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Abstract

In the near future large-scale parallel computers will
feature hundreds of thousands of processing nodes. In
such systems, fault tolerance is critical as failures will oc-
cur very often. Checkpointing and rollback recovery has
been extensively studied as an attempt to provide fault
tolerance. However, current implementations do not
provide the total transparency and full flexibility that
are necessary to support the new paradigm of autonomic
computing – systems able to self-heal and self-repair.
In this paper we provide an in-depth evaluation of
incremental checkpointing for scientific computing. The
experimental results, obtained on a state-of-the art
cluster running several scientific applications, show
that efficient, scalable, automatic and user-transparent
incremental checkpointing is within reach with current
technology.

Keywords: Fault-tolerance, Checkpointing, Auto-
nomic Computing, Rollback Recovery, Large-scale Paral-
lel Computers, Performance Evaluation.

1 Introduction

Thanks to the easy availability of powerful commod-
ity processors and networks it is now possible to con-
struct very large computing clusters.1 Unfortunately
the large number of components in such clusters re-
sults in a extremely high combined failure rate.

For example, the proposed BlueGene/L [2] system
with 65,536 processors is expected to experience fail-
ures every few hours. Because these computers are
intended to be capability engines executing demand-
ing scientific applications, such as the ASCI stockpile
certification programs, there is a high probability of
hardware or software failure during program execu-

1See www.top500.org.

tion. Moreover, the increasing complexity of these clus-
ters means that the system may still fail despite the
increase in hardware reliability. Thus, mechanisms to
tolerate faults have become a critical design point in
such systems.

Employing redundancy of the components to toler-
ate failures, such as using replication of processors,
memories, and interconnects is not a cost-effective so-
lution for commodity clusters because of the highly
competitive commercial market that seeks lower cost
solutions. However, checkpointing and rollback recov-
ery is a promising approach to tolerate failures due to
its simplicity and lower cost. Checkpointing and roll-
back recovery is based on periodically saving the pro-
cess state to stable storage. Then, in the event of a fail-
ure, the application can be rolled-back from the most
recent checkpoint to restart the execution as if the fault
had never occurred.

Since commodity clusters are being used as capa-
bility platforms, system availability and efficiency are
increasingly important requirements. The high failure
rate of these systems puts more pressure on checkpoint
mechanisms. In order to meet these requirements,
checkpoints should be taken frequently relative to the
failure rate of the system, for example every few min-
utes.

Moreover, the increasing complexity of managing
and maintaining clusters brings a new demand for sys-
tem dependability. There is an inevitable need for au-
tonomic computing systems which are able to self-heal
and self-repair [16]. To achieve this vision, checkpoint
and rollback recovery mechanisms must be automatic–
they should work without the intervention of program-
mers, users, or system administrators.

In this paper we analyze several parallel scientific
applications written in Fortran using the MPI com-
munication library targeted to a cluster architecture.
Our primary objective is to answer the following ques-
tion. Is it possible to implement an incremental check-
pointing system that is completely automatic and user-
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transparent, minimally intrusive, scalable and feasible
with current and foreseeable I/O technology?

Our major contribution is to demonstrate that fre-
quent, user-transparent, automatic incremental check-
pointing is a viable technique. We also prove that this
can be achieved without using specialized hardware
and within the limitations imposed by current tech-
nology. We anticipate that technological advances in
networking and secondary storage will further enable
these methods.

The specific contributions of this paper are the fol-
lowing.

Limited Bandwidth Requirements For the applica-
tions we analyzed, the bandwidth required for
incremental checkpointing is of the same or-
der as today’s high performance interconnection
networks and secondary storage arrays provide.
Checkpointing intervals of a few seconds are pos-
sible with current technology, and we argue that
shorter intervals will be possible in the future.

Periodic Application Behavior We have identified
bulk-synchronous patterns of behavior in these ap-
plications that can be exploited to implement effi-
cient checkpointing algorithms. These codes typi-
cally alternate between processing and communi-
cation bursts that can automatically be identified
at run time, for example using global operators
such as the STORM mechanisms [11]. This be-
havior can be exploited to implement efficient co-
ordinated checkpoints.

Scalability of Results We show that the bandwidth
required per process decreases as cluster size in-
creases (assuming weak scaling of the applica-
tion). Furthermore, the bandwidth requirements
grow sublinearly with the size of the memory foot-
print.

The rest of this paper is organized as follows. In
Section 2 we describe an important dimension of the
design space of checkpoint and rollback recovery sys-
tems. Section 3 specifies the goals we wish to achieve
in this paper. Section 4 describes our experimental
methodology used to analyze scientific applications.
We describe the experimental environment in Section
5. Section 6 describes the experimental results. Sec-
tion 7 summarizes related work on checkpointing. And
finally, Section 8 provides some concluding remarks.

2 Design Space of Checkpoint and
Rollback-Recovery Systems

Many solutions have been developed in the past
decade to provide fault tolerance based on checkpoint
and rollback-recovery. An excellent survey of these
techniques can be found in [10].

One important dimension of the design space is the
abstraction level at which the state of the process is
saved. This dimension will be analyzed in some detail
in the following section.

2.1 Abstraction Level

For the sake of our discussion, we consider four
abstraction levels at which incremental checkpointing
can be implemented. The highest level of abstraction
correspond to the application level, in which the check-
pointing is implemented inside the application. Lower
levels of abstraction corresponds to implementations in
a run-time library, in the operating system, or through
the support of special hardware.

Application Level This approach relies on the appli-
cation to provide its own fault tolerant capabil-
ities. There are two main approaches described
in the literature. One is based on mathematical
properties of some scientific applications which
converge to the correct result even in the pres-
ence of system failures [12]. The applicability
of this method is obviously limited, since only
some applications meet its requirements. The
other approach is based on modifying the applica-
tion’s source code to perform checkpoint/recovery
[6]. The programmer directly inserts check-
point/recovery points into the program’s source
code with the support of a library that implements
checkpointing primitives. A refinement of this ap-
proach is to use the compiler to automatically in-
sert the checkpoint code in a way that is nearly
transparent to the programmer [15].

Run-time Library Level A run-time library imple-
ments the checkpoint and recovery mechanisms
without substantial modification of the applica-
tion’s code [17]. The checkpoint library sets an
alarm to periodically interrupt the application and
records the process state through the use of system
calls. In many cases the run-time library’s use of
signal handlers interferes with application or the
resource manager. Also, it may not be possible to
write-protect some segments of the address space,
such as the stack, or the network receive buffers
in direct-access high-performance networks.

Operating System Level This checkpoint mechanism
is implemented inside the operating system ker-
nel [7]. There are many details of a process’s state
which are only known to the kernel or are other-
wise difficult to re-create outside the kernel, such
as the status of open files and signal handling. The
main advantage of this approach is that it is totally
user-transparent and requires no changes to any
application code.
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Table 1. Comparison of the Checkpointing Abstraction Levels

Level Transparency Portability Checkpoint Flexibility of Granularity
size Checkpointing Interval

Application with
library support Low High Low Low Data Structure

Application with
compiler support Medium High Medium Low Data Structure
Run-time library Medium Medium High High Memory Segment
Operating system High Low High High Memory Page

Hardware High Very Low High High Cache line

Hardware Level This checkpoint scheme is imple-
mented with the support of special hardware
[22, 25]. As with operating system level imple-
mentations, this method is totally transparent to
the users. But hardware-level checkpoints have
limited applicability, because they rely on special
hardware that is unavailable on commodity clus-
ters composed of off-the-shelf components.

Table 1 provides a comparison between the vari-
ous checkpointing abstraction levels. The compari-
son takes into account several metrics including trans-
parency to the user, portability to other environments,
the size of the checkpoint data, the flexibility to ad-
just the checkpoint intervals, and the granularity of the
checkpoint.

The major advantages of the application level check-
points are high reduction in the size of the checkpoint
data and the high portability of the checkpoint files
that can migrated across heterogeneous machines. Ap-
plication level checkpoints can exploit the knowledge
of the programmer and compiler to insert checkpoints
at the best places and to exclude some irrelevant data
in order to reduce the size of the checkpoint. This is in-
convenient with lower abstraction levels since the ap-
plication’s semantics cannot be used.

The major disadvantages of the application level
checkpoints are the lack of transparency and flexibility.
Instead of providing automatic mechanisms to manage
fault tolerance, users or programmers are needed in
order to recompile or relink the application’s source
code. This approach forces the task of recovering from
a failure onto the programmer. Since scientific appli-
cations are typically many thousands of lines of code,
it is time consuming and error-prone to retrofit fault-
tolerance onto an existing code. In addition, in many
cases the application source code may not be accessible
to the programmers.

Moreover, the checkpoint interval is determined by
the application execution, since the checkpoints are
only inserted at specified points in the program. This
poor flexibility can cause a low efficiency of the cluster
under failures.

Providing fault tolerance at the operating system
level or the hardware level is a convenient approach,
since it provides a higher level of transparency and
flexibility allowing automatic checkpoint and recovery
without user intervention. Unfortunately, these ap-
proaches lack the semantic information available at the
application level, so the size of the checkpoint is con-
sequently larger.

In this paper we show that even without this high-
level information, checkpointing at the operating sys-
tem level can discover important properties of the ap-
plications at run time and can provide an attractive
compromise between productivity and performance.

3 Aims and Limitations

Checkpoint and rollback recovery is a promising ap-
proach to support the new computing paradigm of au-
tonomic computing. However, the main challenge of
this approach is to efficiently save the potentially large
checkpoint data.

There are two potential bottlenecks to saving the
checkpoint data: (1) the path over which the data must
travel (system bus and the interconnection network),
and (2) the storage device on which the data will be
stored (memory and/or hard disks). Actually, the net-
work and the hard disks have been considered the criti-
cal components due to the lowest available bandwidth
[19]. Currently, the new Elan4 QsNet II [1] network
and the SCSI hard disks [24] provide a peak band-
width of 900MB/s and 320MB/s, respectively.

The goal of this paper is to prove the feasibil-
ity of checkpoint and rollback recovery with total
transparency and full flexibility and without requir-
ing changes to the application code or the support of
special hardware. To demonstrate the feasibility of
checkpoint and rollback recovery, we are not testing
a full checkpoint implementation, but we have con-
structed a run-time library that is able to quantify the
bandwidth requirements needed to save the check-
point data. By comparing the required bandwidth with
the bandwidth available, we will determine the feasi-
bility of implementing a checkpoint mechanism.
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In particular, the following goals are addressed in
this paper to show the feasibility of checkpointing:

• Characterization of Scientific Applications. We
analyze the memory footprint of parallel scientific
applications and how the state of that memory
changes over time.

• Bandwidth Quantification. Measure the band-
width requirements to save the memory footprint
every checkpoint interval.

• Sensitivity Analysis. Analyze the influence on the
bandwidth requirements of the memory footprint
size of the applications, the checkpoint interval,
and the number of processors in the cluster.

4 Experimental Methodology

In order to analyze the memory footprint of scien-
tific applications, we have implemented a user-level
instrumentation library. This library is preloaded by
the dynamic linker (via the LD PRELOAD environment
variable), so that modification or recompilation of the
application is unnecessary.

4.1 Memory Footprint of UNIX Processes

To checkpoint a process, it is necessary to save the
process’s state. The state of a UNIX process generally
consists of its address space which is divided into text,
data, and stack, and also the information related to
the process maintained by the kernel (such as status of
open files, signals, and registers). For the sake of sim-
plicity, we consider only the data region of the process,
because it represents the largest part of the process’s
state.

The data memory is composed of four areas – initial-
ized data, uninitialized data, the heap, and mmap’ed
memory. The initialized data is data whose value is
set at compile time. Uninitialized data is memory allo-
cated at compile time which will be zero-filled by the
kernel at load time. The heap is a dynamic area of
memory allocated at run time by the brk and sbrk sys-
tem calls. Mmap’ed memory is also dynamically allo-
cated and deallocated at run time by the system calls
mmap and munmap, respectively. Generally, the dy-
namic memory varies in size during the execution of
the application due to the allocation and deallocation
of memory blocks. The utilization of dynamic memory
depends on the compiler. The Intel Fortran77 compiler
allocates dynamic memory to the heap, while the Intel
Fortran90 compiler uses both the heap and the mmap
memory areas.

The layout of the address space in memory depends
on the processor and operating system. As a exam-
ple, for the Itanium II processor, the initialized and

uninitialized data follow the text then the heap, which
grows toward higher addresses. The address of the top
of the heap can be determined by the sbrk system call.
The stack starts at a fixed address and grows down to-
ward lower positions. Also, for mmap’ed memory, the
instrumentation library intercepts the mmap and mun-
map system calls that are called by the application to
keep track of their boundaries and size.

4.2 Monitoring the Memory Activity

The library uses the memory protection mechanism
of the virtual memory system to keep track the pages
written to by the process during a certain interval of
time called timeslice. The protection of each page of
memory is set to read-only. When the processor at-
tempts to write to a protected page, the operating sys-
tem sends the process a SEGV signal. The library in-
stalls a signal handler for the SEGV signal which keeps
track of pages in which the write accesses occur, called
dirty pages. The page is then unprotected so that future
writes to it in that timeslice do not cause segmentation
faults.

The instrumentation library also sets an alarm in or-
der to periodically record the memory footprint and
the number of dirty pages. The alarm handler also
resets the count of dirty pages and re-protects all the
pages belonging to the data memory region space.

The instrumentation library is not able to write-
protect the stack, because the stack must be modifi-
able when executing the signal handler. However, this
limitation has an insignificant influence on the results,
since as stated above, the data memory accounts for
the largest share of the process’s state. The maximum
stack size measured in our experiments is less than 42
KB.

The Quadrics QsNet network interface generates
some problems in our instrumentation library, because
of its ability to directly access user-space memory. The
problems arise when the NIC attempts to write into
memory that has been write-protected by the mprotect
system call. To work around this issue, the instrumen-
tation library intercepts the process’s network receive
calls so that messages from the network can be re-
ceived into a buffer that has not been write-protected.
The library then copies the message to the proper lo-
cation in the process, causing segmentation faults for
pages that have not yet been written, introducing an
unavoidable overhead.

The library also intercepts the call to MPI Init() in
order to initialize all the data structures of the library,
set up the signal handlers for the timer and the SEGV
signal, and to write-protect all the process’s data mem-
ory space.

Because the size of the dynamic memory space
changes during the program’s execution, the library
only reports the dirty pages belonging to the current

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 



memory size at the time of the alarm interrupt. The
pages belonging to unmapped areas are not taken into
account because they will not be used by the applica-
tion in the future, so there is no need to checkpoint
these pages. This allows the use of memory exclusion
optimizations [18] which can substantially reduce the
size of the checkpoint for some applications.

5 Experimental Environment

Our evaluation was performed on a Linux cluster
of 32 HP Server rx2600 computers connected by the
Quadrics QsNet network. Each HP Server rx2600 con-
tains two Itanium II processors with two PCI-X I/O
busses. The Itanium II has a higher memory band-
width than other modern processors such as the Alpha
Ev67 and the Pentium Xeon [26]. The processor with
the largest memory bandwidth represents the worst
case for incremental checkpointing, because it is able
to write a larger amount of memory per unit of time.
Therefore the results obtained on the Itanium II can be
easily generalized to slower processors.

The scientific applications used in the evaluation are
parallel programs written in Fortran and use MPI for
inter-processor communications. We have used Sage,
Sweep3D, and the NAS Parallel Benchmarks suite [5].
Sage [14] is a large-scale parallel code written in For-
tran90 and is representative of the ASCI workload.
Sweep3D [27] is a benchmark code written in For-
tran77 that represents the heart of a real scientific ap-
plication. The NAS Parallel Benchmark suite [5] is a
set of Fortran77 programs extensively used to evaluate
the performance of parallel supercomputers. In partic-
ular, we have used the FT, LU, BT, and SP benchmarks.

These applications exhibit different memory alloca-
tion patterns. Sage dynamically allocates and deallo-
cates a large part of its data structures, while both the
NAS parallel benchmarks and Sweep3D statically allo-
cate their data.

The memory footprint size for these applications is
summarized in Table 2. In the NAS parallel bench-
mark suite we use the problem sizes corresponding
to NAS class C, for Sweep3D we use a problem size
of 1000×1000×50 grid points, and for Sage we vary
the problem size in order to evaluate different mem-
ory footprints. The memory footprint size is controlled
by specifying in the input deck the number of cells per
processor. We consider footprint sizes of approximately
50MB, 100MB, 500MB, and 1000MB. For all the appli-
cations except Sage, the memory size remains constant
during the execution of the application.

We have run each experiment several times in or-
der to minimize fluctuations in our performance mea-
surements. The results presented are the mean values
across all executions omitting the first one, because the
first experiment takes considerably longer time due to
the disk cache misses.

Table 2. Memory Footprint Size (MB)

Application Maximum Average

Sage-1000MB 954.6 779.5
Sage-500MB 497.3 407.3
Sage-100MB 103.7 86.9
Sage-50MB 55 45.2
Sweep3D 105.5 105.5

SP 40.1 40.1
LU 16.6 16.6
BT 76.5 76.5
FT 118 118

6 Experimental Results

In this section, we define our performance metrics
and identify some important properties of the applica-
tions described in Section 5 in order to show the feasi-
bility of incremental checkpointing.

6.1 Performance Metrics

Some of the scientific applications described in Sec-
tion 5 have been the subject of in-depth performance
evaluation and modeling studies [14, 27]. These stud-
ies provide insight into the scaling properties, the com-
munication patterns and the expected time to solution
on a wide variety of parallel architectures.

In this section we look at these applications from
a different perspective: we focus our attention on the
performance aspects that are essential to perform in-
cremental checkpointing. In order to do that, we first
define an input parameter, the checkpoint timeslice,
and two performance metrics that will help us in the
performance evaluation.

Checkpoint Timeslice We assume that a global check-
point is taken across all processes belonging to a
parallel program at regular intervals, which we
call checkpoint timeslice. In our analysis we will
assume that the checkpoint timeslice is fixed dur-
ing the execution of a program.

Incremental Working Set Incremental checkpointing
[17] is a cost-effective strategy when the size of
the delta, the subset of the address space that
needs to be saved at the end of a checkpoint
timeslice, is relatively small when compared to the
whole address space. An important metric to de-
termine the feasibility of the incremental check-
point is the Incremental Working Set (IWS), the set
of pages that are written in a timeslice.

Incremental Bandwidth Another metric, derived di-
rectly from the IWS, is the Incremental Bandwidth
(IB), and is computed as the ratio between the
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size of the IWS and the timeslice length. The IB
describes the basic bandwidth requirements that
incremental checkpointing algorithms must face.

In our analysis, we are going to present some quan-
titative and qualitative properties of the IWS and IB,
for the applications listed in Section 5. Given that all
these applications display a bulk-synchronous behav-
ior with similar performance characteristics on each
process, in most cases the behavior of a single process
(and, consequently a single graph) is able to capture
the behavior of the entire parallel program. All the ex-
perimental results in this section use the largest config-
uration of our cluster, 64 processors, unless otherwise
specified.

6.2 Relevant Properties of Scientific Applications

Many scientific applications display regular compu-
tational and communication patterns. For example Fig-
ure 1(a) shows how the IWS size varies when run-
ning Sage-1000MB. The initial peak at the very be-
ginning of the execution, is caused by data initializa-
tion. After that, we can easily identify a regular pat-
tern, with write bursts every 145s. We will refer to the
write bursts as processing bursts. Inside the process-
ing bursts, the pages of the IWS are accessed multiple
times. Also, the communication takes place in bursts,
which we define as communication bursts. To illus-
trate these communication bursts, Figure 1(b) shows
the size of the data received in each timeslice by Sage-
1000MB. Usually, the communication bursts are placed
between the processing bursts. A similar behavior can
also be observed in Sweep3D, FT, LU, SP, and BT, but
for the sake of brevity the graphs are not plotted.

The reason for this regular behavior is that scien-
tific codes perform a sequence of similar iterations, and
in each iteration we can identify regular computation
and communication bursts. The gap between process-
ing bursts usually identifies the duration of the main
iteration of these codes.

Table 3 describes the duration of the main iteration
for each application. Among all the applications, Sage
executes the longest iterations, while the NAS bench-
marks have the shortest ones. In the same table, we
can observe that the iterations increase their run time
with the data set size. In particular, for Sage the it-
eration ranges from 20s, with a memory footprint of
50MB, up to 145s for 1000MB. Larger memory foot-
prints increase the duration of both processing and
communications bursts due to the increased amount
of interprocess communication.

Given this two-phase nature of the scientific codes,
there are moments where it is more convenient to take
a checkpoint, for example at the beginning or at the
end of an iteration. On the other hand, it may not be
convenient to checkpoint during a processing burst, be-
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Figure 1. IWS size and data received per
timeslice during the execution of Sage-
1000MB, timeslice 1s.

Table 3. Characteristics of the Main Iteration
Application Average Period Percent of Memory

(s) Overwritten

Sage-1000MB 145 53%
Sage-500MB 80 54%
Sage-100MB 38 56%
Sage-50MB 20 57%
Sweep3D 7 52%

SP 0.16 72%
LU 0.7 72%
BT 0.4 92%
FT 1.2 57%
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cause pages are likely to be re-used in a short amount
of time.

Moreover, the memory written during an iteration
represents a substantial subset of the total data set.
Table 3 lists the fraction of memory footprint written
during a processing burst. Some applications, like BT,
practically update the whole memory image (92%),
while Sage overwrites only about 55%.

6.3 Bandwidth Requirements

In this section, we quantify the bandwidth require-
ments for checkpointing the applications described in
Section 5. We report the maximum and the average IB
collected at run time. In the experiments we study the
impact of the checkpoint timeslice on the IB by using
timeslices in the range from 1s to 20s. In the analysis
we will not consider the write burst at the very begin-
ning of the execution related to the data initialization.

Figure 2(a) shows the bandwidth required to sup-
port incremental checkpointing with various times-
lices for Sage-1000MB. As the length of the times-
lice increases (or, equivalently, the frequency of check-
pointing decreases), the checkpointing bandwidth de-
creases. In particular, the average bandwidth require-
ments ranges from 78.8MB/s with a timeslice of 1s
down to 12.1MB/s with 20s. With a longer timeslice,
the pages of the IWS tend to be reused, leading to a
reduction in bandwidth.

Similar results are also obtained for Sweep3D, the
NAS benchmarks, BT, SP, FT, and LU which are shown
in Figures 2(b), 2(c), 2(d), 2(e), and 2(f), respec-
tively. The average and the maximum IB obtained for
these applications are practically equivalent because
the timeslices used are longer than the duration of the
main processing bursts (see Table 3).

Short timeslices corresponds to the worse case
to checkpoint the applications because they demand
more bandwidth. Table 4 shows the maximum and av-
erage bandwidth requirements for all the applications
with a timeslice of 1s. It is interesting to note that, even
with 1s, the maximum IB is lower than the bandwidth
provided by state of the art high performance networks
(900MB/s, see section 3), and secondary storage (320
MB/s, see section 3). In particular, Sage-1000MB, the
most demanding application for our analysis, requires
on average only 78.8 MB/s, 9% of the available peak
network and 25% of the peak disk bandwidth.

6.4 Scalability

In this section, we analyze the impact of two im-
portant parameters, the number of processors and the
memory size of the application. The goal is to pro-
vide an expectation of performance on larger machines
equipped with more memory, in order to generalize

Table 4. Bandwidth Requirements (MB/s)

Application Maximum Average

Sage-1000MB 274.9 78.8
Sage-500MB 186.9 49.9
Sage-100MB 42.6 15
Sage-50MB 24.9 9.6
Sweep3D 79.1 49.5

SP 32.6 32.6
LU 12.5 12.5
BT 72.7 68.6
FT 101 92.1

our results to more powerful, future parallel comput-
ers.

6.4.1 Increasing the Memory Footprint Size

Figure 3 shows the average IB for Sage with differ-
ent memory footprint sizes. The IB increases with the
memory size due to the larger data structures that are
managed in larger working sets. However, the incre-
ment of the IB is sublinear. The average IB for Sage-
500MB is roughly 50MB/s with a timeslice of 1s, while
for Sage-1000MB is 80MB/s instead of 100MB/s. This
is because the ratio between the IWS and the whole
memory image decreases as we increase the memory
footprint, as can be seen in Figure 4.
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Figure 3. Average IB for Sage-50MB, Sage-
100MB, Sage-500MB and Sage-1000MB.

6.4.2 Increasing the Number of Processors

In order to assess the impact of the number of proces-
sors we use weak scaling —the problem size grows pro-
portionally with the number of processors— with each
processing element doing approximately the same
amount of work.

Figure 5 shows the IB for Sage-1000MB with 8, 16,
32, and 64 processors. As can be seen, the number of
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Figure 2. Maximum and minimum IB required for checkpointing the applications.
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age size per timeslice for Sage-50MB, Sage-
100MB, Sage-500MB, and Sage-1000MB.

processors doesn’t have a significant influence on the
IB. Actually, when we increase the number of proces-
sors, the per-processor IB is slightly lower. We argue
that this is an important contribution: the results pre-
sented here can be generalized to larger computers.

6.5 Intrusiveness

The instrumentation that we have used in the exper-
iments inevitably causes a slowdown in the application
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Figure 5. Average IB for 8, 16, 32, and 64 pro-
cessors for Sage-1000MB.

run time. We have assessed the overall impact of our
measurements for Sage-1000MB reporting a slowdown
lower than 10% for a timeslice of 1s. Most of the over-
head is caused by the page fault handler that keeps
track of the write accesses to memory. Moreover, when
we increase the timeslice the impact of the page fault
handler is mitigated by the data reuse decreasing the
intrusiveness introduced in our measurements.
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6.6 Technological Trends

The performance of the parallel scientific applica-
tions is sensitive to the main memory performance.
Technological trends have produced a large and grow-
ing gap between processor and main memory speeds.
Specifically, the performance of the processors is grow-
ing a 60% per year, while the main memory only shows
a 7% improvement per year [13]. In all, the perfor-
mance of scientific applications doubles approximately
every two to three years. On the other hand, both net-
working and storage technologies continue to improve
at a faster pace. For example, 10GB/sec Infiniband net-
work interfaces will be available by 2005.2 So we ex-
pect that in the near future the increasing bandwidth
will make incremental checkpointing even more effec-
tive.

7 Related Work

There has been much theoretical work in the field
of distributed fault-tolerance using coordinated check-
pointing and rollback recovery. However, only a few
systems have actually been implemented on paral-
lel computers, and none of the systems tested so far
matches the scale of today’s largest supercomputers.

Examples of real implementations of application-
level checkpointing are CLIP [9], Dome [6], and CCIFT
[8]. CLIP [9] is a checkpointing library for the In-
tel Paragon. Experiments were run on 128 proces-
sors with 32MB of memory each. The checkpoint in-
terval was 15 minutes resulting in checkpoint sizes
on the order of 10MB per node. The checkpoint sys-
tem described in [6] implements fault tolerance within
Dome’s C++ objects. The evaluation was performed
on 8 DEC Alpha workstations obtaining a checkpoint
size of 3.3MB per node. The CCIFT (Cornell Com-
piler for Inserting Fault-Tolerance) [8] is a recently
implemented method to provide fault tolerance at the
application-level by the support of the compiler.

Ickp [20], CoCheck [21], Diskless [19], and Starfish
[4] represent approaches to run-time library level
checkpointing. Ickp [20] is a user-transparent check-
point library for the Intel iPSC/860. It has been tested
on a 32-node machine. Checkpoints were taken hourly
obtaining checkpoint sizes for all of the test applica-
tions under 5MB per node. CoCheck [21] is a user-
transparent checkpoint library for NOWs, built for pro-
cess migration. It has been tested on an 8-node clus-
ter of Sun SparcStation 2’s and Sparc 10’s connected
by Ethernet. Diskless [19] is a user-transparent check-
point library that uses the memory available on each
node instead of saving the checkpoint to stable storage.
Performance was tested on a cluster of 24 Sun Sparc-
5 workstations, each with 96MB of physical memory

2www.hpcwire.com

and connected by a switched Ethernet network. Check-
point size per node ranged from 4MB to 67MB us-
ing checkpoint interval ranging from 15 to 22 min-
utes. Starfish [3] is a user-transparent checkpoint li-
brary for clusters of workstations. The performance
of this library was evaluated in [4] on a cluster of
dual-processor Sun UltraSPARC-2’s, each with 256MB
of physical memory and connected by a 155-Mbps ATM
network. Using a checkpoint interval of 10s, the check-
point size per node ranged from 30MB to 120MB.

Checkpoint systems implemented at the operating
system level are very rare. There are only a few
works based on checkpointing for uniprocessor sys-
tems [7, 23], but to our knowledge, there are no works
attempting to checkpoint parallel programs at the op-
erating system level.

Finally, there are two recent simulation works
on hardware-level checkpointing for Shared-Memory
Multiprocessors, Revive [22] and Safetynet [25]. In Re-
vive [22] the checkpoint is supported by modifying the
hardware related to the directory controller of the ma-
chine in order to capture modifications of the address
space of the application at the granularity of the cache
line. The results presented were obtained by simulat-
ing a 16 node CC-NUMA multiprocessor. The check-
point size ranges from 2.5MB up to 25MB when us-
ing checkpoints intervals of 10ms and 100ms, respec-
tively. The overhead of this scheme is proportional to
the L2 cache size. Despite using small caches (128KB),
some applications may still exhibit overheads up to
22% due to their large working set. Safetynet [25] re-
quires more hardware resources than Revive. The pro-
cessor’s caches must be modified, and it also requires
an additional buffer to store the checkpointing data.
Several short checkpoint intervals from 0.01ms to 1ms
and buffers size from 256KB to 1MB have been ana-
lyzed.

8 Conclusions

This paper examined the feasibility of incremental
checkpointing for scientific computing with an exten-
sive experimental analysis.

Our results indicate that the implementation of au-
tomatic, frequent and user-transparent incremental
checkpointing is a viable technique with current tech-
nology. Across a range of applications we found that
the average bandwidth per process required to check-
point is less than 100MB/s with a timeslice as small
as one second. These figures are well below current
technological limits in commodity clusters. They also
suggest that automated techniques implemented be-
low the application level may be sufficient. Also, these
applications exhibit regular behavior that can be ex-
ploited to further optimize incremental checkpointing
algorithms.
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Although our evaluation was performed on only 64
processors, we showed that these results can be gen-
eralized to much larger machines. In particular, the
per process bandwidth requirements decrease slightly
as processor count is increased and are sublinear in the
application’s memory footprint size. This provides an
extra degree of robustness to our analysis.

Finally, by extrapolating the technological trends,
we observed that future improvements in networking
and storage will make incremental checkpointing even
more effective.
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