

“THEME ARTICLE”, “FEATURE ARTICLE”, or “COLUMN” goes here: The theme topic or
column/department name goes after the colon.

Non-Speculative Load
Reordering in TSO

Load reordering is important for performance. It

allows a core to continue performing accesses to the

memory system even when there are older, in

program order, unperformed accesses (for example,

due to long latency misses). The only known solution

to allow such reordering in a strong consistency

model such as Total Store Order (TSO) has been to

reorder speculatively and squash-and-re-execute if

caught. We show, for the first time, that we can do

the load reordering non-speculatively and leave it to the coherence protocol to handle

conflicts. We can do this efficiently (without perceptible hardware or performance cost)

and without a deadlocks or livelocks. The important new result is that we can now

irrevocably bind speculative loads. Our solution allows us to commit reordered loads

out-of-order without having to wait (for the loads to become non-speculative) or without

having to checkpoint committed state (and rollback if needed), just to ensure

correctness in the rare case of another core seeing the reordering.

INTRODUCTION
Two decades ago, Gniady et al. explored the observation that accesses in Sequential Consistency
(SC) must only appear in program order but do not actually have to be (unless others race with
them) and demonstrated that given enough resources, all accesses can be speculatively re-or-
dered.1 On a conflict, speculation is squashed, state is rolled-back to a safe point, and the
squashed accesses are re-executed. The same ability is inherited by TSO. TSO relaxes the
store→load order but requires the other three program orders (load→load, store→store, and
load→store) to be preserved in memory order.2 Speculation in this case allows loads to be reor-
dered, which is critical for performance. Without load reordering it would be impossible to have
further accesses under a miss and memory-level parallelism would suffer. Conveniently, specula-
tion, checkpointing and rollback mechanisms are readily available in today’s processors to sup-
port branch prediction or dependence speculation. It is not surprising that speculation has been

Stefanos Kaxiras
Uppsala University

Trevor E. Carlson
National University of
Singapore

Mehdi Alipour
Uppsala University

Alberto Ros
University of Murcia

 MAGAZINE NAME HERE

the only known approach to keeping the appearance that the load-load order specified by TSO is
preserved, while under the hood it is constantly transgressed.
Today, power and energy efficiency concerns prompt us to re-examine architectural approaches
and reduce our reliance on speculation. A well-known approach, but one fraught with difficulty,
is to commit out of order in a non-speculative manner.3 Out-of-order commit carries the promise
of shrinking the speculative window while providing performance of a much larger out-of-order
window. In this case, consistency enforcement is one of the stumbling blocks because of its reli-
ance on long and costly speculation to allow the reordering of loads. Consistency speculation is
particularly expensive because it must span at least the latency of a miss to main memory.
Going further in this line of reasoning, very simple, highly-efficient, in-order cores provide very
shallow speculation support (for a few cycles), certainly not deep enough to cover consistency
speculation. Thus, many architectures with prominent in-order implementations rely on relaxed
memory models (e.g., Alpha, ARM) that allow liberal access reordering but put the burden on
the software to enforce order with memory fences. Unfortunately, software enforces much more
order than necessary as it tries to fend-off any possible race that might ever occur, and not just
the races that actually do occur at run-time. In other words, lack of speculation takes us to tricky
relaxed memory models and conservative static software fencing.
In this context, we propose the first non-speculative solution to support reordering of loads in
TSO, one of the strongest memory models and one that is widely used in the real world. In our
evaluation we show that we can provide non-speculative load reordering TSO without affecting
the performance of out-of-order cores. The implications of our solution, however, span a wider
range of architectures, from in-order cores to out-of-order cores with out-of-order commit, and a
wider range of consistency models, from TSO to relaxed models.
We show that, preserving the appearance of the load-load order in TSO can be efficiently
achieved by the coherence protocol in a non-speculative way. The root cause of the load-load
reordering problem in TSO is that a race might happen at a bad time: when a reordering can be
observed. A reordering of a younger performed load can be observed by a conflicting store
simply because an older load is not yet performed. If the conflicting store occurred slightly later,
after the older load is performed, the reordering could not have been observed. Our solution is
simple. The race is detected by the invalidation that reaches the younger reordered load. Instead
of squashing and re-executing (something that would assume speculation support) we simply
withhold the acknowledgement to the invalidation until the reordering disappears (i.e., until the
older load is performed). This prevents the conflicting store from obtaining write permission,
thus keeping it tucked away in its store buffer. This is allowed by TSO.

The key question is that why this does not deadlock? The answer is that in TSO loads can bypass
stores that sit in a store buffer. Of course, we also need to ensure that loads cannot be blocked by
stalled stores via the coherence protocol, the directory, or the MHSRs. For this we employ a sim-
ple idea: in a situation when a race happens at a bad time, loads that could be blocked, request
and receive uncacheable, tear-off copies of the data. To put it simply: we let the loads see the
data they want to see without any engagement of the coherence protocol, directories, or MSHRs.
This guarantees that there can be no resource conflicts with stalled stores and both deadlock and
livelock are prevented.

Our solution allows reordering of loads and enforces order only in the case of a race, by delaying
the conflicting store. The speculative solution squashes work and re-executes (incurring addi-
tional traffic) while we simply delay a store in its store buffer for a little longer. In terms of per-
formance and coherence traffic, it turns out that our new non-speculative solution is on par with
the speculative solution. The difference is that our approach allows irrevocable binding of re-
ordered loads, which gives a significant advantage for out of order commit or for reordering in
in-order cores.

NOW YOU SEE ME
Assume that out-of-order execution allows the reordering of two loads: the oldest load cannot
issue because it has not resolved its address or issues but misses in the cache, while the younger

 SECTION TITLE HERE

load hits in the cache. The younger load would become speculative until the time that the older
load is performed, i.e., resolves its address, issues, and gets its data. In the terminology of Duan,
Koufaty and Torrellas the younger load is M-speculative.4

For simplicity, we will use the following hit-under-miss example to explain the basic mecha-
nism. A simpler example for a single address that does not violate consistency but coherence is
discussed by Dubois, Annavaram. and Stenström.5 Our solution applies equally well on coher-
ence misspeculations.

Initially x=0; y=0;

Core 0 Core 1
ld ra,y st x,1
ld rb,x st y,1

// TSO does not allow ra==1 and rb==0.
If ld rb,x hits and binds to an old copy of x (x==0)
but ld ra,y misses and sees the new value of y (y==1) we violate TSO.

Example 1. Hit-under-miss reordering

Table 1: Six possible legal TSO interleavings and their reordering (reo.) for the code in Example 1.
TSO is violated only when ld y binds to the new value and ld x to the old (interleaving 3, reordered)

 TSO Interleaving Value y, x

1 ld y →	ld x →	st x →	st y old, old

reo. ld x →	ld y →	st x →	st y old, old

2 ld y →	st x →	ld x →	st y old, new

reo. ld x →	st x →	ld y →	st y old, old

3 ld y →	st x →	st y →	ld x old, new

reo. ld x →	st x →	st y →	ld y new, old (illegal in TSO)

4 st x →	ld y →	st y →	ld x old, new

reo. st x →	ld x →	st y →	ld y new, new

5 st x →	ld y →	ld x →	st y old, new

reo. st x →	ld x →	ld y →	st y old, new

6 st x →	st y →	ld y →	ld x new, new

reo. st x →	st y →	ld x →	ld y new, new
An invalidation for the address of the younger, M-speculative, load “sees” the reordering. This
results in the squash of the load (and all following instructions) and its eventual re-issue, wasting
both energy and bandwidth. Assuming that we cannot squash the younger load (for example, be-
cause we committed it out-of-order), we cannot allow anyone to see the reordering.

More precisely, a reordering can be observed when two reordered loads obtain their values in a
different order than the memory order the values were written to the respective memory loca-
tions. Both memory locations must change in a certain order for the load reordering to matter.
This implies a happens-before relation between the respective stores that change the memory
locations.

 MAGAZINE NAME HERE

Consider the code in Example 1, where one core reads (loads) and another writes (stores) the
same two variables but in the opposite order. Table 1 gives six legal TSO interleavings (1– 6)
that preserve the program order of the loads and the stores. The legal interleavings allow only
three combinations of values to be loaded by loads ld y and ld x, respectively: {old, old}, {old,
new}, {new, new}, where old is the value before the write (e.g., 0) and new is the value after the
write (e.g., 1).

Swapping the loads in interleavings 1, 5, and 6 has no effect as it yields the same result: {old,
old}, {old, new}, and {new, new} respectively. Swapping the loads in interleavings 2 and 4 also
yields valid results, {old, old} and {new, new} respectively —albeit different from the initial in-
terleaving. This means that a reordering of the loads in these five interleavings does not matter.
Let us see now what happens if we swap the loads in interleaving 3.

Consider what would happen if the younger load, ld x, hits in the cache and binds to the old
value and the older load, ld y, misses in the cache and sees the new value of y (i.e., interleaving 3
with the loads swapped), This yields the combination of values {new, old} which is illegal in
TSO.

Figure 1.A (left diagram) shows why: the program-order between the loads and the program-or-
der between the stores must be respected, yet the values read by the loads imply an interleaving
that forms a cycle. The reason for the cycle is apparent on the right side of Figure 1.A where we
show how time flows and how the program-order between loads is violated.

Figure 1: (A) Irrevocably binding the reordered ld x can violate TSO if ld y sees the new value from
st y. (B) ld x must first see an invalidation from st x; delaying the Ack of the invalidation (Inv) via a
“lockdown,” (Lck) forces ld y to happen before st x, and st y.

If we irrevocably bind ld x, our only choice to maintain TSO, according to Table 1, is for ld y to
also bind to the old value of y. If ld y sees the new value of y, written by core 1, we violate TSO.

Observe now that the necessary condition for ld y to see the new value of y is that st x must be
performed: st x precedes st y in core 1, therefore st x must be performed in the system (globally
visible) before y gets its new value. This is the key property that we exploit in our approach: As
long as we can guarantee that ld y will read y before the store of x is performed we guarantee that
ld y will get the old value of y.

Furthermore, the necessary condition for ld x to read the old value of x is for core 0 to have a
cached copy of x created before st x. This means that core 0 must see an invalidation for x before
ld y can see the new value of y. This gives us the mechanism to delay st x.

More specifically, when we get the invalidation for x, we delay its acknowledgement, and there-
fore we delay st x by withholding its write permission, until ld y gets the old value. This is illus-
trated in Figure 1.B (left diagram), where the acknowledgment (Ack) to the invalidation (Inv) of

A

B

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

x = 0, y = 0

 PO
(violated)

1

0
(old)

(new)

PO
HBHB

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

x = 0, y = 0

PO

1

0
(old)

(old)

POInvLck

Ack

HB

HB

HB: happens-beforePO: program-order

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

ld ra,y

ld rb,x st y,1

st x,1
Core0 Core1

How TIME flows

 SECTION TITLE HERE

st x is delayed with a lockdown (Lck) of ld x until ld y performs. The untangling of the reorder-
ing in time is shown in Figure 1.B in the diagram on the right. Effectively, both loads happen be-
fore both stores (i.e., interleaving 3 with the loads swapped turns into interleaving 1 with the
loads swapped) and their reordering does not matter. We explain the lockdown in the next sec-
tion.

There are three important observations to be made here:

First, what we do is perfectly legal: protocol correctness cannot depend on the latency of the re-
sponse to an invalidation, as long as we guarantee that we respond to it. We delay the invalida-
tion response until ld y is performed. (Worst case delay is when ld x waits for a number of
dependent loads to resolve –the number of dependent loads can be up to the size of the load
queue minus one.)

Second, delaying the write of x by withholding the response to its invalidation will delay the
write on y even if this write is done by a third core, as long as x and y are updated in a transitive
happens-before order dictated by program-order and synchronization-order.

Third, if st x and st y are on different cores and independent, i.e., their happens-before order is
established purely by chance and it is not dictated by program-order or synchronization-order,
delaying st x has no effect on st y and does not prevent ld y from seeing the new value of y. How-
ever, since there is no program-order or synchronization-order to enforce between the stores, the
stores can be swapped in memory order. In fact, delaying the invalidation response to st x will
move st x after st y in memory order, yielding a legal TSO interleaving in the case where ld y
reads the new value of y.

IMPLEMENTATION
The key idea of our approach is that, to preserve TSO, it is not necessary to squash a reordered
younger load upon receiving an invalidation —it suffices not to return an acknowledgment until
the time that all older loads are performed. We propose a deadlock–free and livelock–free imple-
mentation of this concept with three components: i) a lockdown mechanism in the cores; ii) a
new directory state called WritersBlock; and iii) limited use of uncacheable, tear-off data for
deadlock and livelock prevention.
Lockdown Mechanism: An M-speculative load, i.e., a load that is performed out-of-order with
respect to any older load in the same core, will not acknowledge invalidations until all previous
loads perform. In other words, if an M-speculative load is matched by an invalidation, it will re-
turn the acknowledgement only when it becomes ordered with respect to older loads. This
blocks a conflicting store (which caused the invalidation) in its store buffer. The lockdown
mechanism requires minimal changes (just one additional bit per entry) in an ordinary Load
Queue of a core. Simple management of this bit ensures that when there are more than one lock-
down loads that are matched by an invalidation, only the youngest one returns the acknowledge-
ment when it becomes ordered. Alternatively, lockdowns can be easily implemented in a
separate small table for out-of-order commit architectures that remove performed loads from the
Load Queue.6
WritersBlock: A lockdown by itself is not enough for our purpose. In addition to the lockdown,
we need to ensure that:

• A store is blocked (not made globally visible) until all existing lockdowns for the
store’s cacheline address, on all cores, are lifted;  

• No further writes for the address in question can take place in memory order before the
blocked store is allowed to be performed;  

• Loads are never blocked, so that the lockdowns can be lifted to unblock the store.

To achieve these goals we introduce a new transient directory state called WritersBlock. Typi-
cally, transient directory states for writes block both new reads and new writes. In WritersBlock
we decouple read blocking from write blocking and enforce only the latter. A WritersBlock state
blocks a coherent write request (and all subsequent writes) from completing until the relevant

 MAGAZINE NAME HERE

lockdowns are lifted, yet at the same time, never blocks read requests from accessing the current
value of the data.  	

Uncacheable, tear-off data: Finally, to prevent deadlocks and livelocks, we rely on uncache-
able, tear-off copies of the data (a tear-off copy is not registered in the directory).7 The use of
uncacheable copies is limited because it is only enabled when the corresponding directory entry
enters the WritersBlock state, which is rare. In the following sections we describe our approach
to livelock and deadlock under this light.

Livelock
A read request that encounters a WritersBlock state obtains an uncacheable copy of the data.
Since it is impossible to set a lockdown on uncacheable data —there is no invalidation Ack to
withhold— such data cannot be used by younger loads in the presence of older unperformed
loads. Since a younger load cannot be performed with data received from Writersblock, it cannot
go into lockdown. This prevents livelock, i.e., an endless stream of new lockdowns indefinitely
blocking a store. Thus, an invariant of our approach is the following:

There are no new lockdowns after invalidation: A write can only be blocked by a fixed number of
loads that are in lockdown at the time of invalidation. New loads in the invalidated cores and
new loads in newcomer cores are not allowed to block anew an already blocked write.

Deadlock
WritersBlock prevents stores from being performed by blocking their write transaction until the
lockdowns that caused the WritersBlock are lifted. As we have explained, lockdowns are lifted
when the M-speculative loads become ordered (i.e., all previous loads have been performed).
The key to understanding how deadlocks can be avoided is the following observation:

The ability of any M-speculative load to become ordered hinges solely on the ability of the oldest
unperformed load in the same core to be performed—whichever such load might be at any point
in time.

We call such a load the source of speculation (SoS). If the SoS load is blocked because of a Writ-
ersBlock, a deadlock ensues. We need to guarantee that a SoS load cannot be blocked anywhere
in the memory system.

Figure 2: Resource-Conflict Deadlock (Directory Eviction)

We demonstrate our approach with a deadlock example. WritersBlock blocks writes but allows
reads to proceed. This is guaranteed for reads that access the same address as the directory entry.
However, a WritersBlock on address a can inadvertently block a read on a different address b.
This could happen when a read on b needs to evict directory entry a (which is in WritersBlock).

 SECTION TITLE HERE

Figure 2 shows this case: a reader core (core k) and a writer core (core j) deadlock because of the
attempted eviction of the WritersBlock directory entry. The store in core j is blocked at the direc-
tory in the WritersBlock state because it tries to invalidate an M-speculative load in core k, ld a.
The store can only proceed if the M-speculative load becomes ordered which will happen when
the older load in core k, ld b, is performed. However, this is not possible as ld b needs the direc-
tory entry Dir(a) held by the blocked store. This is a deadlock.

At this point, instead of trying to evict a WritersBlock entry, the load simply obtains an uncache-
able tear-off copy of the data and performs without needing a directory entry. The same strategy
resolves all other similar resource conflicts in the system.6

Atomics, Fences, and Evictions
An atomic RMW instruction, i.e., an atomic load-store pair, represents a special case for con-
sistency models and out-of-order architectures.2 Because the store of the atomic load-store pair
can block, the load of an atomic RMW violates the basic premise of our approach, that SoS loads
cannot be blocked. This means that no load following an atomic instruction in the core’s instruc-
tion window can go into lockdown mode until the atomic instruction is committed. Similarly, no
lockdown is allowed to follow a fence instruction until the fence is committed.

With speculative load reordering in TSO, evictions must squash any matching M-speculative
load and all instructions that follow. The reason is that if a line is evicted, it will not be notified if
it is written: the directory will not send an invalidation to a non-sharer. Conservatively, an evic-
tion squashes M-speculative loads in the off-chance that a write would occur in the reordering
window. We solve this problem by converting these evictions to silent evictions that do not re-
move the sharing information from the directory.6

CASE STUDY & EVALUATION: OUT-OF-ORDER
COMMIT
Our motivation for non-speculative load-load reordering in TSO is the potential for irrevocable
binding of loads. We demonstrate this potential, on a non-speculative out-of-order commit mi-
croarchitecture based on the work of Bell and Lipasti.3

We evaluate applications from SPLASH-3 and PARSEC on a x86-like in-house out-of-order
processor model that provides TSO and supports out-of-order commit. Three different processors
have been simulated, from an efficient Silvermont-class (SLM-class) processor to higher-per-
forming Nehalem-class (NHM-class) and Haswell-class (HSW-class) processors. The Writ-
ersBlock cache coherence protocol is modeled in the SLICC infrastructure included in GEMS.
The processor simulated consists of 16 cores.

We will first focus on the implications of WritersBlock without considering its out-of-order
commit advantages (Figures 3.a, 3.b, 3.c, and 3.d). WritersBlock guarantees that M-speculative
loads are never squashed by delaying writes when they are going to invalidate the data of an M-
speculative load. If writes are constantly delayed, the protocol performance can drop. Figure 3.a
shows that the chances of delaying writes increases with the aggressiveness of the processor (i.e.,
larger LQ). However, their ratio is still very low (less that 1 write blocked per thousand store op-
erations). WritersBlock issues uncacheable reads to avoid livelocks and deadlocks. It is also im-
portant to keep these reads low to keep a low cache miss ratio. We see just 10 uncacheable reads
per million loads (Mloads) on average for the largest processors. Therefore, write delays are
minimal, even with aggressive cores, as the correspondingly large store buffers can tolerate the
small additional latency when prefetching the write permission for the block. The resulting exe-
cution time overhead (Figure 3.c) and network traffic overhead are minimal (Figure 3.d).

Overall, these results show that for a typical in-order commit core, WritersBlock is equivalent in
performance to the squash-and-re-execute solution. However, for out-of-order commit there is a
significant advantage for the non-speculative solution. While the base case must wait in every
load reordering for the older loads to perform (regardless of whether there is a conflict or not!),
we can commit all reordered loads as long as this is allowed by the other rules for safe (non-

 MAGAZINE NAME HERE

speculative) out-of-order commit.3 The performance difference (Figure 3.e) for out-of-order
commit is over 11% (up to 40% for bodytrack, not shown).

Figure 3. Evaluation results

CONCLUSION
Delaying a conflicting store in its store buffer, until some condition is met, solves an important
problem seen in many past and future proposals. In particular, our solution provides, for the first
time, reordering in TSO minus the speculation to:

• in-order cores that continue executing and issuing memory accesses after a miss with-
out providing the corresponding speculation depth; in the past, this meant that only a
relaxed memory model was a viable option;8  

• execute-ahead approaches such as the UltraSparc Rock which was a checkpoint-based
processor,9 or the recently proposed Load-Slice Core (LSC) that lacks sufficient specu-
lation depth for reordering;10

• accelerators and decoupled access-execute architectures, as for example the recently
proposed DeSC architecture, that need to commit loads out-of-order but cannot easily
rollback and re-execute on conflicts;11  

• software (compiler) approaches such as the SoftWare Out-of-Order Processing
(SWOOP) core that relies on the compiler to reorder loads and dynamically provide
useful work under a miss but would be unrealistic to checkpoint and rollback in soft-
ware;12

• and finally, out-of-order cores with non-speculative out-of-order commit.3,6

More broadly, our approach removes the enforcement of consistency as one of the major road-
blocks for the irrevocable binding of loads. This benefit is applicable across the spectrum of core
architectures from in-order-execution to out-of-order-execution.

Looking forward, this approach has the potential to affect the implementation of various memory
models: load-ordering fences in relaxed memory models become unnecessary as we can now
simply guarantee load ordering in the presence of data races while preserving the liberal reorder-
ing of the relaxed model in all other situations.

Avg. Splash Avg. Parsec
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Bl
oc

ke
d

w
rit

es
 p

er
 K

st
or

es SLM-class
NHM-class
HSW-class

Avg. Splash Avg. Parsec
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

N
o-

ca
ch

e
re

ad
s

pe
r M

lo
ad

s SLM-class
NHM-class
HSW-class

Avg. Splash Avg. Parsec
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Ex
ec

ut
io

n
tim

e
ov

er
he

ad

SLM-class
NHM-class
HSW-class

Avg. Splash Avg. Parsec
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
et

w
or

k
tra

ffi
c

ov
er

he
ad

SLM-class
NHM-class
HSW-class

a) WritersBlock b) WritersBlock

c) WritersBlock vs. Directory d) WritersBlock vs. Directory

Avg. Splash Avg. Parsec
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Directory InOrderCommit
Directory OoOCommit
WritersBlock InOrderCommit
WritersBlock OoOCommit

e) Impact on Out-of-Order Commit

 SECTION TITLE HERE

REFERENCES
1. Gniady, Chris, Babak Falsafi, and Terani N. Vijaykumar. "Is sc+ ilp= rc?." Computer

Architecture, 1999. Proceedings of the 26th International Symposium on. IEEE, 1999.
2. Sorin, Daniel J., Mark D. Hill, and David A. Wood. "A primer on memory consistency

and cache coherence." Synthesis Lectures on Computer Architecture 6.3 (2011): 1-
212.

3. Bell, Gordon B., and Mikko H. Lipasti. "Deconstructing commit." Performance
Analysis of Systems and Software, 2004 IEEE International Symposium on-ISPASS.
IEEE, 2004.

4. Duan, Yuelu, David Koufaty, and Josep Torrellas. "SCsafe: Logging sequential
consistency violations continuously and precisely." High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on. IEEE, 2016.

5. Dubois, Michel, Murali Annavaram, and Per Stenström. Parallel computer
organization and design. Cambridge University Press, 2012.

6. Ros, A., Carlson, T. E., Alipour, M., & Kaxiras, S. Non-speculative load-load
reordering in tso. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (pp. 187-200). ACM.

7. Lebeck, Alvin R., and David A. Wood. "Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors." ACM SIGARCH Computer
Architecture News. Vol. 23. No. 2. ACM, 1995.

8. Linley Gwennap. 1994. Digital leads the pack with 21164. In Microprocessor Report,
8(12). 249–260.

9. Chaudhry, Shailender, et al. "Rock: A high-performance sparc cmt processor." 29.2
(2009).

10. Carlson, Trevor E., et al. "The load slice core microarchitecture." Computer
Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on.
IEEE, 2015.

11. Ham, Tae Jun, Juan L. Aragón, and Margaret Martonosi. "DeSC: Decoupled supply-
compute communication management for heterogeneous architectures." Proceedings of
the 48th International Symposium on Microarchitecture. ACM, 2015.

12. Tran Kim-Anh, Alexandra Jimborean, Trevor E. Carlson, Konstantinos Koukos,
Magnus Sjalander, Stefanos Kaxiras, "SWOOP: Software-Hardware Co-Design for
Non-Speculative, Execute-Ahead, In-Order Cores." To appear ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2018).

ACKNOWLEDGEMENTS
We wish to thank Daniel Sorin for his invaluable help. This work is a result of the intern-
ship 19981/EE/15 funded by the Fundación Séneca-Agencia de Ciencia y Tecnología de la
Región de Murcia under the “Jiménez de la Espada” program for mobility, cooperation and
internationalization. This work is jointly supported by the Spanish MINECO, as well as Eu-
ropean Commission FEDER funds, under grant TIN2015- 66972-C5-3-R and the Swedish
Research Council (VR) grant no. 621-2012-5332.

