
Evaluating Dynamic Core Coupling in a Scalable Tiled-CMP Architecture

Daniel Sánchez, Juan L. Aragón and José M. Garcı́a
Departamento de Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia, Spain
Email: {dsanchez, jlaragon, jmgarcia}@ditec.um.es

Abstract

To obtain benefit of the increasing transistor count
in current processors, designs are leading to CMPs
that will integrate tens or hundreds of processor cores
on-chip. However, scaling and voltage factors are
increasing susceptibility of architectures to transient,
intermittent and permanent faults, as well as process
variations.

A very recent solution found in literature consists
of Dynamic Core Coupling (DCC) [6]. DCC provides
a fault tolerant framework based on dynamic binding
of cores for re-execution. This technique relies on the
use of a shared-bus. However, for current and future
CMP architectures, more efficient designs are tiled-
CMPs, which are organized around a direct network,
since area, scalability and power constraints make
impractical the use of a bus as the interconnection
network. In this work, we present the changes needed
in the original DCC proposal to be used for a direct
network environment. These changes are mostly due to
the replacement of a bus for a mesh as interconnection
network, the coherence protocol and the consistency
window. Our evaluations show that, for several par-
allel scientific applications, the performance overhead
with this new environment rises to 10%, 19%, 42.5%
and 47% for 4, 8, 16 and 32 core pairs, respectively,
compared to the 5% performance degradation as pre-
viously reported for 8 core pairs in the original DCC
proposal.

1. Introduction

Nowadays, market trends are positioning CMPs as
the best way to use the big number of transistors that
we can accommodate in a chip. The goal is to increase
the number of cores per chip and the size of caches as a
way to improve the performance in an energy-efficient
way as well as keeping the complexity manageable to
exploit thread-level parallelism.

However, due to the raise of the number of tran-
sistors per chip, the failure ratio is increasing more
and more in every new scale generation [13]. On one
hand, the actual larger number of transistors in a chip
enlarges the probability of fault. On the other, the
increase of the temperature and the decrease of the
voltage in the chip leads to a higher susceptibility
to transient faults. A transient fault is a flip in one
or more bits. It may be caused as a result of the
impact of an alpha particle on the chip or causes such
as power supply noise and signal cross talking. All
zones in the chip are vulnerable to this kind of faults,
therefore, fault tolerance mechanisms must be designed
to avoid incorrect program executions. Moreover, these
techniques always have both a hardware cost because
of the additional extra hardware required to re-execute
instructions, and a performance cost because of the
actions needed to assure a correct execution.

CMPs are usually designed under the shared-
memory programming model. Thus, redundant archi-
tectures must provide fault-coverage to multithreaded
loads as well as to single threaded ones. The key
question here is how to provide a low overhead fault-
tolerant mechanism, without introducing too many
design changes in the microarchitecture.

The first approaches to fault redundant execution
started with Lockstepping [1], where two execution
cores statically bound obtain the same inputs and
execute the same instructions. When a deviation in the
results is observed a fault has been detected. Unfor-
tunately, this simple scheme implies a large overhead
in hardware cost. Furthermore, some other problems
like asynchronous events and power management tech-
niques make this solution unreliable [2].

The family of techniques SRT [11], SRTR [17], CRT
[10] and CRTR [3] are based on a previous proposal
called AR-SMT [12], in which redundant threads exe-
cute the same instructions in an SMT processor with a
performance degradation between 10-30%. In all these
studies, the fault tolerance is achieved by redundant



execution in two different execution cores (or threads)
called leading/master and trailing/slave. The master
core runs some instructions ahead of the slave and
they communicate with each other by some differ-
ent structures, like the LVQ, StB or RVQ. Although
applicable to sequential programs, these techniques
are not directly valid for executing parallel programs
due to incoherences in memory values called input
incoherences [14].

An input incoherence is a phenomenon that occurs
when two dynamic loads do not obtain the same value
from memory. This problem is very common in parallel
programs when a redundant core executes the same
instruction few cycles later. Reunion [14] addresses
this problem with a new paradigm called relaxed input
replication, in which the master issues non-coherent
accesses to memory (phantom request) while the slave
core issues real coherent accesses. If a difference is
detected because of an input incoherence, it is marked
as a transient fault when indeed it is not. At one end,
this increases the number of transient faults detected.
At the other, the number of messages issued to memory
is, at least, the double than in a non-redundant system.

In order to avoid the need of intermediate structures
to communicate the leading and the trailing cores,
another option could be the periodic creation of check-
points. A checkpoint reflects all the changes made
in the processor since the last checkpoint. To detect
any fault between two checkpoints, the master and the
slave interchange a signature or a hash [15] resuming
the current state and, if they differ, a fault has been
detected. The recovery mechanism is as easy as going
back to the last successfully verified checkpoint, which
establishes a safe point. A very recent study on this
fashion is made by LaFrieda et al. in DCC [6]. DCC
is a promising approach to achieving fault tolerance
in multiprocessors, based on a shared bus. However,
market trends are leading to many-core architectures
with tens or hundred of processor cores on chip. In this
design, a shared-bus is incompatible with performance,
as a result of its non-scalability and area consumption
[4]. New designs have been proposed using a direct
network [16] as interconnection network, forming a
regular structure named tiled-CMP.

In the present work, we analyse and evaluate how
DCC behaves in a scalable tiled-CMP architecture,
trying to fit DCC philosophy, where possible, and
modifying some of its behaviours where not. The main
contributions of the paper are:
• Reimplementing DCC on top of a switched net-

work.
• Proposing changes to DCC that are needed to deal

with the cited incoherence/inconsistency issues,

due to the fact that a switched network is not
broadcast based.

• Showing that there is substantially more extra
traffic (hence greater performance degradation) in
the network-based DCC than in the bus-based
DCC, showing that there is room for improving
DCC in a tiled CMP substrate.

• Concluding that the “consistency window over-
head” between the leading and trailing cores is the
main source of performance degradation, which
increases with the number of cores.

• Concluding that increased traffic is also an issue,
but that counterintuitively the relative overhead
decreases with more cores (since the normal traf-
fic increases more rapidly with more cores).

• Providing several sensitivity studies (e.g., cache
associativity’s impact on checkpoint frequency)
and measurements (e.g., overhead breakdowns).

The rest of the document is organized as follows:
Section 2 reviews how DCC operates and points out
its major weaknesses. Section 3 presents how to mi-
grate DCC to work under a direct network instead of
a shared-bus. Section 4 introduces the methodology
employed in the evaluation. Section 5 shows the per-
formance results and, finally, Section 6 summarizes the
main conclusions of our work.

2. Background

2.1. Understanding DCC

DCC is a fault tolerance mechanism for sequential
applications and, with several modifications, for paral-
lel applications too. To achieve fault tolerance, DCC
re-executes instructions in a redundant core and, after
a variable number of cycles, cores exchange their state
with their pairs by means of a hash. If the hashes match
with each other, the actual state of the architecture
constitutes a safe point and it is saved as a checkpoint.
If not, a transient fault has been detected and the state
of the machine is rolled back to the previous saved
checkpoint.

One contribution of DCC is the fact that the binding
among core pairs is not static and can be made
in execution time. The dynamic binding also brings
opportunities such as pairing off cores to minimize
hot spots, or proper operation even when permanent
faults appear on some cores. All this dynamic process
is ruled by the OS.

In DCC, a node is formed by two cores: the master
core and the slave core. Both, master and slave, access
memory to bring back new data to private cache, but
just the master is permitted to writeback data to shared

2



memory. However, if the data to be back-written in the
master core has not been checked against that data in
the slave core yet, the operation is aborted. To identify
those data blocks, L1 cache must be modified to add an
unverified bit [9] that indicates that a block has been
modified by a core but has not been verified by its
redundant core.

The unverified marks are cleared at the end of a
checkpoint interval when the state of both, master and
slave cores, have been verified. A checkpoint interval
is set to 10,000 cycles in DCC [6]. This interval is
so large because a smaller one causes a performance
degradation due to the increase of traffic in the net-
work. However, there are some causes that induce to
the creation of a new checkpoint before the interval
is over. These causes are: interrupts, I/O instructions,
context switches, but above all, overflows in cache
lines. As said before, a block marked as unverified
cannot be replaced from private cache. Therefore, the
replacement policy (it is used LRU as base replacement
policy) should be modified to avoid replacing blocks
marked as unverified. However, all blocks in a cache
line are sometimes marked as unverified which is
called a cache buffering overflow. When such an over-
flow appears, DCC needs to create a new checkpoint
in order to have the chance of replacing an unverified
block. As we will show later, this phenomenon is very
common in the parallel applications we have studied,
having therefore, a negative impact on performance.

2.2. DCC in a parallel environment

DCC is a fault-tolerant mechanism that also works
for parallel architectures. In order to facilitate that,
DCC needs to guarantee the memory coherence and
consistence.

2.2.1. Coherence. As cited before, in DCC, both
master and slave cores issue requests to shared memory
although just master cores can update it. This be-
haviour implies several modifications in the coherence
protocol in order to avoid coupled cores to fight for
data blocks, resulting in performance degradation and
incorrect program output. To solve this issue, coher-
ence actions from requests between coupled cores are
ignored at destination. This also implies that requests
from external cores can cause invalidations in slave
cores which will never provide values since this task
is reserved just for master cores.

The additional constraints and actions that must be
added to the coherence protocol as an extension of the
protocol developed in Cherry-MP [5] are1:

1. For additional details, see the original DCC proposal [6].

• To assure forward progress, writes to verified dirty
cache blocks force a writeback to L2 in master
cores. Contrarily, slave cores never update L2.

• A reader marks its line as unverified if in the
original holder the line is unverified.

• Slave cores never supply data on a request to a
remote core (any core different from its master
pair).

• The coherence protocol should be MOESI (or
similar), to provide datablock sharing among
nodes without updates in memory.

• Slave reads could downgrade block states by
accesses in remote caches but never could cause
invalidations.

• Master reads to unverified lines could cause in-
validations in a remote master, just in case that
its slave core keeps a copy of the line which
is marked as unverified to prevent eviction. If
the slave has no copy of the line, by using the
capability offered by the shared bus, it will read
the message directed to the remote core to get the
line. The same happens with master upgrades.

2.2.2. Consistency. In DCC, the consistency problem
is solved by using a structure called age table. Its
aim is to prevent an external write from modifying
a value between the time that the leading thread has
read a value and the trailing thread has not yet. The
age table is accessed by the lower-order address bits of
a given load or store. Each entry contains the number
of committed loads and stores until the last committed
load or store.

When a processor wants to perform a write, issues
a read-exclusive or upgrade request to the shared bus.
Then, the message is read by both master and slave
cores, which perform two actions. First, they observe if
they have a match between the address of the message
and its load queue and, if there is, a NACK is submitted
to prevent the write which, in turn, will be retried later.
Each core accesses its age table in parallel, and slave
cores send the age of the current address in the next
cycle. When the master receives the age, it is compared
with its own one and, if they are different, it means
that one of the cores has committed an instruction to
that address and the other has not. In other words, if
the block leaves the cache, there will be a potential
consistency error, so a NACK is submitted.

The age table avoids consistency fails. However, it
could likewise lead to livelocks and deadlocks when
issuing NACKs. Livelocks appear in situations like
lock releases, when a processor needs to free the lock
by writing on it and others processors are repeatedly
accessing the lock in order to enter in the critical sec-

3



tion. Deadlocks occur because, in out-of-order cores,
some loads could enter in a loop by sending NACKs
to the other. This situation will be solved after some
cycles, because the trailing core will eventually execute
the leading load. However, in DCC it is proposed
a more efficient mechanism which consist of, upon
receiving a NACK, flushing the pipeline and stalling
loads until the write has been performed.

2.2.3. Other related work. Reunion [14] is another
fault-tolerant approach that solves the consistency
problem in a different way. Instead of using a con-
sistency window, Reunion adds a new request message
called phantom request. A phantom request is a special
non-coherent memory request. It is used by the core
that does not update memory (leading core in that
proposal), to obtain memory values but, at the same
time, to lighten the coherence protocol. This mecha-
nism incurs in input incoherences detected in Reunion
as transient faults. However in DCC, because of the
size of the checkpoint interval, it is very frequent to
obtain a consistency error. That implies to rollback to
a previous checkpoint, incurring in a big performance
overhead as reported in [6].

3. Making DCC scalable using a tiled-
CMP architecture

To make the original DCC scalable we move from
a shared-bus architecture towards a more scalable
topology in a tiled-CMP architecture like a 2D-mesh.
Changing from a shared-bus has several implications
on how DCC works. For example, with a direct in-
terconnection network, the broadcast capability of the
shared-bus is lost, incurring in performance degrada-
tion when creating checkpoints.

3.1. Changes to the coherence protocol

As in the original DCC paper, we have selected
MOESI as our coherence protocol. Modifications
needed to accommodate DCC in a direct network are
described as follows.

3.1.1. Slave coherence. Like in the original DCC
proposal, slaves cannot invalidate cache blocks in other
nodes (neither masters nor slaves) by means of read-
exclusive or upgrade requests. However, they must be
able to obtain the data with write permission.

DCC cannot address input incoherences since it
leads to a great performance degradation, due to the
large checkpoint creation interval length. Thus, values
must be accessed coherently. Moreover, they must

accomplish all constraints described in Section 2.2.1
and, in order to do that, we need to know exactly if
a request was issued from a master or a slave. This
problem was solved in the original DCC proposal with
a dedicated master-bus line, indicating whether the
request comes from a master or not.

Since we no longer have a shared-bus, every core in
the direct network must know the core-role mapping as
well as the pairs (or trios) formed by the OS when the
fault tolerance mode is on. The main difficulty when
operating on this mode is that the protocol would have
to track multiple owners for a block (master and slave),
because in any cycle both could have that permission.
Instead of that, we have modified DCC as follows:
any upgrade or read-exclusive request from a node to
a master core should be sent to its slave, too. In this
way, an invalidation of the block in the master, will not
cause a later coherence fail in the slave, since it has
also seen the request. However, this simple solution
results in an increment in the number of messages
through the network, as we evaluate in Section 5.4.

3.1.2. Consistency. As we saw in Section 2.2.2, con-
sistency in DCC is achieved by adding a structure
called age table which is accessed when a read-
exclusive or upgrade request arrives. In a shared-bus,
one-single message is seen by all processors, but in a
direct network it does not. The mode of operation in
our scenario is different and every read-exclusive or
upgrade has to be sent to the master as well as to its
slave. Then, each core accesses to its LSQ, looking for
a match in the address of the request. Upon a positive
match, the request cannot be served. At this point,
we consider that, instead of sending a NACK to the
requestor, it would be better to keep the request in the
core until it can be satisfied, saving some bandwidth
in the network. The request will be periodically retried
in the core until it could complete.

In parallel to the access to the LSQ, the slave core
sends its age from the age table to its master. The
master compares the received age with its own and,
if they differ, the request cannot be served, retrying
later. Conversely, if the ages match, the request can
be satisfied, the master is invalidated and it sends a
mandatory invalidation to its slave. Again, this mod-
ification to the original DCC proposal results in an
increase in the number of messages sent between the
requestor and the master and slave to be invalidated.

3.1.3. Other considerations. In the original DCC
proposal, the authors point out that the replacement
of unverified blocks in L1 cache causes a buffering
overflow solved with the creation of a new checkpoint.

4



However, we have found that there is a potential
consistency risk when replacing non-unverified blocks
when using direct networks.

�

������� ���	��������
�

�������

���	���


�������

�������

�������

����

Figure 1. Potential consistency error in DCC.

As we can see in Figure 1, some actions could lead
to a consistency error between Master and Slave in
DCC. After the replacement of block A in Master, an-
other core, Master’, acquires the block and eventually
modifies it. When Slave executes the redundant load,
it will perceive a different value. In the original DCC
proposal with a shared-bus, the consistency window is
capable of resolving this conflict. In spite of having the
block replaced, Master can see through the bus that an
external core has issued a read-exclusive or an upgrade
request, therefore aborting the request. However, in a
direct network like a mesh, Master does not notice that
another core wants to acquire the block for writing
purposes, since there is no information to guide the
message from the requestor (Master’ in Figure 1) to
the old holder of the block which replaced the block.

To imitate the shared-bus DCC behaviour, for every
cache miss, the request for the block should be flooded
all over the network, in order to avoid consistency
errors. This solution, however, creates a large amount
of network traffic with a big latency. A simpler solution
would be, on every replacement of the leading core,
checking that its pair has read the block. If the partner
possesses the block, the replacement can be executed.
If not, we will delay it until the pair reads the block
some cycles later, causing a necessary extra overhead
in L1 replacements. In this way, we will solve potential
consistency errors between masters and slaves.

Another relevant aspect when using a direct network
to fit the original DCC proposal, is synchronization
when creating checkpoints, as we can see in Figure 2.
The synchronization request is issued at the end of an
scheduled interval, or when events such as buffering

overflows occur. In our direct network, the responsible
for sending the synchronization request is called Initia-
tor. The Initiator has to send a message to every master
in the system. When the request is received, each
master is synchronized with its slave-pair, creating and
exchanging its state using a fingerprint. If fingerprints
match with each other, an acknowledgment is sent back
to the Initiator. Once all the acknowledgements have
been received, the Initiator finally sends a message
to each core in the system, giving the order to save
the current state as the last checkpoint. After that,
all cores resume execution. Besides, if one core finds
a mismatch when comparing fingerprints, a NACK
indicating a transient fault detection will be sent to the
Initiator, which will expand the information, causing
every core in the system to rollback to its previous
saved checkpoint.

�

������� ���	��

���������	
�	���

��	��������	
�	���


��������

����	������	������

����	�������

���������

����	������	������

��	��

����	�������

������������

������	�	������

���	�����	�

��	��

Figure 2. Synchronization and checkpoint creation.

This mechanism for creating new checkpoints dis-
plays a variable latency directly dependent on the dis-
tance and the network congestion between the Initiator
and the furthermost core. Thus, the Initiator will not
send the save-state request until all ACKs confirming
the synchronization have arrived. If any message could
not arrive due to a permanent fault in one core, the
Initiator would be waiting in an infinite loop. To avoid
this situation, a timeout is set up when waiting for
ACKs. In our simulations, we have found that each
checkpoint takes around 250-400 cycles, depending on
the number of nodes and pairs allocation.

5



4. Simulation Environment

We have ported the original DCC proposal with
the changes explained in the previous section, to the
functional simulator Virtutech Simics [7] extended
with Wisconsin GEMS [8] v2.1. GEMS provides a
detailed memory simulation through a module called
Ruby and a pipeline simulation module called Opal.
In order to accommodate all DCC constraints, we have
modified the MOESI coherence protocol as well as the
pipeline behaviour. The interconnection network has
been simulated by the module Garnet.

Table 1
SYSTEM PARAMETERS.

Processor Parameters
Max. fetch/retire rate 4 inst./cycle
Processor Speed 2 GHz.
Cache Parameters
Line Size 64 bytes
L1 Cache:
Size 32 KB
Associativity 4 ways
Hit time 2 cycles
Shared L2 Cache:
Size 512 KB/tile
Associativity 4 ways
Hit time 6+9 cycles (tag+data)
Memory Parameters
Coherence Protocol MOESI
Directory Hit Time 15 cycles
Memory Access Time 300 cycles
Network Parameters
Topology 2D-Mesh
Link Latency (one hop) 4 cycles
Routing Time 2 cycles
Flit Size 4 bytes
Link bandwidth 1 flit/cycle
Fault Tolerance Parameters
State Compression Latency 35 cycles
State Checkpoint Latency 8 cycles
Age Table Size 64 entries
Checkpoint Interval 10,000 cycles

The simulated system is a tiled-CMP consisting of
a number of replicated cores (tiled) connected by a
switched 2D-Mesh direct network. Each core has its
own private L1 cache, a portion of the shared L2 cache
and a connection to the on-chip network. Table 1 shows
the main parameters of the simulated system.

We have evaluated our framework by using several
scientific applications from SPLASH-2 [18] cited in
Table 2. The results of the simulations have been
extracted from the parallel phase of each benchmark
executed for 2, 4, 8, 16 and 32 application threads and
4, 8, 16, 32 and 64 cores, respectively.

Table 2
SIMULATED BENCHMARKS.

Benchmark Size
Barnes 8192 bodies, 4 time steps
Cholesky tk16.0
FFT 256K complex doubles
Ocean 258x258 ocean
Radix 1M keys, 1024 radix
Raytrace teapot
Water-NSQ 512 molecules, 4 time steps
Water-SP 512 molecules, 4 time steps
Tomcatv 256 elements, 5 iterations
Unstructured Mesh.2K, 5 time steps

5. Evaluation Results

5.1. DCC overhead in a direct network

We have compared the performance results of the
extended DCC proposal in a direct network scenario,
with the results in a non-fault tolerance base scenario.
Figure 3 reports the execution time overhead which
DCC obtains with respect to a non-fault tolerance
system for 2, 4, 8, 16 and 32 nodes. As we can see,
DCC incurs in a noticeable time overhead, more severe
in applications like Ocean, Raytrace and Unstructured.
The time overhead is splitted into Checkpoint time, the
time employed in the creation of new checkpoints, and
Window time, the overhead obtained as a result of the
actions of the consistency window that were explained
in sections 2.2.2 and 3.1.2.

Our results coincide with the original DCC proposal
where leading and trailing cores are separated 100 cy-
cles on average. This means that, when the leading core
opens a read window, it is not closed after 100 cycles
later, on average. Consequently, any read-exclusive or
upgrade request to these addresses are delayed until
the window is closed by the trailing core. In those
applications which present a data sharing pattern closer
in time like Ocean, Raytrace and Unstructured, the
performance degradation is even more severe. It can be
observed that, on average, the execution time increases
with the number of nodes as a result of the growth
of the network traffic. This way, consistency window
constraints affect more deeply system configurations
with many cores. In conclusion, the time overhead
grows to 6.4%, 10.2%, 19.2%, 42.5% and 47.1% when
considering 2, 4, 8, 16 and 32 nodes respectively. In
addition, although the time needed by a checkpoint
is not negligible, its impact on performance degrada-
tion is hidden by the huge overhead caused by the
consistency window. On the other hand, checkpoint
time creation is responsible for an increase in the time

6



�
���
���
���
���
���
���
���
���
��	
�

���
���
���
���
���
���
���
���
��	

�
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��
 �
 �
 �
 ��
 ��


��
�� �������� ��� ����
 ���� ������ ������� �
�������� ����
�� ����� !"#

��
��

���
��

	
�
��

�
$���� ��
�%����
&�
���%����

Figure 3. Execution time overhead in DCC with respect to a non-fault tolerance system.

overhead between 2.6% and 4.6% with no significant
differences when varying the number of nodes.

The results obtained contrast with those obtained
in the original DCC proposal when using a shared-
bus as the interconnection network. As reported in
[6], the execution time overhead is just 3.9%, 4% and
4.9% for 2, 4 and 8 nodes respectively. We can clearly
notice how DCC behaviour is worsened when a direct
network topology is used.

5.2. Delay in L1 replacements

As observed in Section 3.1.3, there is a poten-
tial consistency risk when replacing cache blocks.
To prevent it, as described previously, we propose
the replacement of blocks after an additional check
with the trailing core. Results in the previous section
consider that additional check and the correspond-
ing replacement delay. However, in order to measure
the effect of this extra delay on the execution time
overhead, we run some experiments assuming non-
delayed replacements. This, of course, could lead to
consistency errors in real hardware but, however, they
do not affect application behaviour in our simulations
since, in GEMS, the functional part is separated from
the timing one.

In Figure 4 we can observe that, without replacement
delays, the execution time is lower, as expected. How-
ever, there is still a significant overhead compared to

�

����

���

����

���

����

���

����

���

����

���

���	
�� ���	
�� ��	
�� ����	
�� ����	
��

�	
��

���
��


��
��

�

�	����

�	��������
�������������

Figure 4. Execution time overhead because of delayed L1 replace-
ments.

a non-fault tolerance system. Summarizing, the delay
introduced because of the L1 replacements causes an
extra overhead of 2%, 3.2%, 3.6% and 7.7% for 4, 8,
16 and 32 nodes, respectively, which is not negligible,
specially when considering a higher number of cores.

5.3. Cache associativity analysis for DCC

Cache associativity is of paramount importance for
the original DCC proposal. We must bear in mind that,
if an unverified block is replaced, a new checkpoint
must be performed. So, the replacement policy has

7



been modified from a LRU to a pseudo-LRU that
avoids to pick unverified blocks to be replaced. If the
number of ways is too small, there exists a performance
degradation because sometimes, when allocating new
blocks, there are only available a reduced number of
cache lines.

�

���

���

���

���

���

���

���

�	

��

���
���
� ���

���
	� 
	�

��

	�
�
	�
�

���
�	�
�

��
�
��
��
�
�

�	�
�
�
�

�	�
�

�

� 
!

�
��
�
��
��
�	


�
��

�

�"�	� �"�	� #"�	�

Figure 5. Execution time overhead in DCC with different L1 cache
associativities.

Although 4-way L1-caches are common in real
processors nowadays, some companies still advocate
for 2-way caches. As we can see in Figure 5, the
time overhead of DCC with 8 nodes for a 2-way L1
cache, is around 27% and, when the number of ways
is increased, the overhead goes down. It can be also
observed that an 8-way cache does not perform much
better than a 4-way cache. So, due to the hardware
cost that an 8-way cache represents, we conclude that,
for DCC, the best option is a 4-way cache. We can
find the main reason to this behaviour in the number
of cycles among checkpoints.

Figure 6 shows how many cycles there are between
the creation of two checkpoints. As suggested in [6],
this number is initially fixed to 10,000 cycles by the
system. However, as a result of the cache buffering
overflow phenomenon associated to DCC approach, we
need to do some unscheduled checkpoints. Buffering
overflows occur rarely with 8-way associative caches,
so the time between checkpoints tends to 10,000
cycles. On the other hand, with 2-way associative
caches, with much more overflows, the time between
checkpoints ranges from 4,500 cycles in the best case
to 3,700 cycles in the worst. In conclusion, with 2-
way caches it will be needed the creation of approx-
imately twice the number of checkpoints than in an
8-way cache configuration, leading to a considerable
performance degradation (as showed in Figure 5).

�

����

����

����

����

����

����

����

����

	���

�����

�
���� �
���� �
���� ��
���� ��
����

��
���

�

�
���� �
���� �
����

Figure 6. Checkpoint time interval in DCC depending on L1 cache
associativity.

5.4. Traffic Network Increase for DCC

It is obvious that replacing a shared-bus with a direct
network like a 2D-mesh leads to a natural overhead in
the number of messages within the network. In a direct
network, we lose the broadcast capabilities incurring,
then, in a larger number of messages in the network.
However, the DCC approach generates additional extra
traffic, as a consequence of changing a shared-bus with
a 2D-mesh, as we described in Section 3.1.2. This
can be summed up in that we need to assure that
every message seen by the leading core is also seen
by the trailing one. The simpler solution is sending
the message to both of them. Also, there is more extra
traffic in the checkpoint creation phase, because the
synchronization mechanism is more complex in a mesh
than in a shared-bus.

The total traffic is increased in 12.6%, 11.7%, 8.1%,
3.9% and 2.6%, on average, for 2, 4, 8, 16 and 32
nodes, respectively, for a 4-way associative cache, as
we can see in Figure 7. Curiously, the traffic overhead
decreases with the number of nodes in the simulation.
The reason is that, although the amount of messages
is bigger when the number of processors grows, the
actions that cause extra traffic are hidden by those that
do not. In other words, the sharing of unverified blocks
has a larger impact for 2, 4 and 8 nodes than for 16
and 32 nodes, in terms of extra created traffic.

6. Conclusions

In this paper we have shown how DCC could fit in a
more realistic and scalable architecture as a tiled-CMP.
Although there are some complications with the coher-
ence protocol and the consistency window, DCC could
be adapted to use a direct network instead of a shared-
bus network. However, all these changes result in

8



�

����

���

����

���

����

���

����

���

����

���

��	

��

��
����
� ���

��
�
 	���

�
	���
	��

���
���

�
�
�	�
��	�
�

���
�	
�
�

���
�	�� �� 

��
��

���
��

	
�
���

��

�

��
���
�

�!
����
�!
����
"!
����
�#!
����
��!
����

Figure 7. Network traffic increase in DCC in a mesh.

noticeable performance degradation. Simulations with
SPLASH-2 benchmarks and other scientific parallel
programs show that the execution time overhead is
10%, 19.5%, 39% and 42% for 4, 8, 16, and 32 core
pairs, respectively, in contrast to the 5% performance
degradation reported for the original DCC proposal in
a shared-bus with 8 core pairs.

In addition, we have also shown that the perfor-
mance degradation is mostly due to the consistency
window needed to permit, for both master and slave,
the access to the shared memory. The traffic network is
also increased with a direct network because the DCC
mechanism is not properly adapted to this environment.
We have also pointed out how L1 cache associativity
is an important fact to bear in mind regarding DCC
behaviour, in terms of number of cache buffering over-
flows and, consequently, in performance degradation.

To conclude, in this paper we have seen that, al-
though DCC is a promising approach, when moving
towards a scalable tiled-CMP architecture with an
increasing number of core pairs, there is still room
for improvement in the design of a low overhead and
resilient chip multiprocessor.

Acknowledgements

We want to thank the anonymous reviewers for
their insightful comments and valuable suggestions,
which have helped to improve the quality of this paper.

This work has been jointly supported by the Spanish
MEC and European Commission FEDER funds un-
der grants ”Consolider Ingenio-2010 CSD2006-00046”
and ”TIN2006-15516-C04-03”, and also by the EU
FP6 NoE HiPEAC IST-004408.

References

[1] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in
tandem computer systems. In The Evolution of Fault-
Tolerant Systems, pages 55–76. 1987.

[2] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia,
R. Jardine, J. Klecka, and J. Smullen. Nonstop
advanced architecture. In Proceedings of the 2005
International Conference on Dependable Systems and
Networks (DSN’05), pages 12–21, Yokohama, Japan,
2005.

[3] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and
I. Pomeranz. Transient-fault recovery for chip multipro-
cessors. In Proceedings of the 30th annual international
symposium on Computer architecture (ISCA’03), pages
98–109, San Diego, California, 2003.

[4] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnec-
tions in multi-core architectures: Understanding mech-
anisms, overheads and scaling. In Proceedings of the
32th Int’l Symp. on Computer Architecture (ISCA’05),
pages 408–419, Madison, Wisconsin, June 2005.

9



[5] M. Kyrman, N. Kyrman, and J. F. Martynez. Cherry-
mp: Correctly integrating checkpointed early resource
recycling in chip multiprocessors. In Proceedings of
the 38th annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 38), pages 245–256,
Barcelona, Spain, 2005.

[6] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar.
Utilizing dynamically coupled cores to form a resilient
chip multiprocessor. In Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), pages 317–326, Ed-
inburgh, UK, 2007.

[7] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
B. Werner, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[8] M. M. K. Martin, D. J. Sorin, B. M. Beckmann,
M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore,
M. D. Hill, and D. A. Wood. Multifacet’s gen-
eral execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99,
2005.

[9] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic,
and J. Torrellas. Cherry: Checkpointed early resource
recycling in out-of-order microprocessors. In Proceed-
ings of the International Symposium on Microarchitec-
ture (MICRO’02), Istanbul, Turkey, Nov. 2002.

[10] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt.
Detailed design and evaluation of redundant multi-
threading alternatives. In Proceedings of the 29th
annual international symposium on Computer archi-
tecture (ISCA’02), pages 99–110, Anchorage, Alaska,
2002.

[11] S. K. Reinhardt and S. S. Mukherjee. Transient fault de-
tection via simultaneous multithreading. In Proceedings
of the 27th annual international symposium on Com-
puter architecture (ISCA’00), pages 25–36, Vancouver,
British Columbia, Canada, 2000.

[12] E. Rotenberg. Ar-smt: A microarchitectural approach
to fault tolerance in microprocessors. In Proceedings
of the Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing (FTCS’99), pages 84–91,
Madison, Wisconsin, 1999.

[13] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on
soft error rate of combinational logic. In Proceedings
of the International Conference on Dependable Systems
and Networks (DSN’02), Bethesda, Maryland, 2002.

[14] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe.
Reunion: Complexity-effective multicore redundancy.
In Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 39),
pages 223–234, Orlando, Florida, 2006.

[15] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe,
and A. G. Nowatzyk. Fingerprinting: Bounding soft-
error-detection latency and bandwidth. IEEE Micro,
24(6):22–29, 2004.

[16] M. Taylor, J. Kim, J. Miller, D. Wentzla, F. Ghodrat,
B. Greenwald, H. Ho, m Lee, P. Johnson, W. Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Frank,
S. Amarasinghe, and A. Agarwal. The raw micropro-
cessor: A computational fabric for software circuits and
general purpose programs. IEEE Micro vol 22, Issue
2, 2002.

[17] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient
fault recovery using simultaneous multithreading. In
Proceedings of the 29th Annual International Sym-
posyum on Computer Architecture (ISCA’02), pages
87–98, Anchorage, Alaska, 2002.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings
of the 22th International Symposium on Computer
Architecture (ISCA’95), pages 24–36, Santa Margherita
Ligure, Italy, 1995.

10


