
J Supercomput
DOI 10.1007/s11227-011-0670-9

A fault-tolerant architecture for parallel applications
in tiled-CMPs

Daniel Sánchez · Juan L. Aragón · José M. García

© Springer Science+Business Media, LLC 2011

Abstract Nowadays, hardware reliability is considered a first-class issue along with
performance and energy efficiency. The increasing scaling technology and subse-
quent supply voltage reductions, together with temperature fluctuations, augment the
susceptibility of architectures to errors.

With the development of CMPs, the interest for using parallel applications has
increased. Previous proposals for providing fault detection and recovery have been
mainly based on redundant execution over different cores. RMT (Redundant Multi-
Threading) is a family of techniques based on SMT (Simultaneous Multi-Threading)
processors in which two independent threads (master and slave), fed with the same
inputs, redundantly execute the same instructions, in order to detect faults by check-
ing their outputs. In this paper, we study the under-explored architectural support of
RMT techniques to reliably execute shared-memory applications in tiled-CMPs.

Initially, we show how atomic operations induce serialization points between mas-
ter and slave threads, degrading the execution time by 35% for several parallel sci-
entific and multimedia benchmarks. To address this issue, we introduce REPAS (Re-
liable Execution of Parallel ApplicationS in tiled-CMPs), a novel RMT mechanism
to provide reliable execution in shared-memory applications in environments prone
to transient faults. REPAS architecture only needs few extra hardware since the re-
dundant execution is performed within 2-way SMT cores in which the majority of
hardware is shared. Experimental results show that REPAS is able to provide fault tol-
erance against soft errors with a lower execution time overhead (around 25% includ-

D. Sánchez (�) · J.L. Aragón · J.M. García
Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, 30100 Murcia,
Spain
e-mail: dsanchez@ditec.um.es

J.L. Aragón
e-mail: jlaragon@ditec.um.es

J.M. García
e-mail: jmgarcia@ditec.um.es

mailto:dsanchez@ditec.um.es
mailto:jlaragon@ditec.um.es
mailto:jmgarcia@ditec.um.es

D. Sánchez et al.

ing the cost of redundancy) in comparison to a non-redundant system than previous
proposals while using less hardware resources. Additionally, we show that REPAS
supports huge fault ratios with negligible impact on performance (less than 2% for a
fault ratio of 100 faults per million cycles).

Keywords Fault tolerance · Soft errors · SMT architectures · Parallel Systems

1 Introduction

The advance in the scale of integration allows to increase the number of transistors in
a chip, which are used to build powerful processors such as CMPs (Chip Multipro-
cessors) [4, 20, 23, 30]. At the same time, manufacturers have started to notice that
this trend along with voltage reduction and temperature fluctuation are challenging
CMOS technology because of several reliability issues. Among others, we can cite
the increasing appearance of hardware errors and other related topics such as process-
related cell instability, process variation or in-progress wear-out. Another fact to take
into account is that the fault ratio increases due to altitude [17, 35]. Therefore, relia-
bility has become a major design problem in the aerospace industry.

Hardware errors are classified as transient, intermittent or permanent [7, 18]. On
the one hand, permanent faults, which are usually caused by electromigration, remain
in the hardware until the damaged component is replaced. On the other hand, voltage
variation and thermal emergencies are the main cause of intermittent faults. Tran-
sient faults, also known as soft errors, appear and disappear by themselves. They can
be induced by a variety of sources such as transistor variability, thermal cycling, er-
ratic fluctuations of voltage and radiation external to the chip [18]. Radiation-induced
events include alpha-particles from packaging materials and neutrons from atmo-
sphere. It is well established that the charge of an alpha particle or a neutron striking
a logical device can overwhelm the circuit inducing its malfunction.

It is hard to find documented cases concerning soft errors in commercial systems.
This is because of both the difficulty which involves detecting a soft error and the
convenient silence of manufacturers about their reliability problems. However, sev-
eral studies show how soft errors can heavily damage industry. For instance, in 1984
Intel had certain problems delivering chips to AT&T as a result of alpha particle
contamination in the manufacturing process [18]. In 2000, a reliability problem was
reported by Sun Microsystems in its UltraSparc-II servers deriving from insufficient
protection in the SRAM [18]. A report from Cypress Semiconductor showed how a
car factory was halted once a month because of soft errors [36].

Nowadays, several measures have been introduced in microarchitectural designs
in order to detect and recover from transient errors such as error detection and correc-
tion codes. They are created by specific rules of construction to avoid information loss
in the transmission of data. ECC (Error Correction Codes) codes are commonly used
in dynamic RAM. However, these mechanisms cannot be extensively used across
all the hardware structures. Instead, at the architecture level, DMR (Dual Modular
Redundancy) or TMR (Triple Modular Redundancy) have been proposed. In these
approaches, fault detection is provided by means of dual and triple execution redun-
dancy.

A fault-tolerant architecture for parallel applications in tiled-CMPs

In this fashion, we find RMT (Redundant Multi-Threading), a family of techniques
in which two threads redundantly execute the program instructions. Simultaneous and
Redundantly Threaded processors (SRT) [22] and SRT with Recovery (SRTR) [31]
are two of them, implemented on SMT (Simultaneous Multi Threading) processors
in which two independent and redundant threads are executed with a delay respect
to the other which speeds up their execution. These early approaches are attractive
since they do not require many design changes in a traditional SMT processor. In
addition, they only add some extra hardware for communication purposes between
the threads. However, the major drawback of SRT(R) is the inherent non-scalability
of SMT processors as the number of threads increases.

In order to provide more scalability, several approaches were designed on top of
CMP architectures. Among them, it is worth mentioning proposals such as Reunion
[29], Dynamic Core Coupling (DCC) [11] or High Decoupled Thread Level Redun-
dancy (HDTLR) [21]. However, solutions using this kind of redundancy achieve a se-
vere degradation in terms of power, performance and specially in area since they use
twice the number of cores to support DMR. Therefore, these approaches are not well
suited for general markets as industry claims that a fault-tolerant mechanism should
not impose more than 10% of area overhead in order to be effectively deployed [27].
Hence, solutions based on redundant multithreading using SMT cores seem a good
approach to achieve fault tolerance without sacrificing too much hardware [13].

Although there are different proposals based on SRTR with either sequential or
independent multithreaded applications [9, 31], the architectural support for redun-
dant execution with shared-memory workloads is not well suited. As we will show in
Sect. 4.1, in shared-memory parallel applications, the use of atomic operations may
induce serialization points between master and slave threads affecting performance
depending on the memory consistency model provided by the hardware.

To address all these issues, in this paper we propose REPAS Reliable Execution
of Parallel ApplicationS in tiled-CMPs. The main contributions of this paper are:
(a) identification of a performance problem of traditional RMT implementations;
(b) design of a scalable RMT solution built on top of dual SMT cores to form a
tiled-CMP; (c) implementation of our proposal in a full-system simulator to measure
their effectiveness and execution time overhead. We show that REPAS is able to re-
duce the execution time overhead down to 25% with respect to a non fault-tolerant
architecture while significantly outperforming a traditional RMT mechanism by 13%.
Previous proposals such as DCC results in a better performance for specific environ-
ments such as Multimedia and Web Server applications. However, REPAS achieves
the same goal by using half the hardware used in DCC. Additionally, our mechanism
is able to recover from transient faults with negligible performance impact even with
extremely high and unrealistic fault rates.

In [26], we presented a preliminary version of REPAS. This article extends our
previous work by thoroughly introducing our ideas in order to improve the reader’s
understanding. The evaluation section has been extended with the study of several
new applications from the ALPBench benchmark suite in addition to web server ap-
plications such as Apache and SpecJBB. Additionally, we have included a sensitivity
analysis as well as a stress study for the L1 cache size.

The rest of the paper is organized as follows. Section 2 reviews some related work.
In Sect. 3 we introduce DCC, a fault-tolerant mechanism, for comparison purposes.

D. Sánchez et al.

Section 4 introduces CRTR and presents its major drawbacks in a parallel shared-
memory environment. We present REPAS’s architecture in Sect. 5. Section 6 analyzes
the performance of REPAS in fault-free and faulty environments. Finally, Sect. 7
summarizes the main conclusions of this work.

2 Related work

There is a large body of literature on detection of soft errors which can be classified in
Error Coding, Redundancy and Symptom-based techniques, as we can see in Fig. 1.

Error detection and correction codes are based on the use of extra bits appended
to some data in a way that if a fault corrupts the information, this event can be de-
tected or even corrected. In this category, we can include detection techniques (such
as parity, checksum, CRC) and recovery techniques (such as ECC), which are imple-
mented in a large variety of memory devices from CDs and DVDs to dynamic RAM.
However, these techniques cannot be easily deployed in functional units [18].

Another approach to fault detection follows a scheme based on symptoms [13]
which is inspired in ReStore [32]. This study presents a characterization of how er-
rors affect either application or OS behavior with almost no hardware overhead. The
detection mechanism is based on the observation of abnormal events such as fatal
hardware traps, application exits or hangs in either the program or the OS. Upon a
fault is detected, the execution is rolled-back to a previous safe state. However, these
approaches cannot provide a solution for those errors which do not modify the be-
havior of applications such as those affecting values but not control flow.

Finally, we can find redundancy-based techniques which are, so far, the most stud-
ied and those in which we focus on. Unlike error correction codes in which each struc-
ture is individually protected, these mechanisms are able to cover multiple hardware
structures. Therefore, they are usually used to provide fault-tolerant architectures.

When comparing different redundancy mechanisms, we can point out four main
characteristics. Firstly, the sphere of replication (SoR) [22], which determines the
components in the microarchitecture that are replicated. Secondly, the synchroniza-
tion, which indicates how often redundant copies compare their computation results.

Fig. 1 Fault Tolerant mechanisms

A fault-tolerant architecture for parallel applications in tiled-CMPs

Thirdly, the input replication method, which defines how redundant copies observe
the same data. Finally, the output comparison method, which defines how the cor-
rectness of the computation is assured. Table 1 summarizes the main characteristics
of the proposals described in this section.

One of the first approaches to full redundant execution is Lockstepping [1], a pro-
posal in which two statically bound execution cores receive the same inputs and exe-
cute the same instructions step by step. Later, the family of techniques of Simultane-
ous and Redundantly Threaded processors (SRT) [22], SRT with Recovery (SRTR)
[31], Chip-level Redundantly Threaded processors (CRT) [19] and CRT with Re-
covery (CRTR) [6] were proposed, all of them based on a previous approach called
AR-SMT [24]. In SRT(R) redundant threads are executed within the same core. The
SoR includes the entire SMT pipeline but the first level of cache. The threads execute
in a staggered execution mode, using strict input replication and output comparison
on every instruction.

Other studies have chosen to allocate redundant threads in separate cores. This
way, if a permanent fault damages an entire core, a single thread can still be executed.
Among these studies it is worth mentioning CRT(R) [6, 19], Reunion [29], DCC [11]
and HDTLR [21]. In all these proposals, a fundamental point is how redundant pairs
communicate with each other, as we summarize next.

In Reunion, the vocal core is responsible for accessing and modifying shared
memory coherently. However, the mute core only accesses memory by means of
non-coherent requests called phantom requests, providing redundant access to the
memory system. This approach is called relaxed input replication. In order to detect
faults, the current architectural state is interchanged among redundant cores by using
a compression method called fingerprinting [28] through a dedicated point-to-point
fast bus. Relaxed input replication leads to input incoherences which are detected
as faults. As a result, checking intervals must be short (hundred of instructions) to
avoid excessive penalties. Violations in relaxed input replication induce a serialized

Table 1 Main characteristics of several redundant architectures

SoR Synchronization Input Output

replication comparison

SRT(R) Pipeline, Staggered Strict Instruction by

CRT(R) Registers execution (Queue-based) instruction

Reunion Pipeline, Loose coupling Relaxed input Fingerprints

Registers, replication

L1Cache

DCC Pipeline, Thousands of Consistency Fingerprints,

Registers, instructions window Checkpoints

L1Cache

HDTLR Pipeline, Thousands of Sub-epochs Fingerprints,

Registers, instructions Checkpoints

L1Cache

D. Sánchez et al.

execution (very similar to lock-stepped execution) between redundant cores, affect-
ing performance with a degradation of 22% over a base system when no faults are
injected.

Dynamic Core Coupling (DCC) [11] does not use any special communication
channel and reduces the overhead of Reunion by providing a decoupled execution
of instructions, making larger comparison intervals (thousand of instructions) and re-
ducing the network traffic. At the end of each interval, the state of redundant pairs is
interchanged and, if no error is detected, a new checkpoint is taken. As shown in [11],
the optimal checkpoint interval for DCC is 10,000 cycles, meaning that the time be-
tween a fault happening and its detection is usually very high. Input incoherences
are avoided by a consistency window which forbids data updates, while the members
of a pair do not have observed the same value. However, DCC uses a shared-bus as
interconnection network, which simplifies the consistency window mechanism. Nev-
ertheless, this kind of buses are not scalable due to area and power constraints. In [25],
DCC is studied using a direct network, and in this environment it is shown that the
performance degradation rises 19%, 39% and 42% for 8, 16, and 32 core pairs.

Recently, Rashid et al. proposed Highly-Decoupled Thread-Level Redundancy
(HDTLR) [21]. HDTLR architecture is similar to DCC, in which the recovery mecha-
nism is based on checkpoints which reflect the architecture changes between epochs,
and modifications are not made visible to L2 until verification. However, in HDTLR
each redundant thread is executed in different hardware contexts (computing wave-
front and verification wavefront), maintaining coherency independently. This way,
the consistency window is avoided. However, the asynchronous progress of the two
hardware contexts could lead to memory races, which result in different execution
outcomes. These events are masked by the architecture as a transient fault. In a worst-
case scenario, not even a rollback would guarantee forward progress. Thus, an order
tracking mechanism, which enforces the same access pattern in redundant threads, is
proposed. This mechanism implies the recurrent creation of sub-epochs by expensive
global synchronizations. Finally, as well as in DCC, the interconnection network used
in this study is a non-scalable shared-bus, which makes the communication process
easier than in a direct network.

3 Dynamic Core Coupling in a direct-network environment

Dynamic Core Coupling (DCC) [11] is a fault-tolerant mechanism for both sequen-
tial and parallel applications. DCC implements dual modular redundancy (DMR) by
binding pairs of cores in a CMP connected by a shared-bus. To provide fault toler-
ance, cores in a pair re-execute the program instructions to verify each other’s execu-
tion. In this section we deeply analyze the major benefits and drawbacks of DCC. In
particular, we focus on the impact over the coherence and consistency systems that
DCC has when it is ported from a shared-bus to a more scalable direct network.

3.1 DCC in a shared-bus

In DCC, a pair is formed by two cores: the master core and the slave core. To verify
the correct execution, at the end of a checkpoint interval each master–slave pair in-
terchange the compressed state of their register file and all the updates performed to

A fault-tolerant architecture for parallel applications in tiled-CMPs

memory. In order to amortize the compression time and save bandwidth these check-
points intervals are in the order of 10,000 cycles.

Both master and slave cores are allowed to read memory. However, only the master
is allowed to modify and share memory values. Writes to memory values are marked
in L1 cache by means of an unverified bit [16]. This bit indicates that the modification
of the block has not been verified yet. In order to avoid the propagation of errors,
unverified blocks are not allowed. At the end of every checkpoint interval all the
unverified bits are cleared.

To provide a correct execution in a parallel environment, DCC needs several
changes in both the coherence and consistency system. As said before, the master
core is responsible to share unverified data. From the point of view of coherence, this
means that the slave core is not allowed to respond to forwarded requests (request
from other cores), although invalidations should be taken accordingly by evicting
blocks from cache (without updating lower levels of the memory hierarchy). A com-
plete list of changes to the coherence protocol can be found in the original paper [11].

However, the major difficulty is to provide the master–slave consistency. This
means to ensure that both cores obtain the same view of the memory at all times.
The pair consistency is violated if between the time a redundant read is performed,
an intervening write modifies the value, preventing the second read to obtain the same
value than the first one. This problem is solved in DCC by a set of constraints referred
to the master–slave consistency window. Logically, a window represents a time inter-
val in which any remote intervention could cause a violation of the consistency. For
example, a consistency read window is open on any master read and is closed once
the slave core commits the same read. To avoid consistency violations, it must be
ensured that no write windows are opened for an address in which another window
has been previously open.

DCC implements this mechanism by means of an age table. The age table keeps
for every load and store, the number of committed loads and stores since the last
checkpoint. In Fig. 2(a) we can see how this mechanism works. A node requests an
upgrade or a read-exclusive for a block through the shared-bus (the request is seen by
all nodes) (1). Each core checks its LSQ (Load Store Queue) in case a speculative load
has been issued. If this is the case, the request is answered with a NACK (Negative
Acknowledgement) (2). In parallel, each core accesses its age table and reports it to
its pair (2). In the following cycle, every master core checks its own age with the slave
one. In the case there is a mismatch, it means that a window is open and, therefore,
the request is not accepted (NACKed) to avoid a master–slave inconsistency (3). If
no mismatch is found the request can be satisfied.

3.2 DCC in a direct-network environment

As the number of cores in a system grows, we observe undesirable effects affecting
the scalability of several elements. One of these elements is the interconnection net-
work. As shown in [10], the area required by a shared-bus or a crossbar as the number
of cores grows increases to the point of becoming impractical. Hence, we evaluated
[25] the performance impact of moving DCC toward a point-to-point unordered net-
work, a more scalable alternative for CMP designs.

D. Sánchez et al.

Fig. 2 DCC master–slave consistency

In order to accommodate the behavior of DCC to a direct network, we should in-
troduce several changes in both the coherence and consistency systems. In both cases
the problem is the same: without additional support, slave cores are unaware of co-
herence actions because of the loss of the shared-bus and its “broadcast” capabilities.
We solve this issue by redirecting coherence messages (upgrade, read-exclusive and
invalidation request) which arrive to master cores to their slave pairs, introducing,
unfortunately, a delay in the communication.

We can see how this problem affects the way in which the consistency window
works in Fig. 2(b). Upgrade, read-exclusive or invalidations are sent to master cores
which are the visible cores in the system (1). These requests can be directly NACKed
in case a speculative load is performed in the master (2). In parallel, the request needs
to be sent to the slave core which, so far, was unaware of the coherence action. The
slave core can deny the request through the master core in case a speculative load is
found in its LSQ (3). In the other case, it sends its age to its master pair. Finally, the
master core checks for a window violation and then informs the requestor (4). As we
can see, we introduce an additional hop in the communication for every coherence
action. The impact of these measures over the performance in studied and analyzed
in Sect. 6.3.

4 CRTR as a building block for reliability

As opposed to DCC in which the redundancy is taken by using master–slave pairs
in different cores (increasing the hardware overhead), another alternative consists of
the use of SMT cores. This way we can reduce both the hardware overheads and the
delay because of the communications between redundant pairs through the network.
Among different alternatives using SMT cores we focus on Chip-level Redundantly
Threaded multiprocessor (CRTR).

CRTR is a fault-tolerant architecture proposed by Gomaa et al. [6], an extension to
SRTR [31] for CMP environments. In CRTR, two redundant threads are executed on
separate SMT processor cores, providing transient fault detection. These threads are
called master (or leading) and slave (or trailing) threads, since one of them runs ahead
the other by a number of instructions determined by the slack. As in a traditional SMT
processor, each thread owns a PC register, a renaming map table and a register file,
while all the other resources are shared.

A fault-tolerant architecture for parallel applications in tiled-CMPs

In CRTR the master thread is responsible for accessing memory to load data. After
a master load commits, it bypasses it to the slave thread along with the accessed ad-
dress through a FIFO structure called Load Value Queue (LVQ) [22]. This structure
is accessed by the slave thread, preventing to observe different values from those the
master did, a phenomenon called input incoherence. To avoid associative searches in
the LVQ, the slave thread executes loads in program order so it only has to look up the
head of the queue. Fortunately, this handicap does not impact on the slave’s perfor-
mance in comparison to the master’s because the possible slowdown is compensated
with a speedup due to two factors:

– The memory latency of a slave load is very low since data are provided by the LVQ
(slave loads behave as cache hits).

– Branch mispredictions are avoided thanks to the Branch Outcome Queue
(BOQ) [22]. Therefore, the slave thread executes less instructions than the master.

The master uses the BOQ to bypass the outcome of a committed branch. Then, the
slave accesses the BOQ at a branch execution obtaining accurate predictions (perfect
outcomes, in fact). Availability for these hints is ensured thanks to the slack since, by
the time the slave needs to predict a branch, the master has already logged the correct
destination of the branch in the BOQ.

To avoid data corruptions, CRTR never updates cache before values are verified.
To accomplish this, when a store instruction is committed by the master, the value
and accessed address are bypassed to the slave through a structure called Store Value
Queue (SVQ) [22]. When a store commits in the slave, it verifies the SVQ and, if
the check succeeds, the L1 cache is updated. Finally, other structure used in CRTR is
the Register Value Queue (RVQ) [31]. The RVQ is used to bypass register values of
every committed instruction by the master, which are needed for checking.

Whenever a fault is detected, the recovery mechanism is triggered. The slave reg-
ister file is a safe point since no updates are performed on it until a successful ver-
ification. Therefore, the slave bypasses the content of its register file to the master,
pipelines of both threads are flushed and execution is restarted from the detected
faulty instruction.

As was said before, separating the execution of a master thread and its correspond-
ing slave in different cores adds the ability to tolerate permanent faults. However, it
requires a wide datapath between cores in order to bypass all the information re-
quired for checking. Furthermore, although wire delays may be hidden by the slack,
the cores exchanging data must be close to each other to avoid stalling.

4.1 Memory consistency in LVQ-based architectures

Although CRTR was originally evaluated with sequential applications [6, 19], the
authors argue that it could be used for multithreaded applications, too. In LVQ-based
systems such as CRTR in which loads are performed by the master thread and stores
are performed by the slave thread there is a significant reordering in the memory
instructions from the external perspective. In a sequential environment, it does not
represent any problem. However, for shared-memory workloads in a CMP scenario, if
no additional measures are taken, CRTR can lead to a severe performance degradation
due to consistency model constraints.

D. Sánchez et al.

Our evaluated architecture is a SPARC V9 [8] implementing the Total Store Order
(TSO) consistency model. In this consistency model, stores are buffered on a store
miss but loads are allowed to bypass these buffered stores. As a measure to improve
the performance, stores to the same cache block are coalesced in the store buffer.
Finally, atomic instructions and memory fences stall retirement until the store buffer
is drained.

In shared-memory applications such as those that can be found in either scientific
SPLASH-2 [34], web server, or multimedia workloads, the access to critical sec-
tions is granted by acquisition primitives relying on atomic instructions and memory
fences. We have noticed that, in this environment, CRTR could lead to a performance
loss because of the constraints of the consistency model to ensure mutual exclusion.

The key point is that, in CRTR the master thread never updates memory. Therefore,
when a master executes the code to access a critical section, the acquisition is not
made visible until the slave executes and verifies the correctness of the instructions
involved. This means that, for the rest of master threads, the ‘lock’ will remain free
for a while, enabling two (or more) of these threads to access a critical section as
illustrated in Fig. 3. To address this issue, which appears in CRTR without modifying
the memory consistency model, we propose, implement and evaluate two different
alternatives: atomic synchronization and atomic speculation.

4.1.1 CRTR with atomic synchronization

In order to preserve the underlying consistency model (TSO) and, therefore, the cor-
rect program execution, the most straightforward solution is to synchronize the mas-
ter and slave threads whenever atomic instructions or memory fences are executed.
This way, only when the slave thread catches up with the master and the SVQ drains,
the instruction is issued to memory. Therefore, the master thread is not allowed to
enter into a critical section without making the results of the acquisition mechanism
visible.

Note that this is a conservative approach which introduces a noticeable perfor-
mance degradation because the master stalls the retirement on every atomic/memory
fence instruction. The duration of this stall depends on two factors: (1) the size of
the slack, which determines how far the slave thread is, and (2) the number of write
operations in the SVQ, which must be written in L1 prior to the atomic operation to
preserve consistency.

4.1.2 CRTR with atomic speculation

One could argue that the previous alternative is not fair to competition. To this end,
we have evaluated a mechanism, which we called Atomic Speculation to relax even
more the consistency constraints imposed by TSO through the use of speculation.
Memory ordering speculation has been previously studied in [2, 5, 33] in order to
increase the performance of different consistency models.

What we try to accomplish with Atomic Speculation is to avoid the costly syn-
chronizations that atomic instructions and memory fences impose over CRTR. For
this, we allow loads and stores to bypass these instructions speculatively. In the same

A fault-tolerant architecture for parallel applications in tiled-CMPs

Fig. 3 Violation of the atomicity and isolation of a critical section without proper support. In the figure,
two master threads M0 and M1, and one slave thread S0 are presented (the corresponding slave for M1
has been omitted for simplicity). Part (a) shows a snapshot of the program execution. M0 runs ahead of
S0 by an amount of instructions determined by the slack. A striped portion of a bar means that updates to
memory have not been performed yet. Part (b) shows the situation when M0 acquires a lock and enters
into the critical section it protects. None of the modifications are visible yet. Part (c) shows that M1 also
acquires the lock. This is because M0 has not updated memory so the lock seems free for the rest of the
nodes in the system. M1 enters the critical section at the same time that M0. Finally, Part (d) shows that
when S0 validates the execution of M0 and updates memory values, it is too late since atomicity and
isolation of the critical section has been violated

fashion as in [5], the list of speculated blocks is maintained in a hardware structure
in the core.1 A hit in the table upon a coherence message from other core indicates
that the current speculation could potentially lead to a consistency violation. In this
situation, a conflict manager decides whether to roll back the receiver or the requestor
because of the miss-speculation. Eventually, if no violations have been detected, the
slave thread will catch up with the master. Then, the speculation table is flushed and
the speculative mode is finished.

In benchmarks with low to medium synchronization time this kind of speculative
mechanism results a good approach. However in other scenarios with highly con-
tended locks the frequency of rollbacks impacts severely on performance. Nonethe-
less, this mechanism comes at an additional cost such as the hardware needed to
roll back the architecture upon a consistency violation. Additionally, this solution
requires a change in the way atomicity is implemented since these accesses cannot

1The same goal could be accomplished by means of signatures as in certain hardware approaches of
Hardware Transactional Memory.

D. Sánchez et al.

perform the memory update to avoid fault propagation. Finally, there exists a power
consumption overhead due to the need of checking the speculation table for every
coherence request in speculative mode. Note, however, that we have not considered
these overheads in the evaluation section.

5 REPAS architecture

At this point, we present Reliable Execution for Parallel ApplicationS in tiled-CMPs
(REPAS) [26]. We create the reliable architecture of REPAS by adding CRTR cores to
form a tiled-CMP. However, we avoid the idea of separating master and slave threads
in different cores but instead using 2-way SMT cores. This way, the architecture
does not rely in the use of the expensive inter-core datapaths while it still offers fault
tolerance to soft errors. An overview of the core architecture is depicted in Fig. 4.
As in a traditional SMT processor, issue queues, register file, functional units and
L1-cache are shared among the master and slave threads. The shaded boxes in Fig. 4
represent the extra hardware introduced by CRTR and REPAS as explained in Sect. 4.

5.1 Sphere of replication in REPAS

In benchmarks with high contention resulting from synchronization, the approaches
described in Sect. 4.1 for CRTR may increase the performance degradation of the ar-
chitecture due to atomic synchronizations or too frequent rollbacks because of miss-
speculations. To avoid frequent master stalls derived from consistency, we propose
an alternative management of stores in REPAS. Instead of updating memory only
after verification, a more suitable approach is to allow updates in L1 cache without
checking. This measure implies that unverified data could go outside the SoR while
the master thread will not be stalled as a result of synchronizations.

Additionally, with this new behavior we effectively reduce the pressure on the
SVQ queue. In the original CRTR implementation, a master’s load must look into
the SVQ to obtain the value produced by an earlier store. This implies an associative
search along the structure for every load instruction. In REPAS, we eliminate these

Fig. 4 REPAS core architecture overview

A fault-tolerant architecture for parallel applications in tiled-CMPs

searches since the up-to-date values for every block are stored in L1 cache where they
can be accessed as usual.

However, this change in the SoR with respect to CRTR entails an increase in the
complexity of the recovery mechanism and the management of verified data. In our
approach, in contrast to CRTR, when a fault is detected, the L1 cache may have unver-
ified blocks. The recovery mechanism involves the invalidation of all the unverified
blocks in L1. In order to maintain L2 updated with the most up-to-date versions of
blocks, when stores are correctly checked by the slave, the values in the SVQ must
be written-back into L2. This way, the L2 cache remains consistent even if the block
in L1 is invalidated as a result of the mechanism triggered because of a fault. To per-
form these writebacks we use a small coalescing buffer to mitigate the increase of
the SVQ-to-L2 traffic in the same fashion as [21]. Despite the increasing SVQ-to-L2
traffic, there is no noticeable impact on performance.

5.2 The unverified bit

To avoid error propagation deriving from a wrong result stored in L1 cache by the
master, unverified blocks in cache must be identified. In order to do this, we introduce
an additional bit per L1 cache block called Unverified bit which is activated on any
master write. This way of buffering unverified data was previously introduced by
DCC [11]. When the Unverified bit is set on a cache block, it cannot be displaced
or shared with other nodes, effectively avoiding the propagation of a faulty block.
Eventually, the Unverified bit will be cleared when the corresponding slave thread
verifies the correct execution of the memory update. This mechanism is controlled
at the coherence protocol level by adding a new state (M_Unv) to the base MOESI2

protocol as we can see in Fig. 5. Modified blocks remain in M_Unv state until a
positive verification is performed by the slave. Upon this verification, the state of the
block transitions from M_Unv to M state, where it can be shared or replaced as usual.

However, clearing the Unverified bit is not a trivial task. We might find a problem
when a master thread updates a cache block several times before a verification takes

Fig. 5 Transition diagram with
the states involved with
Unverified blocks. M_Unv state:
modified by the master and
waiting for slave validation
(Check). While in this state, the
data sharing (GETS) is not
allowed

2In a MOESI protocol, blocks are within one of the following states: Modified, Ownership, Exclusive,
Shared and Invalid.

D. Sánchez et al.

place. If the first check performed by the slave is successful, it means that the first
memory update was valid. However, this does not imply that the whole block is com-
pletely verified since the rest of the updates have not been checked yet. We propose
two different mechanisms in order to address this issue.

The first mechanism is based on counters per L1-cache block. Each time that the
master thread updates a block it increments the counter which is eventually decre-
mented when a verification is performed. When the counter rises 0, a transition from
M_Unv to M is performed meaning that the block has been successfully verified.
However, these counters have a deep impact in hardware overhead. With small 4-
bit counters (which only can record up to 15 consecutive updates) the area overhead
becomes around 6% with a 64 KB L1 cache and 64-byte blocks.

Thus, we have adopted a more lightweight mechanism based on the observation of
the SVQ: we know if a block needs more slave checks before clearing the unverified
bit by checking if the block appears more than once in the SVQ. If it does, more
verifications need to be performed. Yet, this measure implies an associative search in
the SVQ. Nonetheless, as we said before, we eliminate much of the pressure produced
by master’s loads. In quantitative terms, in the original CRTR proposal there was
an associative search every master’s load, and now we have an associative search
for every slave’s store. This results in a significant reduction of associative searches
within the SVQ, given the fact that the load/store ratio for the studied benchmarks is
almost 3 to 1. Furthermore, as this operation is performed in parallel to the access to
the L1 cache, we do not expect an increase in the L1-cache access latency.

5.3 Fetch and ROB occupancy policies

The most common fetch policy for SMT processors is round-robin in which each
thread fetches instructions in alternative cycles. In REPAS, the fetch policy needs to
interact with the slack mechanism, which significantly differs from the requirements
in a typical SMT processor. As in CRTR [6], we have adopted a slightly different
policy. When the distance between the two threads is below the threshold imposed by
the slack, only the master thread is allowed to fetch new instructions. Contrarily, when
the distance is above the threshold, the fetch priority is given to the slave. However,
in order to use all the available bandwidth, if the slack is not satisfied but for some
reason the master thread cannot fetch more instructions, we allow the slave thread
to fetch. In the remaining stages of the pipeline such as decode, issue, execution and
commit, the used policy is FIFO.

We can experience a noticeable performance degradation if the master thread
fetches enough instructions to completely fill the shared ROB. This happens since the
master thread runs some instructions ahead of the slave. In this scenario, the master
thread cannot fetch more instructions because of the previously described fetch pol-
icy, neither the slave because the ROB (Re-Order Buffer) is full. So, until the ROB
entries are released, the two threads are stalled and cannot fetch new instructions.

In order to solve this problem, our approach consists of keeping a percentage of
free entries in the shared ROB for the slave. This way, we avoid both threads to stall
due to ROB contention. Our experimental results show that 20% of total ROB’s free
entries is the best case in order to reduce this penalty.

A fault-tolerant architecture for parallel applications in tiled-CMPs

An alternative approach would be to use a private ROB for each thread (or a static
partitioning). However, the requirements of the master and slave threads are changing
constantly due to the slack mechanism, branch mispredictions and long latency mem-
ory operations. In this scenario, a static partitioning is not able to maximize the use
of all the available ROB entries. Therefore, a fully shared ROB is the best approach
to the architecture presented in REPAS.

5.4 Reliability in the forwarding logic

In our design, the integrity of the information within structures as caches or addi-
tional buffers is protected by means of ECC codes. We assume SECDED (Single
Error Correction, Double Error Detection) with an additional hardware cost of 12.5%
(1 ECC byte per each 8 data bytes). However, a traditional issue derived from the
use of queues to bypass data is the potential problems arising from errors in the for-
warding logic. An error in the LSQ forwarding logic in the master executing a load
instruction, might cause an incorrect bypass to the corresponding slave’s load. If this
happens, the slave thread would consume a wrong values from the LVQ leading to
a SDC (Silent Data Corruption).

To address this potential problem, in REPAS we use a double check: the slave
thread compares the load values obtained by means of its own LSQ with the corre-
sponding values in the LVQ. This way, if either the forwarding logic of the master or
the slave fail, this check will detect a mismatch in the values signaling a fault. This
mechanism result is appropriate to ensure the correction of the data forwarding in
the LSQ. Nevertheless, there are some environments in which the coverage could not
be considered good enough. In those cases, another mechanism at microarchitecture
level as proposed in [3] could be applied, achieving almost a 100% AVF (Architec-
tural Vulnerability Factor) reduction while affecting performance in just 0.3%.

6 Evaluation

6.1 Simulation environment

The methodology used in the evaluation of this paper is based on full-system simu-
lation. We have implemented all the previously described proposals by extending the
multiprocessor simulator GEMS [15] from the University of Wisconsin. GEMS is an
execution-driven simulator based on Virtutech Simics [14] which we have used to run
several parallel applications.

Our study has been focused on a 16-core in which each core is a dual-threaded
SMT, which has its own private L1 cache, a portion of the shared L2 cache and a
connection to the on-chip network. The architecture follows the Total Store Order
(TSO). The coherence protocol is directory-based MOESI. The main parameters of
the architecture are shown in Table 2(a). Among them, it is worth mentioning the
2D-mesh topology used as well as the 256-instruction slack fetch as a result of the
sensitivity analysis performed in Sect. 6.2.

For the evaluation, we have used a selection of scientific applications: Barnes,
Cholesky, FFT, Ocean, Radix, Raytrace, Water-NSQ and Water-SP are from the

D. Sánchez et al.

Table 2 Characteristics of the evaluated architecture and used benchmarks

(a) System characteristics

16-Way tiled CMP system Cache parameters

Processor speed 2 GHz Cache line size 64 bytes

Execution mode Out-of-order L1 cache

Max. Fetch / retire rate 4 instructions / cycle Size 64 KB

ROB 128 entries Associativity 4 ways

FUs 6 IALU, 2 IMul Hit time 1 cycle

4 FPAdd, 2 FPMul

Consistency model Total Store Order (TSO)

Memory parameters Shared L2 cache

Coherence protocol Directory-based MOESI Size 512 KB/tile

Write buffer 64 entries Associativity 4 ways

Memory access time 300 cycles Hit time 15 cycles

Network parameters Fault-tolerance parameters

Topology 2D mesh LVQ 64 entries

Link latency (one hop) 4 cycles SVQ 64 entries

Flit size 4 bytes RVQ 80 entries

Link bandwidth 1 flit/cycle BOQ 64 entries

Slack Fetch 256 instructions

(b) SPLASH-2 + Scientific Benchmarks

Benchmark Size Benchmark Size

Barnes 8192 bodies, 4 time steps Raytrace 10 Mb, teapot.env scene

Cholesky tk16.0 Tomcatv 256 points, 5 iterations

FFT 256 K complex doubles Unstructured Mesh.2K, 5 time steps

Ocean 258 × 258 ocean Water-NSQ 512 molecules, 4 time steps

Radix 1M keys, 1024 radix Water-SP 512 molecules, 4 time steps

(c) ALPBench + Web Servers

Benchmark Size Benchmark Size

FaceRec ALPBench training input Speechrec ALPBench training input

MPGDec 525_tens_040.mv2 Apache 100,000 HTTP transactions

MPGEnc Output from MPGDec SpecJBB 8,000 transactions

SPLASH-2 [34] benchmark suite. Tomcatv is a parallel version of a SPEC benchmark
and Unstructured is a computational fluid dynamics application. Additionally, we
have run several multimedia applications: Facerec, MPGDec, MPGEnc, Speechrec
from ALPBench benchmark suite [12]. Finally, we have studied two well known web
server applications such as Apache and SpecJBB. For the studies, each application
has been executed with 16 software threads, each one bound to a different processor
core. This means 16 hardware threads for the base case and 32 hardware threads for
the rest (16 master threads plus 16 slave threads). An alternative base case would
consist of executing 32 software threads for every application (as we have a 16-core

A fault-tolerant architecture for parallel applications in tiled-CMPs

CMP, being each core a 2-way SMT). However, because of the low scalability of
some applications, specially the scientific ones, evaluated results are not homoge-
neous when you compare a 16-threaded application (fault-tolerant machine having
16 masters) with a 32-threaded application. Therefore, in order to isolate the non-
scalability issues and perform a fairer comparison, we have chosen as base case the
one which uses the same number of threads (16) as the evaluated fault-tolerant archi-
tectures which is, in fact, the common approach followed in other previous proposals
[6, 9, 31].

The sizes and parameters for the studied applications are reflected in Table 2(b)
and Table 2(c), respectively. We have performed all the simulations with different
random seeds for each benchmark to account for the variability of multithreaded
execution. This variability is represented by the error bars in the figures, enclosing
the confidence interval of the results.

For comparison purposes we have implemented several previous proposals. As
explained in Sect. 3 DCC incurs in an additional performance degradation when it
is ported from a shared-bus to a direct network. The use of shared-buses will be no
longer possible in future CMP architectures due to area, scalability and power con-
straints issues. Therefore, we compare our proposed REPAS against DCC when a
direct network such as a 2D-mesh is used. Additionally, we compare REPAS against
the performance of SMT-dual and DUAL. SMT-dual models a coarse-grained redun-
dancy approach which represents a 16-core 2-way SMT architecture executing two
copies (A and A′) of each studied application. Within each core, one thread of A and
one thread of A′ are executed. As mentioned in [22], this helps to illustrate that the
performance degradation occurred within a SMT processor when two copies of the
same thread are running within the same core. DUAL represents a 16-core non-SMT
architecture executing two copies of the same program. In the case of 16-threaded
applications it means that each processor executes 2 threads (1 thread of every appli-
cation). In DUAL, the OS is the responsible of the schedule of the different software
threads among the different cores.

6.2 Slack size analysis

The slack fetch mechanism maintains a constant delay between master and slave
threads. This delay results in a performance improvement (due to thread-pairs coop-
eration) because of factors such as the reduction of the stall time for the L1 cache
misses in the slave and the better accuracy in the execution of slave’s branches thanks
to the BOQ. From this perspective, we would choose to use a slack as big as possible.

However, a larger size of the slack also requires an increase in the size of structures
like the SVQ or the LVQ to avoid stalls. Furthermore, in a shared-memory environ-
ment, a large slack causes that the average life latency of a store (the time spent
between the execution of the store and its validation) is increased.

This negatively affects performance because unverified blocks cannot be shared or
replaced from cache. Figure 6 shows a sensitivity analysis for different sizes of the
slack. The slack is measured in number of fetched instructions between the master
and the slave thread. The bars are normalized with respect to the 32 slack size. As is
shown, the increase of the slacks size to 256 instructions obtains a noticeable perfor-
mance improvement. However, further increasing the slack size, is counterproductive.

D. Sánchez et al.

Fig. 6 Sensitivity analysis for the optimal size of the slack

On average, a slack of 256 instructions is 7% better than a slack of 32. Therefore, for
subsequent experiments we will use 256 as our target slack.

6.3 Overhead of the fault-free case

We compare our proposed REPAS architecture against CRTR with the alterna-
tive mechanisms, atomic synchronization and atomic speculation, as explained in
Sect. 4.1. As many other previous proposals [11, 19, 29], we initially present the re-
sults of our mechanism in a fault-free environment in order to quantify the execution
time overhead for the common case.

Figure 7 plots the results of REPAS normalized with respect to a 16-core system
in which there is not any fault-tolerant mechanism. CRTR_sync refers to the atomic
synchronization mechanism for CRTR and CRTR_spec refers to the atomic specula-
tion mechanism. As derived from Fig. 7, REPAS outperforms CRTR_sync for both
groups of benchmarks (scientific and multimedia/web) by 13% and 6%, respectively,
while the execution time overhead rises a 25%, on average, for all the studied bench-
marks.

The main source of degradation in CRTR_sync comes from the frequent synchro-
nizations between master and slave threads because of the execution of atomic in-
structions and memory fences. This effect can be better observed in those benchmarks
with more synchronizations such as Ocean, Raytrace and Unstructured, in which the
performance exhibited by CRTR_sync is even worse.

As was expected, CRTR_spec outperforms CRTR_sync because of the effective-
ness of the speculative mechanism. However, in benchmarks with highly contended

A fault-tolerant architecture for parallel applications in tiled-CMPs

Fig. 7 Execution time overhead over a non fault-tolerant 16-core architecture

locks such as Ocean, Raytrace and Unstructured the number of rollbacks due to miss-
speculation have a significant impact on performance in relation to REPAS. On aver-
age, REPAS is a 6% faster than CRT_spec for SPLASH-2 benchmarks, although for
Multimedia and Web Server applications CRTR_spec shows a performance similar
to REPAS, benefited from the low synchronization exhibited by these applications.

The performance degradation reported for DCC when evaluated within a shared-
bus is roughly 5% for several parallel applications [11]. However, as explained in
Sect. 3, this overhead is increased when a direct network is used. As explained, the
major source of degradation is related to the mechanism to assure the master–slave
consistency which allows to avoid input incoherences.

As we can see in Fig. 7, REPAS is able to outperform DCC by 27% for scientific
applications. However, for multimedia and web servers benchmarks, the performance
exhibited by DCC is better than the performance of REPAS by 4%. The reason of
this behavior is that, while in scientific benchmarks the cores share a lot of data,
multimedia and web servers applications are multithreaded applications in which the
sharing of data is reduced to some extent, so that the degradation because of the
consistency window affects less the performance. In any case, we have to recall that
while REPAS uses SMT cores to provide fault tolerance, DCC uses twice the number
of cores than REPAS. This reduces the overall throughput of a system implementing
DCC in more than a 100% over a non fault-tolerant base case.

Finally, as we can see in Table 3, REPAS is 20% faster than SMT-dual on average
which, at the same time, is slower than CRTR_ sync and CRTR_spec by 10% and
17%, respectively. The performance degradation of SMT-dual is because of the bad
interaction of different threads in the same core. While in REPAS and CRTR threads

D. Sánchez et al.

Table 3 Average normalized execution time for the studied benchmarks

REPAS CRTR_sync CRTR_spec DCC SMT-dual DUAL

(16 cores) (16 cores) (16 cores) (32 cores) (16 cores) (16 cores)

Normalized 1.25 1.35 1.28 1.40 1.45 1.88

execution time

collaborate (LVQ, SVQ, BOQ) in SMT-dual threads compete against each other for
the resources of the core affecting performance. In the same way, DUAL affects per-
formance noticeably. This is because in DUAL, threads must be re-scheduled by the
OS to be executed in each core (remind that we have 16 cores but 32 threads, 16
threads for every application). This adds an extra overhead of almost 2× in the com-
putation. As a final remark we can conclude that SMT approaches could benefit from
a better performance than non-SMT approaches.

6.4 Performance in a faulty environment

We have shown that REPAS introduces an overhead in a fault-free scenario although
outperforming several previous proposals. Nonetheless, REPAS guarantees the cor-
rect execution of shared-memory applications even in the presence of soft errors. The
failures and the necessary recovery introduce an additional overhead that we study
now.

Figure 8 shows the execution time overhead of REPAS under different fault rates
normalized with respect to a non-faulty environment case. Failure rates are expressed
in terms of faulty instructions per million of cycles per core. For a realistic fault ratio,
the performance of REPAS is barely affected so, for this experiment, we have used
fault rates which are extremely higher than expected in a real scenario in order to
show the kindness of the proposed architecture.3

As we can see, REPAS is able to tolerate rates of 100 faulty instructions per mil-
lion cycles per core with an average performance degradation of 1.6% in the exe-
cution time in comparison to REPAS in a non-faulty environment. Only when the
fault ratio is increased to the huge (and unrealistic) amount of 1000 failures per mil-
lion cycles, the performance shows a noticeable degradation of 8.6%. As expected,
the performance degradation rises almost linearly with the increase of the fault ratio
although it still allows the correct execution of all the studied benchmarks.

The time spent on every recovery varies across the executed benchmark. This time
includes the invalidation of all the unverified blocks and the rollback (bypass the safe
state of the slave thread to the master) of the architecture up to the point where the
fault was detected. On average this time is 80 cycles. In contrast, other proposals
such as DCC spend thousands of cycles to achieve the same goal (10,000 cycles in a
worst-case scenario). This clearly shows the greater scalability of REPAS in a faulty
environment.

3As an example, a ratio of 10 failures per million cycles per core is equivalent to a MTTF of 3,125×10−6 s
for the proposed architecture.

A fault-tolerant architecture for parallel applications in tiled-CMPs

Fig. 8 REPAS overhead under different fault rates (in terms of faulty instructions per million per core)

6.5 Sharing unverified blocks

As initially implemented, REPAS does not allow the sharing of unverified blocks.
This conservative constraint avoids the propagation of errors among cores. However,
it is not expected that it imposes a high performance degradation, since the verifica-
tion of blocks is quite fast (in the order of hundred cycles). On the contrary, DCC
[11] is based on a speculative sharing policy. Given that blocks are only verified at
checkpointing creation intervals (i.e., 10,000 cycles), avoiding speculative sharing in
DCC would degrade performance in an unacceptable way.

For comparison purposes, we have studied the effect of sharing unverified blocks
in REPAS. The mechanism is straightforward to implement: accept forward requests
for blocks in unverified state. However, since we do not support checkpointing capa-
bilities as DCC, to avoid unrecoverable situations, cores obtaining speculative data
cannot commit. This way, if a fault is detected by the producer of the block, all the
consumer cores can recover by flushing their pipeline in a similar way as is done when
a branch is mispredicted. An additional disadvantage is that the producer of the block
must send a message indicating whether the shared block is faulty or not, increasing
the network traffic. Luckily, the sharing information is gathered from the sharers list
as in a conventional MOESI protocol, so we do not need additional hardware to keep
track of speculative sharings.

Finally, we have not considered to migrate unverified data speculatively, since
an expensive mechanism would be necessary to keep track of the changes in the
ownership, the sharing chains as well as the original value of the data block (for
recovery purposes).

D. Sánchez et al.

Fig. 9 Normalized execution time with and without the speculative mechanism

As we can see in Fig. 9, the performance improvement for the speculative mech-
anism is not noticeable. Just for benchmarks such as Ocean, Raytrace, Unstructured
and MPGEnc, speculation obtains a slight improvement. Table 4 reflects that specu-
lations are highly uncommon. Furthermore, if we consider the time to verification of
speculative blocks it can be seen that, on average, we could benefit from around 100
cycles, although they cannot be fully amortized because the pipeline is closed at com-
mit. This explains why speculative sharings do not obtain much benefit in REPAS.
Overall, the speculative sharing mechanism seems inadequate for the studied bench-
marks, since it is not worth the incremented complexity in the recovery mechanism
of the architecture.

6.6 L1 cache size stress

An unverified block cannot be evicted from L1 cache since potentially faulty blocks
would go out of the SoR (Sphere of Replication). In an environment with high pres-
sure over the L1 cache, this can cause a performance degradation due to the un-
availability of replacements to be completed. In this section, we study how REPAS
behaves with different configurations.

It could be expected that the stress of cache size would impact negatively in the
performance of REPAS. However, the results show that this forecast is not fulfilled.
Figure 10 represents the execution time of REPAS for different L1 cache configu-
rations. Each set of bars is normalized with respect to the case base with the same
configuration.

Contrarily to expected, smaller caches do not degrade performance in REPAS but
even improve it in comparison with the base case (1 KB, 2 KB and 4 KB perform

A fault-tolerant architecture for parallel applications in tiled-CMPs

Table 4 Number of speculative sharings and time needed to verify those blocks

BENCHMARK Speculations Time to verification

Barnes 12860 92.5

Cholesky 5758 161.5

FFT 128 94.5

Ocean 13786 94.5

Radix 710 82

Raytrace 37031 92

Tomcatv 250 91

Unstructured 223524 107

Water-NSQ 1585 98

Water-SP 339 89.5

Apache 135 99.5

Facerec 0 –

JBB 877 94.5

MPGDec 0 –

MPGEnc 48997 123.5

Speechrec 0 –

AVG – 101.875

better than the 64 KB configuration in comparison with the base case with the same
configuration). The reason for this behavior is subtle but it can be easily explained
if we attend to the REPAS mechanism. As we said before, a smaller cache penalize
REPAS because of the increased latency of the L1 replacements. However, a smaller
cache also penalizes the architecture due to the increased L1 cache miss ratio. The
key point here is that, while in the base case the processor is stalled on a cache miss,
in REPAS L1 misses (or master stalls in general) are used by the slave thread to
continue executing program instructions, thus making forward progress.

Finally, an approach to allow the eviction of unverified blocks from L1 to L2 is
to use a small VB (Victim Buffer). With this mechanism, L1 cache replacements
of these blocks are performed out of the critical path. As we can see in Fig. 10,
the VB improves the performance for 1 KB, 2 KB and 4 KB configurations. For
the rest of them, there are not noticeable gains because the number of unverified
blocks to replace from L1 cache is very low. Our experimental analysis states that, on
average for all studied benchmarks, the optimal size for the VB is 14 entries, which
we consider acceptable without spending too much hardware. Beyond that point there
are no noticeable performance gains.

7 Conclusions and future work

Processors are becoming more susceptible to transient faults due to several factors
such as technology scaling, voltage reduction, temperature fluctuations, process vari-

D. Sánchez et al.

Fig. 10 Normalized execution time for different L1 cache sizes with and without Victim Buffer

ation or signal cross-talking. Although there are many approaches exploring relia-
bility for single-threaded applications, shared-memory environments have not been
thoroughly studied.

Proposals like DCC or Reunion use DMR (Dual Modular Redundancy) to provide
fault tolerance in microarchitectures. However, they impose a 2× hardware overhead,
an unacceptable result for manufacturers which claim for a 10% maximum extra area
impact. Hence, in this paper we propose REPAS: Reliable Execution for Parallel Ap-
plicationS in tiled-CMPs, a novel RMT approach to provide transient fault detection
and recovery in parallel and shared-memory applications.

While other proposals use large amounts of extra hardware, RMT architectures
perform reliable computation by redundant thread execution (master and slave) in
SMT cores. Therefore, the hardware overhead is kept low. However, the architectural
support for shared-memory applications has remained under-explored so far. In our
study, we show that atomic operations induce a serialization point between master
and slave threads, a problem which may be minimized by means of speculation in
the consistency model. Although this solution requires both a change in the way
atomicity is implemented and a hardware increase to support the speculation, the
degradation in low to medium contention benchmarks remains moderated. However,
in scenarios with high contention the performance is severely affected. In REPAS we
effectively avoid this overhead due to synchronization or miss-speculations by eager
updates of the L1 cache.

We have implemented our solution in a full-system simulator and presented the
results compared to a system in which no fault-tolerant mechanisms have been in-
troduced. We show that, in a fault-free scenario, REPAS reduces the overall execu-

A fault-tolerant architecture for parallel applications in tiled-CMPs

tion time down to 25%, outperforming CRTR, a traditional RMT implementation.
We have also compared REPAS with DCC, showing some winnings in certain ap-
plications but losings in others. Nonetheless, REPAS uses half the number of cores
than DCC, providing a better throughput. We have also evaluated the performance of
REPAS in a faulty environment, showing an increase of just 2% of execution time
with a huge fault ratio of 100 faults per million of cycles per core. This ratio is much
higher than expected in a real scenario, so negligible slowdown is reported in a real-
istic faulty environment.

Finally, we have performed a L1 cache size stress in order to study the behavior
of REPAS due to its inability to evict blocks from cache until verification. Results
show that even with smaller cache sizes, the performance degradation of REPAS is
kept in acceptable margins. Additionally, a Victim Buffer to hold unverified blocks
has been used in REPAS showing slight performance improvement (up to 4%) for
configurations which highly stress the L1 cache.

As part of our future work, we are studying new mechanisms to improve the col-
laboration between master and slave threads. One of our main ideas is to detect the
execution of critical path instructions in order to increase the priority of the affected
thread. This way, we could even improve the performance of REPAS.

Acknowledgements The authors would like to thank the anonymous reviewers for their detailed com-
ments and valuable suggestions, which have increased the quality of this paper. This work has been
jointly supported by the Spanish MEC and European Commission FEDER funds under grants “Consolider
Ingenio-2010 CSD2006-00046” and “TIN2009-14475-C04-02”.

References

1. Bartlett J, Gray J, Horst B (1987) Fault tolerance in tandem computer systems. In: The evolution of
fault-tolerant systems. doi:10.1.59.6080

2. Blundell C, Martin MM, Wenisch TF (2009) Invisifence: performance-transparent memory ordering
in conventional multiprocessors. In: Proc of the 36th annual international symposium on computer
architecture (ISCA ’09), Austin, TX, USA, pp 233–244

3. Carretero J, Vera X, Chaparro P, Abella J (2008) On-line failure detection in memory order buffers.
In: IEEE international test conference, ITC 2008, pp 1–10

4. Francisco J, Villa MEA, Garcýa JM (2016) Toward energy-efficient high-performance organizations
of the memory hierarchy in chip-multiprocessors architectures. J Comput Sci Technol 6:1–7

5. Gniady C, Falsafi B (2002) Speculative sequential consistency with little custom storage. In: Proc of
the 2002 international conference on parallel architectures and compilation techniques (PACT ’02),
pp 179–188

6. Gomaa M, Scarbrough C, Vijaykumar TN, Pomeranz I (2003) Transient-fault recovery for chip mul-
tiprocessors. In: Proc of the 30th annual int’ symp on computer architecture (ISCA’03), San Diego,
California

7. González A, Mahlke S, Mukherjee S, Sendag R, Chiou D, Yi JJ (2007) Reliability: fallacy or reality?
IEEE MICRO 27(6). doi:10.1109/MM.2007.107

8. International VS, Weaver DL, Germond T (1992) The sparc architecture manual. doi:10.1.1.106.2805
9. Kumar S, Aggarwal A (2008) Speculative instruction validation for performance-reliability trade-off.

In: Proc of the IEEE 14th int’ symp on high performance computer architecture (HPCA’08), Salt Lake
City

10. Kumar R, Zyuban V, Tullsen DM (2005) Interconnections in multi-core architectures: understand-
ing mechanisms, overheads and scaling. In: Proc of the 32th int’l symp on computer architecture
(ISCA’05), Madison, Wisconsin

http://dx.doi.org/10.1.59.6080
http://dx.doi.org/10.1109/MM.2007.107
http://dx.doi.org/10.1.1.106.2805

D. Sánchez et al.

11. LaFrieda C, Ipek E, Martinez JF, Manohar R (2007) Utilizing dynamically coupled cores to form a
resilient chip multiprocessor. In: Proc of the 37th annual IEEE/IFIP int’ conference on dependable
systems and networks (DSN’07), Edinburgh, UK. doi:10.1109/DSN.2007.100

12. Li ML, Sasanka R, Adve SV, Chen KY, Debes E (2005) The alpbench benchmark suite for complex
multimedia applications. In: Proc of the IEEE int symp on workload characterization, pp 34–45

13. Li ML, Ramachandran P, Sahoo S, Adve S, Adve V, Zhou Y (2008) Understanding the propagation of
hard errors to software and implications for resilient system design. In: Proc of the 13th int’ conference
on architectural support for programming languages and operating systems (ASPLOS’08), Seattle,
WA

14. Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hallberg G, Hogberg J, Larsson F,
Moestedt A, Werner B, Werner B (2002) Simics: a full system simulation platform. Computer 35(2).
doi:10.1109/2.982916

15. Martin MMK, Sorin DJ, Beckmann BM, Marty MR, Xu M, Alameldeen AR, Moore KE, Hill MD,
Wood DA (2005) Multifacet’s general execution-driven multiprocessor simulator (gems) toolset.
SIGARCH Comput Archit News 33(4). doi:10.1.1.109.5362

16. Martínez JF, Renau J, Huang MC, Prvulovic M, Torrellas J (2002) Cherry: checkpointed early re-
source recycling in out-of-order microprocessors. In: Proc of the int’ symp on microarchitecture (MI-
CRO’02), Istanbul, Turkey. citeseer.ist.psu.edu/martinez02cherry.html

17. Mastipuram R, Wee EC (2004) Soft error’s impact on system reliability. Electronics Design, Strategy,
News (EDN) pp 69–74. URL http://www.edn.com/article/CA454636.html

18. Mukherjee S (2008) Architecture design for soft errors. Morgan Kauffman, San Mateo
19. Mukherjee S, Kontz M, Reinhardt SK (2002) Detailed design and evaluation of redundant multi-

threading alternatives. In: Proc of the 29th annual int’ symp on computer architecture (ISCA’02),
Anchorage, Alaska

20. Olukotun K, Nayfeh BA, Hammond L, Wilson K, Chang K (1996) The case for a single-chip multi-
processor. In: Proceedings of the 7th international conference on architectural support for program-
ming languages and operating systems. ACM Press, New York, pp 2–11. doi:10.1145/237090.237140.
http://doi.acm.org/10.1145/237090.237140

21. Rashid M, Huang M (2008) Supporting highly-decoupled thread-level redundancy for parallel pro-
grams. In: Proc of the 14th int’ symp on high performance computer architecture (HPCA’08), Salt
Lake City

22. Reinhardt SK, Mukherjee S (2000) Transient fault detection via simultaneous multithreading. In:
Proc of the 27th annual int’ symp on computer architecture (ISCA’00), Vancouver, British Columbia,
Canada

23. Ros A, Acacio ME, García JM (2010) A scalable organization for distributed directories. J Syst Archit
56(2–3):77–87

24. Rotenberg E (1999) Ar-smt: A microarchitectural approach to fault tolerance in microprocessors. In:
Proc of the 29th annual int’ symp on fault-tolerant computing (FTCS’99), Madison, Wisconsin

25. Sánchez D, Aragón JL, García JM (2008) Evaluating dynamic core coupling in a scalable tiled-
cmp architecture. In: Proc of the 7th int workshop on duplicating, deconstructing, and debunking
(WDDD’08). In conjunction with ISCA’08, Beijing, China

26. Sánchez D, Aragón JL, García JM (2009) Repas: reliable execution for parallel applications in tiled-
cmps. In: Proc of the 15th int European conference on parallel and distributed computing (Euro-Par
2009), Delft, Netherlands, pp 321–333

27. Selse (2006) Selse ii final remarks. In: The 2nd workshop on system effects of logic soft errors
28. Smolens JC, Gold BT, Kim J, Falsafi B, Hoe JC, Nowatzyk AG (2004) Fingerprinting: Bounding

soft-error-detection latency and bandwidth. IEEE MICRO 24(6). doi:10.1109/MM.2004.72
29. Smolens JC, Gold BT, Falsafi B, Hoe JC (2006) Reunion: Complexity-effective multicore redundancy.

In: Proc of the 39th annual IEEE/ACM int’ symp on microarchitecture (MICRO 39), Orlando, Florida,
p 42. doi:10.1109/MICRO.2006.42

30. Taylor MB, Kim J, Miller J, Wentzlaff D, Ghodrat F, Greenwald B, Hoffman H, Johnson P, Lee JW,
Lee W, Ma A, Saraf A, Seneski M, Shnidman N, Strumpen V, Frank M, Amarasinghe S, Agarwal
A (2002) The raw microprocessor: a computational fabric for software circuits and general-purpose
programs. IEEE MICRO 22(2):25–35

31. Vijaykumar T, Pomeranz I, Cheng K (2002) Transient fault recovery using simultaneous multithread-
ing. In: Proc of the 29th annual int’ symp on computer architecture (ISCA’02), Anchorage, Alaska

32. Wang NJ, Patel SJ (2006) Restore: Symptom-based soft error detection in microprocessors. IEEE
Trans Depend Secure Comput 3(3). doi:10.1109/TDSC.2006.40

http://dx.doi.org/10.1109/DSN.2007.100
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1.1.109.5362
http://citeseer.ist.psu.edu/martinez02cherry.html
http://www.edn.com/article/CA454636.html
http://dx.doi.org/10.1145/237090.237140
http://doi.acm.org/10.1145/237090.237140
http://dx.doi.org/10.1109/MM.2004.72
http://dx.doi.org/10.1109/MICRO.2006.42
http://dx.doi.org/10.1109/TDSC.2006.40

A fault-tolerant architecture for parallel applications in tiled-CMPs

33. Wenisch TF, Ailamaki A, Falsafi B, Moshovos A (2007) Mechanisms for store-wait-free multiproces-
sors, pp 266–277

34. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A (1995) The SPLASH-2 programs: characterization and
methodological considerations. In: Proc of the 22th int’ symp on computer architecture (ISCA’95),
Santa Margherita Ligure, Italy

35. Ziegler J, Lanford WA (1981) The effect of sea level cosmic rays on electronic devices. J Appl Phys
52:4305–4312

36. Zielger JF, Puchner H (2004) SER-History, Trends and Challenges. Cypress Semiconductor Corpora-
tion

	A fault-tolerant architecture for parallel applications in tiled-CMPs
	Abstract
	Introduction
	Related work
	Dynamic Core Coupling in a direct-network environment
	DCC in a shared-bus
	DCC in a direct-network environment

	CRTR as a building block for reliability
	Memory consistency in LVQ-based architectures
	CRTR with atomic synchronization
	CRTR with atomic speculation

	REPAS architecture
	Sphere of replication in REPAS
	The unverified bit
	Fetch and ROB occupancy policies
	Reliability in the forwarding logic

	Evaluation
	Simulation environment
	Slack size analysis
	Overhead of the fault-free case
	Performance in a faulty environment
	Sharing unverified blocks
	L1 cache size stress

	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

