager ap-
proaches serve this requirement very well. Lazy approaches suffer,
even STCC, which has a degree of scalability. This is clearly ev-
ident in 8 where commit delays represent the primary overhead in
lazy designs. The hybrid design is able to manage almost the entire
write-set eagerly for most transactions. This can be clearly seen in
the high proportion of eager commits (see Figure 11) and the low
LWB utilization (see Table 3). Hence, the hybrid approach is able
to match the performance of the EE design.
Yada. It has a rather large working set and exhibits high contention.
The workload traverses the dataset in a manner which makes it
longer for the hybrid approach to complete the discovery of con-
tended lines. A longer time to achieve steady state means that in
short duration runs we do not perform as well as the lazy systems.
TID2, the dominant transaction (see Table 3), exceeds OVB capac-
ity. This coupled with a relatively high fraction of contended data
in the write-set (see Figure 6) results in expensive software rollback
operations that degrade performance of EE and the hybrid designs.
With longer runs we notice that the differences tend to become less
marked. The contention in this case is less severe (as is evident the
higher proportion of eager commits for yada+ in Figure 11) and the
eager approach regains lost performance.
Labyrinth. As noted earlier, the results generated by this work-
load depend significantly on the interleaving of threads resulting in
marked variability in execution times (note the error bars in Figure
7). The data presented thus should be viewed keeping this fact in
mind. The dominant transaction is TID1 as can be seen in Table
3. A significant fraction of data is managed eagerly (see Figure 6)
but the OVB capacity is exceeded since write-set sizes are large.
Thus, relatively high contention results in expensive rollback oper-
ations on abort (see Figure 8). Consequently, lazy designs perform
slightly better than the EE or the hybrid approach.
Kmeans /Vacation. These applications are highly concurrent and
do not show major differences in execution times with changes in
policies. Nevertheless, protocol efficiencies at commit in the EE
and the hybrid designs result in minor improvements in perfor-
mance.

60

genome

genome+

intru
der

intru
der+

kmeans-high

kmeans-lo
w

labyrin
th

ssca2

ssca2+

vacatio
n-high

vacatio
n-lo

w
yada

yada+

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

liz
e

d
 n

e
tw

o
rk

 f
lit

s

EE
Hybrid
LL-GCT
LL-STCC

2.4

(a) Flit count

genome

genome+

intru
der

intru
der+

kmeans-high

kmeans-lo
w

labyrin
th

ssca2

ssca2+

vacatio
n-high

vacatio
n-lo

w
yada

yada+

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

liz
e

d
 n

e
tw

o
rk

 m
e

s
s
a

g
e

s

1-Requests
2-Control_Response
3-Data_Response
4-Writeback_clean

5-Writeback_dirty
6-STCC_Commit

EE || Hybrid || LL-GCT || LL-STCC2.5 3.3

(b) Message Type Distribution

Figure 12: Network Traffic.

3.4 Traffic Considerations
Traffic generated by each HTM design when running STAMP

applications is shown in Figure 12. Figure 12-a shows traffic vol-
umes in flits normalized to the EE design. Figure 12-b plots the
distribution of various protocol messages types transported through
the network. In terms of traffic the hybrid approach performs well
across all workloads and puts signficantly lower demands on net-
work bandwidth than LL-STCC. LL-STCC shows remarkably high
flit counts for several applications, which, as can be seen in the traf-
fic distribution plot, arises due to messaging for scalable commits.
In the experimental setup used for this study, large intra-chip com-
munication bandwidth is available as only 16 in-order cores run.
The parallel commit algorithm employed by the design is thus able
to hide most of messaging latency. In architectures that have a low
peak bandwidth or run workloads that impose high communication
demands, this latency may not remain hidden and LL-STCC proto-
col efficiency could suffer.

4. RELATED WORK
Research in HTM design has been very active since the introduc-

tion of multicores in mainstream computing. The early proposal by
Herlihy and Moss [7] was revived by new, more elaborate designs
like UTM[1], TCC [6] and LogTM [19]. In particular TCC and
LogTM explored two opposite corners of the HTM design space.
Transactional Coherence and Consistency (TCC) contains specula-
tive updates within private caches and resolves races when a com-
mitting transaction broadcasts its write-set. In its basic form it em-
ploys a bus to serialize transaction commits. The design was later
extended to scalable architectures using directory based coherence.
A simple variant employs a global commit token to serialize com-
mits. A more sophisticated approach, Scalable TCC (STCC) [5],
employs selective locking of directory banks to avoid arbitration
delays and thereby improve commit throughput. LogTM, on the
other hand, proposes the use of an undo log to incrementally pre-
serve consistent state and abort handlers that restore it. Directory
coherence is used to detect and resolve conflicts eagerly with occa-
sional fallback to handlers in software to break deadlocks.

Parallelism at commit is important when running applications
with low contention but a large number of transactions. Trans-
actions that do not conflict should ideally be able to commit si-
multaneously. The very nature of lazy conflict resolution protocols
makes it difficult since only actions taken at commit time permit

discovery of data races among transactions. Simple lazy schemes
like ones employing a global commit token do not permit such
parallelism. Hence most lazy protocols employ more complex ap-
proaches like finer-grained locks on shared memory [5], optimiz-
ing certain safe interleavings [13] and early discovery of conflicts
[17]. Eager schemes do not suffer from this problem and our pro-
posal, under such workload conditions, would allow parallel com-
mits since most transactions would be managed eagerly. Thus,
complicated protocol extensions to support higher commit paral-
lelism are not critical to improve common case performance for
such workloads.

Sanyal et al. [15] proposed filtering of thread-private data with
support from the cores and the operating system. While this re-
duces pressure on versioning mechanisms in HTMs, it does not
separate contended data from non-contended data. This separation
is not as distinct as that between thread-private and shared data and
can only be known by runtime adaptability, as we propose in this
work, or by fine-grained profiling of application behaviour and ac-
cess patterns. The latter is not always feasible because of large
variations due to different datasets and thread interleavings.

Mixed-policy HTM designs like DynTM (UTCP) [8] and LV*
[12] have been introduced earlier in this work. DynTM deserves
further discussion since it chooses a different dimension and gran-
ularity of data to work with when compared to the work presented
here. It works at the granularity of a transaction and then develops
a cache coherence protocol around it that supports multiple ways
to version the same shared memory block. This choice of granular-
ity does not match that of the underlying coherence infrastructure
which works at the granularity of cache lines. The result, in the
opinion of the authors, is increased complexity of design, which
will be a significant criterion in any decision to incorporate TM in
silicon.

5. CONCLUSIONS AND FUTUREWORK
In this paper we have outlined a fresh approach to hybrid-policy

HTM design. Instead of viewing contention as a characteristic of
an atomic section of code, we view it as a characteristic of the data
accessed therein. Our observation that contended data forms a rel-
atively small fraction of data written inside transactions reinforces
our decision to incorporate mechanisms that support efficient man-
agement of such data in the common case. In the process, our
proposal – the ZEBRA HTM system – manages to bring together
the good aspects of both eager and lazy designs with very mod-

61

est changes in architecture and protocol. ZEBRA supports parallel
commits for transactions that do not access contended data and al-
lows reader-writer concurrency when contention is seen. We have
shown, both qualitatively and quantitatively, that it can utilize con-
currency better and consistently track or outperform the best per-
forming scalable single-policy design – performing as well as the
eager design when high commit rates limit performance of lazy
designs and, on average, substantially better than both eager and
lazy systems when contention dominates. On average, it places
lower demands on intra-chip communication bandwidth. It also
achieves the lowest deviation from the best measured performance
over a diverse set of workloads corroborating our claim that the de-
sign is robust and less susceptible to pathological conditions. We
hope this work would spur further efforts in the area of low com-
plexity hybrid-policy HTM systems. More research can be done to
develop designs that adapt to workload needs quicker and are still
cost-effective enough to attract the attention of computer architects.

Acknowledgments

This collaborative work was supported by the Spanish MEC and
MICINN, as well as European Comission FEDER funds, under
grants Consolider Ingenio-2010 CSD2006-00046 and TIN2009-14
475-C04. It was also partly supported by the HiPEAC-2 NoE un-
der contract FP7/IST-217068. Anurag’s work at Chalmers has been
supported by the European Commission FP7 project VELOX (ICT-
216852). Rubén Titos has a research grant from the Spanish MEC
under the FPU National Plan (AP2006-04152) and was awarded a
collaboration grant from HiPEAC to visit Chalmers.

6. REFERENCES

[1] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, and Sean Lie. Unbounded transactional
memory. In Proc. of the 11th Symp. on High-Performance

Computer Architecture, pages 316–327, Feb 2005.

[2] Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos,
Mark D. Hill, Michael M. Swift, and David A. Wood.
Performance pathologies in hardware transactional memory.
In Proc. of the 34th Int’l Symp. on Computer Architecture,
pages 81–91, Jun 2007.

[3] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and
Kunle Olukotun. STAMP: Stanford transactional applications
for multi-processing. In Proc. of the IEEE Intl. Symposium

on Workload Characterization, pages 35–46. Sept 2008.

[4] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas.
Bulk disambiguation of speculative threads in
multiprocessors. In Proc. of the 33rd Int’l Symp. on

Computer Architecture, pages 227–238, Jun 2006.

[5] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen
McDonald, Chi Cao Minh, Woongki Baek, Christos
Kozyrakis, and Kunle Olukotun. A scalable, non-blocking
approach to transactional memory. In Proc. of the 13th Symp.
on High-Performance Computer Architecture, pages 97–108,
2007.

[6] Lance Hammond, Vicky Wong, Mike Chen, Brian D.
Carlstrom, John D. Davis, Ben Hertzberg, Manohar K.
Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency.
In Proc. of the 31st Int’l Symp. on Computer Architecture,
pages 102–113, Jun 2004.

[7] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: Architectural support for lock-free data structures.

In Proc. of the 20th Int’l Symp. on Computer Architecture,
pages 289–300. May 1993.

[8] Marc Lupon, Grigorios Magklis, and Antonio González. A
dynamically adaptable hardware transactional memory. In
Proc. of the 43rd Int’l Symp. on Microarchitecture, Dec
2010.

[9] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson,
Daniel Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik
Larsson, Andreas Moestedt, and Bengt Werner. Simics: A
full system simulation platform. IEEE Computer,
35(2):50–58, Feb 2002.

[10] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E.
Moore, Mark D. Hill, and David A. Wood. Multifacet’s
general execution-driven multiprocessor simulator (GEMS)
toolset. Computer Architecture News, pages 92–99, Sept
2005.

[11] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, and David A. Wood. LogTM: Log-based
transactional memory. In Proc. of the 12th Symp. on
High-Performance Computer Architecture, pages 254–265,
Feb 2006.

[12] Anurag Negi, M.M. Waliullah, and Per Stenstrom. LV*: A
low complexity lazy versioning HTM infrastructure. In Proc.
of the Intl. Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (IC-SAMOS 2010),
pages 231–240, July 2010.

[13] Seth H. Pugsley, Manu Awasthi, Niti Madan, Naveen
Muralimanohar, and Rajeev Balasubramonian. Scalable and
reliable communication for hardware transactional memory.
In Proc. of the 17th Int’l Conf. on Parallel Architectures and

Compilation Techniques, pages 144–154, Oct 2008.

[14] Ravi Rajwar and James R. Goodman. Transactional lock-free
execution of lock-based programs. In Proc. of the 10th Int’l
Symposium on Architectural Support for Programming

Language and Operating Systems, pages 5–17, Oct 2002.

[15] Sutirtha Sanyal, Adrián Cristal, Osman S. Unsal, Mateo
Valero, and Sourav Roy. Dynamically filtering thread-local
variables in lazy-lazy hardware transactional memory. In
HPCC ’09: Proc. 11th Conference on High Performance

Computing and Communications, jun 2009.

[16] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L.
Scott. Flexible decoupled transactional memory support. In
Proc. of the 35th Int’l Symp. on Computer Architecture. Jun
2008.

[17] Sasa Tomic, Cristian Perfumo, Chinmay Kulkarni, Adria
Armejach, Adrián Cristal, Osman Unsal, Tim Harris, and
Mateo Valero. EazyHTM: Eager-lazy hardware transactional
memory. In Proc. of the 42nd Int’l Symp. on

Microarchitecture, 2009.

[18] M.M. Waliullah and P. Stenstrom, Classification and
Elimination of Conflicts in Transactional Memory Systems.
Tech. Report 2010:09, Dept. of Computer Engineering,
Chalmers University of Technology, Sweden, 2010.

[19] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E.
Moore, Haris Volos, Mark D. Hill, Michael M. Swift, and
David A. Wood. LogTM-SE: Decoupling hardware
transactional memory from caches. In Proc. of the 13th
Symp. on High-Performance Computer Architecture, pages
261–272, Feb 2007.

62

