
Directory-Based Conflict Detection in

Hardware Transactional Memory

Rubén Titos, Manuel E. Acacio, and José M. Garćıa

Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30100 Murcia (Spain)
{rtitos,meacacio,jmgarcia}@ditec.um.es

Abstract. One of the key design points of any hardware transactional
memory (HTM) system is the conflict detection mechanism, and its effi-
cient implementation becomes critical when conflicts are not a rare event.
While many contemporary proposals rely on the coherence protocol to
carry out conflict detection at the private cache levels, this approach
is not optimal for systems that use a directory to maintain coherence
over an unordered, scalable network, such as tiled CMPs. In this paper,
we present a new scheme of conflict detection for HTM systems, which
moves this key mechanism from the private caches to the directory level.
We propose a novel transactional book-keeping method and describe how
this detection can be carried out more efficiently at the directory. Simula-
tion results show that our approach obtains reductions in execution time
between 25 and 55% for transactional benchmarks with a high number
of conflicts, with an average improvement over LogTM-SE of 15%.

1 Introduction

Transactional Memory (TM) has arisen as a promising programming model tar-
geted to ease parallel programming while still producing efficient multithreaded
programs that exploit the computational resources available in present and fu-
ture multicore chips. Using the TM model, the programmer declares what regions
of the code must appear to execute in mutual exclusion, leaving the burden of
how to provide atomicity and isolation to the underlying levels. The system then
optimistically executes transactions, stalling or aborting them whenever real run-
time data conflicts appear. Although a TM system can be entirely implemented
in software, moving some basic transactional functionality to the hardware level
is essential to minimize its performance overhead. This paper focuses on hard-
ware TM systems (HTMs) whose aim is to bring the TM model to the high-
performance computing arena.

One of the key mechanisms of any transactional system is conflict detection.
A conflict occurs when two or more concurrent transactions access the same data
block and at least one of the accesses is a write. In order to detect such violations
of isolation, a TM system must keep track of its transactions’ read and write
sets. Some proposed HTMs perform this book-keeping by extending each cache



entry with R/W bits [4][8]. Other designs opt for per-thread hash signatures to
encode address sets using Bloom filters [12].

Regardless of how the TM system records R&W sets, another major design
dimension of conflict detection is when to use this information to check for
violations of isolation. This can be done either immediately after every memory
request – eager policy – or it can be delayed until the end of the transaction –
lazy detection –. Most HTM systems proposed to date implement eager conflict
detection by modifying standard ownership-based cache-coherence protocols [5]
[1][9][8][12]. These systems monitor the coherence traffic for transactional blocks
to determine if another processor is performing a conflicting access.

Semantically, a transaction must retain exclusive ownership over its written
blocks, and non-exclusive ownership over its read blocks, until it reaches commit.
Because ownership is usually associated with cache residence, any coherence
protocol capable of detecting ownership conflicts can also detect transaction
conflicts at no extra cost. However, limited cache capacity and associativity lead
to replacements of active transactional blocks, thus breaking the ownership-cache
residence connection that basic conflict detection relies upon. In order to support
transactions of an arbitrary size, HTMs should ensure isolation in the presence
of overflowed transactional blocks (evicted from the private cache level). Thus, a
transactional node needs to see the coherence traffic for blocks that are no longer
locally cached. While this happens naturally in systems with snoopy-based cache
coherence, like the original TM proposal by Herlihy and Moss [5], it constitutes
an abnormal behaviour for a directory-based protocol that maintains coherency
over an unordered, point-to-point network, as that of a tiled CMP.

The introduction of the so-called sticky states in directory-based protocols
[8][12] basically consists of using the directory entry to track the current trans-
actional owner of an evicted block, and forward requests for that block to the
transactional owner so that it can detect conflicting accesses that try to revoke
its transactional ownership. Somehow, this can be regarded as a timid first step
towards the fusion of cache coherence and conflict detection. Such combination
of two seemingly independent mechanisms is not new, but it was already a fun-
damental part of TCC [4], an HTM in which lazy conflict detection and snoopy
coherence were merged to provide a consistency model based on transactions.

In this paper, we propose a novel approach to eager conflict detection that
further extends a directory protocol in order to provide a fast detection scheme
in tiled CMP architectures. By comparing our proposal with an HTM system
such as LogTM-SE [12], we observe several advantages of implementing conflict
detection at the directory level instead of at the cache level. First and foremost,
detection itself is accelerated, as conflicts are always detected in one hop in-
stead of two. Considering that one of TM’s fundamental principles is to achieve
programming ease by allowing coarse-grained transactions, it is of great impor-
tance that conflicts are handled as efficiently as possible, as they are likely to
occur often when the programmer relies on large transactions. Indeed, most of
the transactional workloads from the Stanford Transactional suite (STAMP) [3]
already pose this high-conflict behaviour, as shown in [10]. Second, by detecting



conflicts faster, the proposed TM system reacts more rapidly to high-contention
scenarios and has the potential to avoid many aborted transactions, improving
performance. Simulation results using GEMS (General Execution-driven Multi-
processor Simulator) show that our conflict detection approach obtains reduc-
tions in execution time of 15% on average for the selected benchmarks, with
better performace gains – up to 55% – for those workloads that suffer frequent
transaction conflicts.

The rest of the paper is organized as follows: Section 2 briefly describes the
different approaches to conflict detection adopted by some of the most relevant
contributions to hardware transactional memory, and motivates our work. In
Section 3 we describe our directory-based conflict detection scheme. Section 4
evaluates the performance of our proposal, comparing it to an ideal LogTM-SE
system. We end with Section 5, which summarizes the main conclusions of this
study and presents our future work.

2 Motivation and Related Work

In the early nineties, Herlihy and Moss introduce Transactional Memory (TM)
[5] as a hardware alternative to lock-based synchronization. Their proposal relies
on a snoopy coherence protocol to detect conflicting accesses, providing atomic
accesses to several independent memory locations. More than a decade later,
Hammond et al. present TCC, Transactional Coherence and Consistency [4], a
novel coherence and consistency model based on transactions. The TCC sys-
tem is also built upon a broadcast network that allows transactions to snoop
commit traffic to maintain coherence and detect possible dependence violations
(conflicts). Later on, several proposals such as UTM [1] or VTM [9] focus on
hardware schemes that provide virtualization of transactions, i.e., support for
transactions of unlimited duration, size and nesting depth. Both UTM and VTM
monitor the coherence traffic for the transaction’s cache lines to determine if an-
other processor is performing a conflicting operation. In LogTM [8], Moore et al.
combine transactional support with a conventional shared memory model, also
taking the coherence protocol as a means to perform conflict detection. LogTM-
SE [12] is a subsequent refinement that decouples transactional support from
caches using hash signatures to detect conflicting threads.

Some of these HTM proposals perform transactional book-keeping by extend-
ing each cache entry with R/W bits [4][8]. Despite losing the information needed
to perform conflict detection when when transactional blocks are evicted from
the cache, these systems manage to guarantee isolation in this circumstances at
a performance cost. On one hand, TCC [4] enforces transaction serialization by
letting a transaction write its results directly to shared memory. On the other
hand, LogTM [8] lets blocks leave the cache, and modifies a directory coherence
protocol with sticky states so that the overflowed cache keeps receiving forwarded
requests and performing conflict detection on the evicted blocks. LogTM’s ap-
proach of lazily cleaning up sticky states suffers from frequent false positives
when overflows become more frequent, due to stale directory information. Other



HTM designs opt for per-thread hash signatures to encode address sets using
Bloom filters [12][3]. Under this alternative, transactional blocks that overflow
cache are no longer a problem, as the information needed to detect conflicts is
decoupled from the data block and stored at the core level. However, due to
their conservative encoding, hash-signatures may signal a conflict when none ex-
ists (a false positive), causing unnecessary rollbacks that degrade performance.
The ratio of false positives becomes significant when the transaction footprint
grows, disencouraging the programmer from using coarse grain synchronization
and somehow jeopardizing one of the main goals of TM.

2.1 Why detect at the directory level

Up until now, conflict detection has always been performed at the private cache
levels of the memory hierarchy. This makes the most sense when private caches
are able to snoop on every memory transaction that takes place across the sys-
tem, by being connected to a shared, ordered network like a bus [5][4]. However,
in more scalable networks where directory-based protocols are more appropriate
to maintain coherence, a cache only observes the requests for those blocks that
are locally cached. Despite this substantially different scenario, eager conflict de-
tection schemes that rely on directory protocols have so far implicitly inherited
the same style of private-level conflict detection [8][12].

In this context, a reason why the directory is best suited for conflict detection
is its location. From the perspective of a memory transaction, L1 caches are
end-points – a request’s origin or destination – whereas the L2 directory acts
as a middle-point that orchestrates the traffic – routing requests so that they
arrive at their destination –. As end-points entities, L1 caches are not a straight-
forward location to perform conflict detection: For them to detect conflicts on
their evicted transactional blocks, the directory needs to behave abnormally and
forward requests for blocks that are no longer cached at the private level. The
directory, however, is not only a middle point that naturally observes all the
traffic for its mapped blocks, but also the first stop of any request message, thus
becoming the perfect location to provide a fast (one-hop) detection scheme.

Besides its privileged location, the directory’s role makes conflict detection
a simple addition to its responsibilities. Considering that i) the directory is in
charge of tracking each cached block’s ownership1, and that ii) transactional own-
ership is connected to cache residence in the common case (except for evicted
transactional blocks), the directory has most of the information required to de-
tect memory accesses that attempt to revoke a node’s transactional ownership
over its read and written blocks. Therefore, such an extension in its functionality
becomes a natural evolution of its role within a TM system.

Furthermore, an HTM with directory-based conflict detection also mitigates
the performance implications of signature false positives. In systems where not

1 We use the term ownership throughout this paper to stand for cache residence,
independent of the state of the block in the cache(s)



every memory block has its corresponding directory entry, the directory con-
troller still needs to keep detecting conflicts for those transactional blocks that
are spilled from the coherence level. Per-bank signatures in the directory are a
good solution to this problem because the number of transactional active blocks
that overflow this level (i.e. the L2 cache in a CMP) is insignificant in comparison
to total number of blocks accessed by a transaction, and so is the probability of
false positives, compared to using signatures to encode the entire access set.

3 Directory-Based Conflict Detection

Using the directory to check for conflicts over blocks that remain cached by
transactional owners does not need any more information about a block than
what is already stored in its directory entry. For example, let W be a transac-
tional writer that locally caches a block B with exclusive ownership, and let R
be a reader that tries to acquire non-exclusive ownership of B. When R’s read
request arrives to the directory, the standard protocol dictates that the request
must be forwarded to W, which would then detect the conflict. However, if the
directory only knew that W is executing a transaction, forwarding the request to
W would be unnecessary; the directory itself could immediately detect a conflict
on B and take the appropriate actions to resolve it. To do this, the directory
only needs to keep a record of which cores are executing a transaction at any
moment. To this end, our base conflict detection scheme explicitly notifies the
directory about transaction begin and transaction commit. A simplistic solu-
tion could consist of sending dedicated begin/commit messages and waiting for
acknowledgment before resuming the execution.

Once the directory knows that a core P is executing a transaction, it could
immediately start to detect conflicts for all accesses to blocks locally cached
by P. However, doing so would lead to many unnecessary conflicts since not
all cached blocks may have been accessed by the transaction – in other words,
cache residence does not necessarily imply transactional ownership –. In order
to avoid them, the naive approach of our base scheme is flush-clearing the lo-
cal data cache at transaction begin, writing back all modified/exclusive blocks.
Following this simple approach, the first reference to each data block from in-
side a transaction misses in the local cache, so that the directory observes all
transactional addresses and perform the book-keeping required for conflict detec-
tion. While flush-clearing the data cache is clearly not desirable, those workloads
composed of large transactions should not be too affected, as flushes happen in-
frequently. The main drawback of flushing appears in applications with short,
frequent transactions, in which not only the transaction but also the follow-
ing code, find an almost empty data cache. Most misses suffered by the post-
transactional code (which presumably operates on local data) are directly caused
by the recent cache-flush. For this reason, more sophisticated schemes are nec-
essary, which would allow for conflict detection at the directory level without
requiring a cache-flush on every transaction begin.



So far, we have assumed in our elaboration that transactional ownership
implies cache residence, but that is not always the case because transactional
blocks can exceed the capacity or associativity of the local cache. Since no ex-
plicit information about a transaction’s R&W sets is stored at the core level (no
signatures), the directory needs to track transactional blocks that are evicted
from the private level while the transaction runs, in order to keep detecting
conflicting accesses on those blocks. To this end, we introduce the concept of
Transaction Serial Number (XSN), a small, reusable, per-core identifier that is
used by the directory to tag transactional blocks and maintain a correspondence
between a block and its owner transaction(s). While we have not determined
the ideal size of the transaction serial number, performing lazy clean-up of non-
matching XSNs greatly reduces the overhead of these identifiers. A few bits
per XSN should suffice to avoid virtually all false conflicts due to XSN reuse.
Nonetheless, these false positives caused by stale XSNs that become fresh only
affect the performance but not the correctness of the transactional execution.

Hardware Requirements. On the core side, each core has a counter (XSN
register) that contains the XSN assigned to its last/current transaction. The
XSN register is incremented every time the instruction begin transaction is ex-
ecuted – hence also after an abort –. Its content is copied to all the outgoing
transactional messages (set to zero for all non-transactional requests), allow-
ing the directory to differentiate between transactional and non-transactional
requests. On the directory side, each directory bank keeps a vector of XSN’s
(global XSNs), one XSN per core. The corresponding XSN of the vector is up-
dated on every begin transaction with the XSN indicated in the message, while
it is set to zero (“not in transaction”) upon arrival of a commit transaction mes-
sage. As for the directory entry, each one is augmented with a new field, xact
owners XSN, whose function is to keep a correspondence between the block and
its current transactional owner(s). For simplicity, we can think of this field as
a vector with as many XSN as cores. In practice, each entry does not need to
store one XSN per core; instead, the hardware overhead of this mechanism can
be minimized by having a separated XSN buffer that the directory controller
uses “on demand”. Finally, the directory uses a set of per-core signatures to
track those transactional active blocks that are evicted from the directory level.
Before the replacement, the address is added to the signature of its transactional
readers/writer. These signatures are only checked in case a request misses at the
coherence level, and cleared on transaction commit/abort.

Operation. By jointly considering both a block’s XSNs and the global XSN
vector, the directory can unequivocally determine if a certain block is owned by
some currently running transaction(s) or if, on the contrary, some transaction
that made use of it has committed/aborted. The basic idea behind this mecha-
nism is that a block is considered part of a transaction’s R/W set running in P
when the P-th XSN of its xact owners matches the P-th XSN of the global XSN
vector. Comparing a block’s XSN against the global XSN vector, the directory



�

�

��������

��	�





���

��

��������

��������

��	�

�

��

�����

�����

��

��

����������


� �����������	�

����������

�
�

�	
��������

��	��

�� 
�

���


� ��

��������

��	�


�

��

��

����������

��������

��	�

�

��
�������

�����

��

��

����������

�� �����������	�����

����������


�

��
�

������� �� 
�

��	��

���

��������

��	�




���

��

����������

��������

��	�

�

��

�����

�����

��

��

����������

�� �����������	�

����������

�
�

��������

��	��

�� 
�

�����	
���

���

��

��

���

����

��������

��	�




���

��

����������

��������

��	�

�

��

�����

�����

��

��

����������

�� �����������	�

�������

�
�

�	
��������

��	��

�� 
�

�����	
���

���

��������

��	�




���

��

����������

��������

��	�

�

��
�����

��

��

����������

�� �����������	�

�����

�������

�
�

�	
��������

��	��
���

�� �

�� 
�

��������

��	�

�

��

��

����������

��������

��	�

�

��
������
�����
	���
���

��

��

����������


� �����������	�����

����������

��

��


��
�

�������� �� �

��	��

���

Fig. 1. Examples of Directory-Based Conflict Detection.

tracks transactional ownership even when the block is not privately cached, en-
abling conflict detection regardless of the actual location of the block. Figure
1 illustrates the proposed conflict detection mechanism, showing how the fore-
mentioned hardware elements work together to provide fast conflict detection at
the directory level. The figure also shows the coherence state for one block at
the directory and in two core’s private caches, as well as the block’s XSNs. The
directory’s global XSN vector and each core’s XSN register are also shown.

Core 0 (C0) begins its transaction by incrementing its XSN register and
sending it to the directory through an explicit begin transaction message (Figure
1 a). The directory uses this message to update its global XSN register and
responds with an acknowledgment, allowing the core to begin its transaction. In
Figure 1 b, C0 attempts to write a block, but misses in its private cache and
sends an exclusive request to the directory. The directory checks the block’s xact
owners XSN, observes that the reader transaction in C1 is no longer running and
sends exclusive data to C0, setting both the state and xact owners accordingly
– lazily clearing C1’s stale XSN –. In Figure 1 c, the transaction in C1 tries to
read the same block, missing in its L1. Comparing xact owners and the global
XSN, the directory finds out that C0 is a transactional owner, and then it uses
the coherence state to find out whether C0 is a reader or a writer. In this case,
the block is not in shared state, which means C0 is a writer and hence the
directory detects the conflict. Figure 1 d is an example of the out-of-cache conflict
detection: C0 writebacks the block and when C1 retries its read request, the
directory detects the conflict once again, since the writeback did not change the
xact owners. At last, C0 commits its transaction, notifies the directory (Figure
1 e), allowing C1 to finally obtain a shared copy of the block (Figure 1 f).

3.1 Enhancements to the Base Detection Scheme.

Augmenting the private cache to avoid flushing. Instead of flush-clearing the
L1 cache on every transaction begin, a more elaborated solution could serve



those accesses that hit on privately cached data immediately, and allow the core
to continue its execution without any extra delay, while sending a notification
down to the directory (off the critical path). This report messages contain the
new transaction serial number of the just-started transaction and are used to
update the block’s xact owners XSN vector at directory. A Transactional bit
must be added to each L1 cache line, to deal with forwarded conflicting request
as well as to reduce the number of reports sent down to the directory. This bit
is set each time a block is accessed and flush-cleared on transaction commit.
Report messages are only sent out if the bit is not set. If a race occurs between
a remote request and a report message, so that the remote message arrives
before at the directory, the core receives the forwarded request and it signals a
conflict if it finds the Transactional bit set for the block. Eventually, the directory
information for that block will be updated with the new XSN and subsequent
conflicting requests will be handled entirely at the directory level.

Reporting begin/commit to the directory without extra delay. Instead of sending
one begin and one commit message to each directory bank for each transaction,
a more scalable solution could use on-demand piggybacking for these reports.
This can be done by recording which L2 banks the core has accessed during
the transaction, using a simple bit-vector that is updated by the address-to-
bank mapping logic on each L1 miss and cleared after commit. In this way, the
begin transaction report is inserted as a field (XSN) in the first request message
sent to a directory bank, without delaying the execution of the transaction. At
transaction commit, only the appropriate directory banks need to be notified,
according to the forementioned bit-vector.

4 Evaluation

In this section, we evaluate the performance of the proposed conflict detection
scheme (DirCD). We use the LogTM-SE hardware transactional memory system
as the basis of our simulations, and we modify it to introduce two versions
of our proposal: a naive implementation that empties the L1 cache on every
begin transaction (DirCD+L1Flush), and an enhanced version that avoids cache
flushing (DirCD+NoL1Flush). To provide a better perspective over the results,
we also consider an identical configuration to the baseline LogTM-SE system
that flush-clears the L1 cache on transaction begin (CacheFlush). We compare
these two DirCD flavours against an ideal configuration of LogTM-SE in which
perfect signatures are used to track R/W sets and detect conflicts (Base).

For simplicity, our version of DirCD+NoL1Flush does not use hit-report
messages nor L2-overflow signatures; instead, we approximate a flush-free con-
figuration by relying on the original address signatures of LogTM-SE, which
we have made directly accessible to the directory conflict detection logic. The
resulting implementation emulates a more sophisticated DirCD-based system,
which incorporates the enhancements described in 3.1. Regarding conflict reso-
lution (CR), it is now performed at the directory level, although the CR policy



remains fixed – requester stalls, with conservative deadlock avoidance –. Our
DirCD implementation also reuses the functionality that the simulator provides
for LogTM-SE, so that the directory does not track timestamps, possible cycles
nor does it issue abort messages when a possible deadlock is detected. Lastly, our
conflict detection scheme is evaluated without restricting the size of transaction
serial numbers, and using a full XSN-vector in each directory entry.

4.1 Summary of LogTM-SE

LogTM is a hardware transactional memory system proposed by the Multi-
facet group at the University of Wisconsin-Madison. LogTM implements eager
version management and eager conflict detection. It uses a per-thread log in
cacheable virtual memory that contains address and old values of memory loca-
tions modified by the current transaction. It extends a directory protocol in order
to perform conflict detection of evicted blocks by using sticky states. LogTM-SE
(Signature Edition) is a refined version of LogTM in which R/W sets are tracked
using hash signatures. We use LogTM’s basic algorithm to detect potential dead-
locks using timestamps: A processor sets a bit if it nacks an older transaction; if
in turn it receives a nack from an older transaction, this represents a potential
cycle and the transaction aborts. The abort traps to a software handler, which
walks the transaction log and restores the old values into memory. The system
uses randomized linear backoff to reduce contention after an abort.

4.2 Simulation Methodology and Environment

We use a full-system execution-driven simulation based on the Wisconsin GEMS
toolset [7], in conjunction with Virtutech Simics [6]. We use an implementation
of the LogTM-SE protocol and the detailed timing model for the memory sub-
system of GEMS v2.1, with the Simics in-order processor model. Simics provides
functional correctness for the SPARC ISA and boots an unmodified Solaris 10.

We perform our characterization on a tiled CMP system, as described in Ta-
ble 1. We use a 16-core configuration with private L1 I&D caches and a shared,
multibanked L2 cache consisting of 16 banks of 512KB each. The L1 caches main-
tain inclusion with the L2. The cores and L2 cache banks are connected through
a 2D mesh network. The private L1 data caches are kept coherent through an
on-chip directory (at L2 cache banks), which maintains a bit vector of sharers
and implements the MESI protocol. We compare our proposal against an ideal
implementation of LogTM-SE in which conflict detection uses perfect signatures
– mere lists of addresses read/written by the transaction – instead of actual hash
signatures that lead to unnecessary conflicts as a result of false positives.

For the evaluation, we use five transactional benchmarks extracted from the
STAMP suite [3]. These benchmarks use coarse-grain transactions to execute
concurrent tasks on irregular data structures such as graphs or trees. We have
also selected a few non-transactional workloads from the SPLASH-2 suite [11],
in order to evaluate our proposal with substantially different applications. Note



Table 1. System parameters.

MESI Directory-based CMP

Core Settings
Cores 16, single issue, in-order, non-memory IPC=1

Memory and Directory Settings
L1 I&D caches Private, 32KB, split, 2-way, 1-cycle latency
L2 cache Shared, 8MB, unified, 4-way, 12 cycle-latency
L2 Directory Full bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings
Topology 2D Mesh (4x4)
Link latency 1 cycle
Link bandwidth 40 bytes/cycle

that the latter may not be representative of future transactional applications,
and are just included for comparison purposes.

Table 2. Benchmarks and inputs.

Benchmark Input Benchmark Input

DELAUNAY Mesh gen3.2, min. angle 30 BARNES 4096 bodies
GENOME 8K segments, gene length 256, segment length 16 CHOLESKY tk14
BAYES 32 variables, 1K records, 2 parents, 20%chance RAYTRACE teapot
KMEANS 16/16 clusters, thres. 0.05, 2048 16-dim points
VACATION 64K entries, 4K tasks, 8 queries, 10 rel, 80 users

4.3 Results

Figures 2 and 3 summarize the performance evaluation of the proposed directory-
based conflict detection (DirCD) mechanism. We can observe how the optimized
version of our proposal (DirCD+NoL1Flush) outperforms LogTM-SE in every
STAMP transactional benchmark as well as in raytrace, and obtains similar re-
sults in non-transactional applications from SPLASH such as barnes or cholesky.
The performance gain of DirCD+NoL1Flush is considerable for genome (25%),
raytrace (27%) and vacation (55%), three benchmarks that suffer many conflicts,
as shown in the last four columns of Table 3. Other transactional workloads such
as bayes, delaunay or kmeans present more modest improvements in their exe-
cution time of 3 to 7%.

First, we start by analyzing the performance degradation caused by flush-
ing the L1 cache on every transaction, shown by the CacheFlush bar in Figure
2. This will help us understand the obtained results for our flush-based detec-
tion scheme (DirCD+Flush). As expected, flushing causes an increase in the L1
miss rate (shown in Table 3) that has a direct effect over the execution time of
all benchmarks, particularly for raytrace, vacation and genome (up to 15-33%).
The case of raytrace is clear: it executes a very high number of transactions (see
“Commit” column of Table 3), most of which have a very small size (basically
read&increment a ray id), and thus flushing the L1 on each transaction continu-
ously leaves the post-transactional code with an almost empty data cache. The
increase in on-chip network traffic (see Figure 3, is more dramatic for raytrace



Table 3. L1 Miss Rate. Committed vs. Aborted Transactions.

L1MissRate Commits Aborts
Base Flush DirCD DirCD Base Flush DirCD DirCD

Flush NoFlush Flush NoFlush

barnes 1,44% 1,71% 1,74% 1,46% 17399 316 333 306 296

bayes 1,93% 2,40% 3,67% 3,73% 526 1315 1368 1363 1285

cholesky 0,87% 1,25% 1,31% 0,87% 6567 73 41 39 75

delaunay 4,26% 6,13% 9,32% 7,66% 6312 16462 15491 15137 15408

genome 3,15% 4,49% 7,75% 2,88% 5234 3178 3908 2941 1120

kmeans 0,54% 1,08% 1,14% 0,53% 8238 6883 8172 6059 2693

raytrace 1,88% 5,14% 6,13% 2,70% 47766 203968 174393 154819 171681

vacation 4,14% 7,42% 9,32% 6,61% 4096 10573 10596 3233 2953

than for any other benchmark, as a result of its fine-grain, abundant synchro-
nization. However, the effects on execution time and network traffic are different
for genome, a benchmark that spends the majority of its runtime in transac-
tional code (see Figure 4). In this case, the degradation does not come from
non-transactional cache misses, but from an increased number of aborted trans-
actions – see Table 3 – that arises as a result of having transactions that span
a longer period of time (probability of conflict is directly proportional to the
duration).

barnes
bayes

cholesky

delaunay

genome

kmeans

raytra
ce

vacation

Average

Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Base
CacheFlush
DirCD+L1Flush
DirCD+NoL1Flush

Execution Time

Fig. 2. Normalized execution time.

By avoiding the flush, the DirCD+NoL1Flush configuration offers a clearer
look upon the benefits of fast conflict detection than the flush-based DirCD
version, as the latter introduces overheads that shadow the potential gains of our
proposal over the base LogTM-SE system. The remarkable speedup achieved by
genome, raytrace and vacation is not directly caused by faster conflict detection,
but it happens as a result of it. As shown in Table 3 (columns “Abort”), our faster
detection scheme manages to reduce the total number of aborted transactions



for many benchmarks, and the gains are higher for those applications in which
conflicts are not a rare event. In vacation and genome, respectively, 75% and
65% of the aborted transactions are avoided by our DirCD+NoL1Flush scheme,
in comparison to the base LogTM-SE configuration. This is due to the early
detection and resolution of contended situations achieved by our approach.

barnes
bayes

cholesky

delaunay

genome

kmeans

raytra
ce

vacation

Average

Applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

N
or

m
al

iz
ed

 n
et

w
or

k 
tr

af
fic

Base
CacheFlush
DirCD+L1Flush
DirCD+NoL1Flush

Network Traffic

Fig. 3. Normalized network traffic.

In the LogTM system, when a conflict is detected, the requesting processor
stalls. If the conflict is detected sooner, as in the proposed scheme, the stall will
likely last longer. Since execution time is determined by how quickly the system
serializes conflicting transactions, detecting conflicts quicker does not speed up
the execution when stalling the conflicting transaction(s) is enough to solve the
conflict. However, our DirCD configuration does achieve a faster serialization
of multiple conflicting transactions, when multiple conflicts cannot be resolved
by stalling, but they require some transaction(s) to be aborted. In this case, the
sooner the system detects the conflict, the faster it can take action and abort the
appropriate transactions. The directory not only is able to detect the conflict in
one hop, but it can also take action without having to wait until the conflicting
block is in a base state (unlike the base approach that relies on forwarded coher-
ence traffic), contributing to even faster detection/action. Aborting conflicting
transactions earlier reduces the effect of pathological execution patterns such
as futile stall and other conflicting interactions that affect eager CD systems
like LogTM-SE [2]. The remarkable reductions in the execution time of vacation
and genome are due to this quicker and more effective response. Compared to
the base case, our DirCD scheme causes more aborts at first, but later on this
allows more transactions to execute concurrently without interference and com-
mit, reducing the overall number of aborts as well as the total stalled time and
wasted work (see Figure 4). Quantitatively speaking, we observed this behaviour



by taking a look at the first two million cycles of execution of vacation, given the
two configurations (Base and DirCD+NoL1Flush) and the same random seed:
we found that the former manages to commit 108 transactions by aborting 748
in that period of time, while the latter commits more than twice as many (236)
at the cost of aborting around 50% more (1135). The same kind of pattern is
found in other simulations with different seeds for the same benchmark.

barnes
bayes

cholesky

delaunay

genome

kmeans

raytra
ce

vacation

Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

A
cc

um
ul

at
ed

 c
yc

le
 b

re
ak

do
w

n

abort
backoff
commit
non_xact

stall
xact_useful
xact_wasted

Cycle Breakdown

Fig. 4. Normalized cycle breakdown.

5 Conclusions and Future Work

In this paper, we present a new approach to conflict detection targeted to TM
systems built over a tiled CMP architecture. For these systems, we believe the
directory constitutes a natural location for this basic transactional mechanism,
and claim that extending its role to include such functionality is a natural evo-
lution of its responsibilities within a cache coherent TM system. We propose a
novel book-keeping scheme that augments each directory entry with transaction
serial numbers, and describe how the detection is carried out with little assis-
tance from the cores. The results show how the fast conflict detection achieved
by our design reduces the number of aborted transactions in workloads that suf-
fer frequent conflicts, resulting in average reductions of 15% in execution time
for the selected benchmarks.

Bringing together two independent mechanisms like cache coherence and con-
flict detection creates a synergistic relationship that opens up a wide spectrum
of new opportunities within the TM system. When combined onto the same
hardware logic, both entities can cooperate symbiotically and accomplish new
functionalities that cannot be achieved otherwise. For example, by giving the
directory control over the outcome of a transaction, speculation can be applied
in a variety of ways, for example, to continue the transactional execution past



the occurrence of conflicting accesses. Our conflict detection mechanism already
provides a commit request/commit ack message exchange, and could naturally
support a commit deny message that forces a transaction to abort if the specu-
lation failed.

Acknowledgements. This work has been jointly supported by the Spanish
MEC and European Commission FEDER funds under grants “Consolider Ingenio-
2010 CSD2006-00046” and “TIN2006-15516-C04-03’, as well as by the EU FP6
NoE HiPEAC IST-004408. Rubén Titos is supported by a research grant from
the Spanish MEC under the FPU National Plan (AP2006-04152). The authors
would like to thank the anonymous reviewers for their helpful insights.

References

1. C. S. Ananian et al. Unbounded transactional memory. In Proc. of the 11th Int’l

Symposium on High-Performance Computer Architecture, pages 316–327, Feb 2005.
2. J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift, and D. A. Wood.

Performance pathologies in hardware transactional memory. In Proc. of the 34rd

Annual Int’l Symposium on Computer Architecture, Jun 2007.
3. C. Cao Minh et al. An effective hybrid transactional memory system with strong

isolation guarantees. In Proc. of the 34th Annual Int’l Symposium on Computer

Architecture, June 2007.
4. L. Hammond et al. Transactional memory coherence and consistency. In Proc. of

the 31st Annual Int’l Symposium on Computer Architecture, pages 102–113, June
2004.

5. M. Herlihy and E. B. Moss. Transactional Memory: Architectural support for lock-
free data structures. In Proc. of the 20th Annual Int’l Symposium on Computer

Architecture, pages 289–301, May 1993.
6. P. S. Magnusson et al. Simics: A full system simulation platform. IEEE Computer,

35(2):50–58, Feb 2002.
7. M. M.K. Martin et al. Multifacet’s General Execution-driven Multiprocessor Simu-

lator (GEMS) toolset. Computer Architecture News, pages 92–99, September 2005.
8. K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:

Log-based transactional memory. In Proc. of the 12th Int’l Symposium on High-

Performance Computer Architecture, pages 254–265, Feb 2006.
9. R. Rajwar et al. Virtualizing transactional memory. In Proc. of the 32nd Annual

Int’l Symposium on Computer Architecture, pages 494–505, June 2005.
10. R. Titos, M. E. Acacio, and J. M. Garćıa. Characterization of conflicts in log-based

transactional memory (LogTM). In Proc. of the 16th Euromicro Int’l Conference

on Parallel, Distributed and Network-Based Processing, pages 30–37, Feb 2008.
11. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

programs: Characterization and methodological considerations. In Proc. of the 22nd

Annual Int’l Symposium on Computer Architecture, pages 24–36, June 1995.
12. L. Yen et al. LogTM-SE: Decoupling hardware transactional memory from caches.

In Proc. of the 13th Int’l Symposium on High-Performance Computer Architecture,
pages 261–272, Feb 2007.


