
A Log-Based Redundant Architecture for Reliable Parallel Computation

Daniel Sánchez, Juan L. Aragón and José M. Garcı́a

Departamento de Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia, Spain

Email: {dsanchez, jlaragon, jmgarcia}@ditec.um.es

Abstract

CMOS scaling exacerbates hardware errors making re-

liability a big concern for recent and future microarchi-

tecture designs. Mechanisms to provide fault tolerance in

architectures must accomplish several objectives such as

low performance degradation, power consumption and area

overhead. Several studies have been already proposed to

provide fault tolerance for parallel codes. However, these

proposals are usually implemented over non-realistic envi-

ronments including the use of shared-buses among proces-

sors or modifying highly optimized hardware designs such

as caches. Our main design goal is to provide transient fault

detection and recovery while modifying hardware as less as

possible.

To this end, we propose LBRA based on a Hardware

Transactional Memory (HTM) architecture in which two

redundant threads successfully detects and recovers from

transient faults, assuring a consistent view of the memory

by means of a pair-shared cacheable virtual memory log

which keeps the computation results. Results show that

our log-based mechanism introduces a small performance

degradation of 5% in a non-faulty scenario. Additionally,

we show that LBRA supports huge fault rates such as 100

faults per million of cycles with low additional performance

degradation.

1. Introduction

Present and future CPUs designs still continue adapting

themselves to Moore’s law. The increasing transistor density

allows designers to integrate a higher number of cores

into the same chip, aiming at increasing the performance

in an energy-efficient way, while keeping a manageable

complexity to exploit Thread Level Parallelism. However,

this trend, along with temperature fluctuations and pro-

cess variation, increases the susceptibility of architectures

to hardware errors. Furthermore, proposed techniques to

decrease power consumption, such as DVFS, lower voltage

margins exacerbating thus reliability problems.

Being reliability a major concern for hardware architects,

several mechanisms to detect and recover from faults have

been already implemented in microarchitectures. This is the

case of ECC, which is nowadays applied in large CAM

arrays, such as caches or RAM. However, ECC cannot be

extensively used through all hardware structures. Instead,

in shared-memory environments, dual or triple modular

redundancy techniques are used. The main idea behind these

approaches is to redundantly execute program instructions

and then check the outputs. Among these works we can

distinguish two different trends: (1) those in which memory

is not updated until the values have been satisfactory checked

[10, 4, 13, 19] and (2) those in which, once a fault is

detected, the state of the architecture in rolled-back to a

previous known-to-be-safe checkpoint [5, 12]. In the first

case, performance is affected given the fact that forward

progress can be stalled until verification is accomplished.

In the second case, the major drawback is the synchroniza-

tion between redundant executions, which includes stopping

execution, sharing and comparing architectural states and,

finally, resuming execution.

In contrast to previous approaches on reliable architecture

designs, this paper explores the use of already existing log-

based hardware transactional memory (HTM) systems as a

novel way to provide fault tolerance.

Ideally, a fault tolerant architecture should degrade per-

formance as less as possible and should require an area

overhead not larger than 10% [14]. To this end, we present

LBRA: A Log-Based Redundant Architecture for Reliable

Parallel Computation. What we propose is to build a fault

tolerant architecture by using a current state-of-the-art HTM

system with slight modifications, something which, to the

best of our knowledge, has not been previously studied.

The main idea is to execute redundant copies of the same

software thread in two different hardware contexts which are

executed within the same SMT core. In this work we have

chosen LogTM-SE [22], an elegant HTM design which per-

forms both eager version management, by updating memory

in place and keeping the old values in a virtual memory

space called log, and eager conflict detection. In particular,

we use the capabilities provided by LogTM-SE to assure:

a) A consistent view of the memory between master and

slave thread, avoiding input incoherences.

b) Both transient fault detection and recovery.

c) More scalability and higher decoupling than previous

proposals.

In our approach, the program instructions are executed

978-1-4244-8519-2/10/$26.00 ©2010 IEEE

in virtual execution groups that we call pseudo-transactions

(p-XACTs) or chunks [3]. The master thread executes p-

XACTs as regular instructions but, additionally, it keeps the

results of its progress in a pair-shared log. By using this log,

the slave verifies that the results produced by the master are

correct. We provide a highly decoupled environment since

the master is allowed to execute multiple p-XACTs without

verification. This verification is accomplished off the critical

path by the slave thread. This high decoupling also allows to

disable the redundant mode whenever it is required bringing

opportunities such as partial coverage in applications which

are not so sensitive to faults, such as multimedia. Exper-

imental results show that our log mechanism introduces

a small performance degradation of 5%. In addition, we

show that LBRA supports huge fault rates such as 100

faults per million of cycles, with an additional performance

degradation of 35% over a non-faulty environment.

The remainder of the paper is organized as follows:

Section 2 introduces Transactional Memory and how it

can be adapted to provide reliable computation. Section 3

details how our proposal is implemented. The evaluation

setup and analysis are described in Section 4. Section 5

discusses the related work. Finally, Section 6 resumes the

main conclusions of this work.

2. Reliable Computation by means of Transac-

tional Memory

Our approach is built upon the top of a LogTM-SE [22]

system, a hardware implementation of Transactional Mem-

ory. This section describes how we provide fault tolerance to

the system by adding several modifications to its behaviour

with a modest hardware overhead.

2.1. Version management

LogTM-SE provides an eager version management. This

means that the values produced by transactions are stored in

cache and are visible to the rest of the system. A lazy version

management, on the contrary, does not expose updated

values until commit. An eager mechanism performs better

than a lazy one in case rollbacks are infrequent. Thus, given

the fact that faults are still an uncommon event, the use of

an eager version management is justified.

2.1.1. Input replication. Our approach could be classified

as Redundant Multi-Threading (RMT). In RMT systems

two hardware threads, called master and slave, redundantly

execute the program instructions to provide fault tolerance

within a SMT processor. Note that, unlike true SMT threads,

each redundant thread pair appears to the operating system

as a single one.

In RMT systems one of the most important issues is

input replication which defines how redundant threads or

executions observe the same data. Since master and slave

thread execution is not lockstepped [1], the execution of

redundant memory instructions would probably lead to input

incoherences. In order to solve this problem, in our proposal

we extend the functionality of the log (a memory space

allocated in virtual memory already implemented in LogTM-

SE) as follows.

For each load instruction, the master appends to the log

both the virtual address and loaded value for that address.

This way, slave memory instructions are served through the

log where they obtain the same values as its master-pair,

avoiding then input incoherences. Note that, as the log is

written at instruction commit, it will only keep instructions

of the right path and in program order.

2.1.2. Output comparison. The output comparison defines

how the correctness of the computation is assured in RMT

systems. In our approach, we define the output comparison

granularity at p-XACTs level. A p-XACT defines the unit

of work which is considered to be either incorrect or correct

depending on whether faults have been detected within its

execution or not.

The semantic and execution of a p-XACT is quite differ-

ent from a regular XACT in LogTM-SE. Firstly, whereas

traditional XACTs are manually coded in the application,

p-XACTs are dynamically created in execution time and

their length is variable, as we will see later. This allows a

great flexibility, making redundancy easy to turn on and off.

Secondly, a p-XACT does not ensure isolation and/or atom-

icity. This way, dirty memory blocks are shared as in a non-

transactional environment, relying on other synchronization

mechanisms such as locks or barriers to assure correction.

The execution of a program in our approach is as follows.

First, the master starts the execution of a new p-XACT.

This implies the allocation of a new section in the log

and the initialization of the registers which hold write and

read signatures. Eventually, a mechanism would trigger a

signal indicating the end of the current p-XACT. This event

is called as the commit of the p-XACT. The commit is

completely local and it does not require any communication

outside the actual core so this mechanism is very fast.

However, unlike in the original LogTM-SE implementation,

this mechanism does not reset the read and write signatures

or the log pointer, something which is carried out by the

slave thread. Then, the active transaction is considered as

finished and the following program instruction is executed

within a new p-XACT.

The task of the slave is to assure the correct execution of

all the work done by the master. To accomplish this, the slave

thread redundantly executes the p-XACTs committed by the

master. At the end of the p-XACT, the slave performs the

consolidation. In the consolidation process, the architectural

state of master and slave threads are compared to assure

that the produced values are correct. For that purpose, we

follow a similar approach as in [5], where signatures are

created and used to compare computations. The master

thread creates an in-flight signature which is saved in the

Verification Signature at commit for every p-XACT, see

Figure 1. Then, in consolidation, the slave compares its

own signature with the Verification Signature. If the check

succeeds, the execution of the p-XACT is correct. Then,

the signature registers and the log pointer are reset. Finally,

the slave performs a backup of its register file which is

now considered correct. If a mismatch is found in the

consolidation process the recovery mechanism is triggered.

Note that faults can be detected before consolidation. This

happens when the slave detects a mismatch in the addresses

accessed in the log by load or store instructions, as we will

see in Section 3.1.3.

2.2. Dependence Tracking

p-XACTs rely on software mechanisms to ensure atomic-

ity and isolation. As blocks are allowed to be shared, poten-

tial faults could be spread across the system, so we need to

keep track of these sharings. Although conflict detection is

not engaged in p-XACTs, we find this mechanism already

implemented in LogTM-SE very suitable to keep track of

potential faulty shared blocks.

LogTM-SE provides eager conflict detection by means

of the coherence protocol, decoupling the mechanism from

caches by using write and read signatures. External requests

arriving to a core are checked through these signatures

and, on a possible conflict, requests are NACKed. What we

propose is to use these signatures to maintain a pair of per-

transaction registers called Producer Register and Consumer

Register, see Figure 1. The Producer and Consumer registers

keep the transaction identifiers involved in the sharing of all

the cores in the system.

The proposed mechanism is as follows. A core receiving

a forward request checks its write signatures from all active

p-XACTs (those which have been already committed by the

master or in execution). For a positive match in an active

p-XACT, the core updates the Producer Register storing the

transaction id for the involved core. In the same way, the

requestor of the block, when obtaining a response, updates

its Consumer Register indicating the core and transaction id

which produced the obtained block.

The functionality of these registers is twofold. First, when

a fault is detected the Producer Register is used in the

recovery process to abort all the p-XACTs involved since

their states are potentially corrupted, as we will see later.

Secondly, the Consumer Register is used to provide an

order in the consolidation mechanism, needed to avoid SDCs

(Silent Data Corruptions).

3. Implementation Details

One of the major drawbacks in previous RMT approaches

is the synchronization between redundant threads. As a

measure to amortize the latency of comparing redundant

executions, long checkpoint intervals are needed. Our goal

is to eliminate these latencies, independently of whether

synchronizations are common or not. To achieve this, we

use a decoupled approach by means of the capabilities of

LogTM-SE and the ability to execute multiple p-XACTs

before verification. The hardware additions needed to ac-

complish these goals are depicted in Figure 1.

Figure 1. LBRA Hardware Overview. Shadowed boxes

represent the added structures.

3.1. Accessing the Log

To provide access to the same log, both master and slave

threads should share memory space. To this end, unlike in

true SMT threads, master and slave threads appear to the

OS as a single one as in [13].

3.1.1. Master access. The master thread writes in the log

through the Master Log Pointer as in a traditional LogTM-

SE system, a pointer which is local to every p-XACT. At

every memory operation, the master generates a new store

instruction whose destination address is indicated by this

pointer. This new store allows the system to satisfy input

replication and output comparison as explained in Section

2.1. As memory operations are logged in commit, the content

of the log is structured in program order.

3.1.2. Slave access. The slave accesses to the log are more

complicated and require a special treatment. The goal is to

redirect all the memory references through the log to satisfy

input replication and, eventually, detect any arising fault.

Therefore, at memory access time the destination address of

the load is switched with the Log Slave Pointer by means

Address Value Old-value Facilitates

Loads
Yes Yes - Input replication; Fault detection in address calculation
No Yes - Input replication

Stores
Yes Yes Yes Fault detection in address calculation and value, fault recovery
Yes No Yes Fault detection in address calculation, fault recovery

Table 1. Alternatives in log content for loads and stores.

of a multiplexer. Then, the memory access is performed as

usual.

The treatment of stores presents two alternatives. In the

first case, for each store executed by the slave, a read access

to the log is generated through the Slave Pointer. The aim

of this access is to assure that the destination address of

master and slave stores match. This way, a miscalculation

could be detected and the recovery mechanism would be

initiated. Despite the log access for every slave store, this

approach requires the check of the address by means of

a comparator, increasing the pressure in the slave commit

phase. Alternatively, we propose a simpler yet not less

correct mechanism: avoiding store checking. Then, instead

of detecting faults at store granularity, we delay it until

consolidation process, in which both registers and execution

signatures are checked. This approach is beneficial for two

reasons: first, it does not increase cache pressure since no

access is performed to the log (the memory access in the

slave store is simple discarded), and secondly, it does not

require an additional comparison, which does not complicate

slave commit phase.

3.1.3. Log content. The size of the log is a major concern

in our approach since its growth affects the available cache

space for the application. In this section we discuss how

to control the size of the log by reducing its contents. The

different alternatives can be seen in Table 1.

The contents to write in the log could be adjusted de-

pending on the desired detection mechanism granularity. As

a first approach, the data logged by the master thread in

every memory operation are the address and value for each

operation, as explained in Section 2.1. For loads, the log of

address and read value is used to satisfy input replication and

to detect faults concerning the calculation of the destination

address. A measure to reduce the log size is to avoid logging

the address. In this case we rely on the consolidation process

to detect any fault regarding a miscalculated destination

address.

For stores, it is mandatory to log the address and old value

in order to perform the recovery process, as we will see later.

Nonetheless, there exist two options with the current value

to store. If this value is logged, a fault in the calculation of

this value could be detected here. In order to reduce the size

of the log we avoid logging the value to be stored. Then, as

in the case of loads, we rely on the consolidation process to

detect faults derived from a miscalculation of the value of a

store instruction.

3.2. Circular Log

In LBRA the execution and verification of p-XACTs is

decoupled. For this, the master thread is allowed to execute

and commit several p-XACTs while, as a background mech-

anism, the slave consolidates its correct execution. This way,

the forward progress of the master is never interrupted by

any verification process.

To allow the buffering of up to n p-XACTs each transac-

tion needs its own hardware as depicted in Figure 1, which is

very similar to the hardware added in LogTM-SE. However,

one of the major differences between LogTM-SE and our

proposal is how the commit and consolidation of a p-XACT

handle the log. In our approach, the commit of a p-XACT

does not affect the log, in the sense that none of the data

stored is eliminated after commit. As the log is used by

the slave as a way to verify the results of the master, the

contents of the log are not reset until a correct verification

is performed in the consolidation process. This way, the log

grows circularly through all the virtual space reserved for it.

3.3. In-order Consolidation

In our approach, memory blocks are updated in place (L1

cache) and allowed to be shared even before consolidation

takes place. This eager approach allows fast commits and

appropriate results, since faults can be considered as the

uncommon case. However, this mechanism affects the con-

solidation order of p-XACTs since, if additional mechanisms

are not implemented, faults could be spread all around the

system.

It is clear that if a p-XACT pi has consumed data

produced from another p-XACT pj , the consolidation of pi
cannot take place before the consolidation of pj , because a

faulty block produced in pj would be silently consolidated

in pi. To take track of these dependencies we introduce

the Consumer and Consolidated-Ids registers, as explained

in Section 2.2, which gather the information provided by

the coherence protocol. To achieve this, memory coherence

messages in our approach are extended to include the p-

XACT identifier providing the data, which are used by

the requestor to fill the Consumer register, and the last

consolidated p-XACT identifier.

The in-order consolidation process works as follows.

After completing the verification of state, the slave thread

checks the Consumer vector for the current p-XACT. If it

is empty, it means that this p-XACT has not consumed data

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(a)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(b)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(c)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(d)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(e)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(f)

Figure 2. Fault recovery mechanism. In this example, four processors C0, C1, C2 and C3 have executed four
p-XACTs p0, p1, p2 and p3. In the figures, the data sharing is represented by a solid line and an arrow, while

precedence order is indicated by a dotted line. In (a), a fault is detected in p0 from C2, which initiates the recovery
mechanism. In (b) the recovery mechanism proceeds with p3 from C2, the youngest p-XACT of the core. As p3

has no consumers it is locally recovered. C2 repeats the same process with p2 and p1, which are also locally

recovered. As p0 in C2 is producer, it cannot be recovered yet. In (c), C2 sends invalidations to its consumers C1
and C3 and waits for the corresponding ACKs. In (d), C1 performs the recovery for p3. As p3 is producer of C2,

it sends a rollback request which is acknowledged by C2 since p3 has already been recovered. Then, p3 and p2

from C1 are rolled-back. Since p2 recovery was requested by C2, it acks to inform that the recovery for the affected
p-XACT has been performed. In the same way, C3 recovers from p3, p2, p1 and p0. As p0 is the oldest p-XACT, the

register checkpoint is also recovered and finally, C3 acks C2. In (e) , C2 have received all the ACKs so it performs
the rollback of p0 and restore the registers checkpoint. Meanwhile, C1 sends an abort request to C0 since p0 is its

producer. C0 recovers from p3, p2, p1, p0, restores the registers checkpoint and acknowledges C1. Finally, in (f), C1

receives the acknowledgement from C0 and performs the rollback from p0 and recovers the registers checkpoint.

from any other p-XACT, so the consolidation process can

take place without any additional checks. In the case the

Consumer register is not empty, then, for every dependence,

the slave checks if the producer p-XACT has already been

consolidated by checking the Consolidated register. If all

the dependencies satisfy this condition, then the p-XACT is

finally consolidated. If not, we initiate a lookup mechanism.

The slave thread requests its producers to provide the last

consolidated id until all the dependencies are satisfied.

3.3.1. Cycle avoidance. There exists a danger of deadlock

in the consolidation process if we allow cycles to be formed.

For example, let us consider the case in which pi is the

producer of pj which, at the same time, is the producer of

pk and, finally, pi consumes data from pk. In this case, none

of the three p-XACT could be consolidated since a cycle has

been created. Although this case is rare, we need to provide

a mechanism to avoid it.

Our goal is to create a DAG (Directed Acyclic Graph).

DAGs assure that a topological order exists although this

order, in general, is not unique. Therefore, we implement a

simple policy: we disallow situations in which a p-XACT is

both producer and consumer of other p-XACTs at the same

time. When a master thread which is already a producer

receives data produced by a p-XACT, the active p-XACT is

forced to commit and a new one is started before consuming

these data. Likewise, if a consumer p-XACT is requested

to provide data (becoming a producer), it is forced to

commit and the dependence is created in a new p-XACT.

This guarantees that no cycles can be created avoiding

consolidation deadlocks.

3.4. Fault Recovery

Upon fault detection the recovery mechanism is triggered.

In our approach, this mechanism is taken by a combination

of both software and hardware processes for local and global

recovery which act on the youngest p-XACT of the core.

The correctness of the proposed mechanism is proved since

dependencies form a DAG, so a topological order can be

established.

3.4.1. Local recovery. The local recovery is the rollback to

a safe state previous to the execution of a faulty p-XACT

in a processor. For this process we rely on the software

approach proposed in LogTM-SE to perform transactional

aborts. This software writes back the old values to their

appropriate address from the log. After that, the transactional

hardware of the current p-XACT is reset. Additionally, if

this mechanism was triggered by an external request, it will

acknowledge the requestor.

3.4.2. Global recovery. Given the fact that blocks are

shared before consolidation, potential faults could be spread

among cores. In case that a p-XACT is detected as faulty,

the recovery mechanism is also responsible for notifying

its consumers (including the lower p-XACTs of the same

node). Thus, upon fault detection, the mechanism carries

out different actions, depending on whether the affected p-

XACT is either a consumer or a producer:

• Consumer. If the current p-XACT is a consumer, the

produced values were not shared, therefore potential

faults were not spread outside the core. In this case, a

local recovery of the current p-XACT is performed. If

the recovery process is initiated by an external request,

an ACK is sent back to the source of the request.

Likewise, the mechanism is repeated for the upper p-

XACT.

• Producer. In this case, the process sends a rollback

request to all the consumers of the current p-XACT

(indicated by its Producer Register). When all the ACKs

are collected, a local recovery of the current p-XACT is

initiated and this mechanism is repeated for the upper

p-XACT.

The recovery process finishes when all the p-XACTs in

a core have been recovered. As the final step, the register

checkpoint is written back to both master and slave, and

the execution is resumed. On the one hand, the described

method assures that, for a faulty core, a younger p-XACT is

“undone” before an older one. On the other hand, consumers

are restored before producers, in case of dependencies

among different cores. We can see an example of a fault

recovery in Figure 2.

4. Evaluation

4.1. Simulation Environment

To evaluate the proposed architecture, we have simulated a

tiled-CMP by means of Virtutech Simics [8] and GEMS [9].

Simics is a functional simulator executing a Solaris 10 Unix

distribution simulating the UltraSPARC-III ISA. GEMS is

a timing simulator which, coupled to Simics, provides a

hardware implementation of a transactional memory model

called LogTM-SE [22]. We have performed several modifi-

cations to the simulator to provide the redundant execution

of software threads, as well as other modifications related

to the way in which the log is accessed. Furthermore, we

have implemented all the hardware additions as described

in Section 3, together with all the mechanisms needed to

detect and recover from a fault.

16-way Tiled-CMP

Processor Speed 2GHz

Memory and Cache

Mem. Size 4GB

Mem. Latency 300 cycles

Cache Line Size 64 bytes

L1 cache 32KB, 1 cycle/hit

L2 cache 512KB/core, 15 cycles/hit

Network

Topology 2D-Mesh

Protocol MESI directory

Link latency 4 cycles

Flit Size 4 bytes

Link bandwidth 1 fit/cycle

LogTM-SE

Signatures Perfect

Table 2. Simulation parameters.

Table 2 shows the main parameters of the evaluated

architecture. Each core of our 16-core CMP is a dual-

threaded SMT with private L1 cache and a shared portion

of the L2 cache. We conduct our experiments by executing

several applications from SPLASH-2 [21] (barnes, fft, radix,

raytrace, waternsq and watersp), ALPBench [7] (facerec,

mpgdec and mpgenc) and PARSECv2.1 [2] (blackscholes,

canneal and swaptions) benchmark suites. The experimental

results reported here correspond to the parallel phase of each

program. Each experiment has been performed with several

random seeds in order to take into account the variability of

the multithreaded execution.

4.2. p-XACT Size Analysis

The size of a p-XACT is a key parameter of the architec-

ture. A bigger size helps to increase the decoupling between

master and slave threads. Unfortunately, this also increases

the size of the log, incurring in a greater occupancy of the

°

°��

�

���

�

���

�
�
��
�
	

�

��
�

�

��
�
��
�
�
�

�
�
��
��
	
�

�
�
��
�	
�

�
�
�

�
��
�
�
	
�
�
�
��
	

�
�
�
�
�
�
�

	
�
�
�
�

�
�
	

�
�
�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

����� !� ��"�#$ ���

a
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��

�

�!%�$&'��

�!%�$&'�°

�!%�$&'�°°

�!%�$&'�°°

�!%�$&'�°°°

(a)

°

°��

�

���

�

���

(

(��

�
�
��
�
	

�

��
�

�

��
�
��
�
�
�

�
�
��
��
	
�

�
�
��
�	
�

�
�
�

�
��
�
�
	
�
�
�
��
	

�
�
�
�
�
�
�

	
�
�
�
�

�
�
	

�
�
�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

����� !� ��"�#$ ���

a
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��

�

)*�!%�$&	

�*�!%�$&	

�°*�!%�$&	

�°*�!%�$&	

(b)

Figure 3. Sensitivity analysis for p-XACT size and number of in-flight p-XACTs.

cache. Figure 3(a) shows a sensitivity analysis of the p-

XACT base size in terms of memory instructions. The bars

are normalized with respect to the case in which p-XACT

length is 25 memory instructions. As we can see, decreasing

p-XACT size from 1000 instructions to 100 instructions

achieves performance gains. However, further decreasing the

p-XACT size below 50 instructions it is not worthwhile. On

average, 50-instruction size performs 3%, 2% and 3% better

than 25 instruction size for SPLASH-2, PARSEC and ALP

studied benchmarks, respectively. For smaller p-XACT sizes,

the performance is even worse (not shown here for clarity),

for the overhead incurred in every p-XACT creation (register

initializations mostly) becomes more valuable.

Miss
Increase

Consold.
Stalls

Master
Stalls

SPLASH-2

barnes 7.93% 0.02% 0.03%
fft 20.22% 0.06% 0.02%

radix 3.12% 0.01% 0.01%
raytrace 35.18% 0.03% 0.08%
waternsq 1.93% 0.00% 0.01%
watersp 0.85% 0.01% 0.01%

PARSEC

blackscholes 6.20% 0.00% 0.03%
canneal 22.10% 0.07% 0.00%
swaptions 44.31% 0.74% 0.04%

ALP

facerec 5.08% 0.14% 0.00%
mpgdec 1.67% 9.79% 0.01%
mpgenc 2.35% 0.00% 0.02%

Table 3. L1-Cache Miss Overhead, Consolidation and

Master Stalls for 50-instructions p-XACTs.

Another interesting parameter is the maximum number

of p-XACTs which the master can commit without consol-

idation. At one end, a higher number of in-flight p-XACTs

facilitates decoupling, but it also adds more hardware as seen

in Figure 1. In addition, the size of the log grows, increasing

thus the cache miss ratio of the architecture. At the other end,

if the number of in-flight p-XACTs is low, in situations in

which the slave thread is unable to keep up with the pace of

the master (because of dependencies in consolidations, for

example), this turns in a bottleneck since the master must

be stalled. This behaviour can be observed in Figure 3(b).

For 4 in-flight p-XACTs, the stalls of the master execution

are responsible of a performance degradation of 16% in

SPLASH-2 and 2% for ALP (almost no degradation for

PARSEC benchmarks) in relation to 5 in-flight p-XACTs,

which is the best configuration for the studied benchmarks.

For a higher number of in-flight p-XACTs, the overhead

specially increases in benchmarks such as blackscholes and

canneal, in which the cache miss ratio raises significantly as

it can be seen in Table 3.

4.3. Overhead of the Fault-Free Case

In this section we compare our proposed architecture to

a base case composed by a 16-core CMP running the 16-

threaded applications mentioned in Section 4.1. We quantify

the performance in a fault-free scenario which can be

considered the common case. Three different factors are

responsible for the performance overhead of LBRA. First

and foremost, the cost of redundancy itself (note that the use

of dual SMT cores aggravates this overhead as a result of

the higher resource contention of master-slave pair threads).

Second, the capacity of the L1 cache is limited because of

the use of the log to bypass data between master and slave

thread and to provide a backup. This way smaller p-XACTs

normally achieve better performance. And finally, the stalls

in the consolidation phase due to dependencies among two

or more p-XACTs. Fortunately, these consolidation stalls

are uncommon, as we can see in Table 3. Furthermore, the

master thread is rarely stalled as a result of the proposed

mechanism which allows to execute several p-XACTs with-

out consolidation.

As shown in Figure 4, the average performance degra-

dation of LBRA is 18% for the studied benchmarks. Note,

however, that most of it is due to the cost of the redundancy

(the first factor cited above). A way of isolating the real

°

°��

°��

°�(

°�)

°��

°�+

°�,

°�-

°�.

�

�
�
��
�
	

�

��
�

�

��
�
��
�
�
�

�
�
��
��
	
�

�
�
��
�	
�

�
�
�

�
��
�
�
	
�
�
�
��
	

�
�
�
�
�
�
�

	
�
�
�
�

�
�
	

�
�
�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

����� !� ��"�#$ ���

¬
�
�
��
�
�
�
�
�
�
	�
��
�
�
�
�
�

�/"�*0�+*����	1 2$$*0(�*����	1 "#���*0�+*����	1

Figure 4. Performance Slowdown Comparison.

overhead introduced by LBRA implies simulating a con-

figuration without resource contention between master-slave

threads. By doing this, we have measured that the actual

performance overhead of LBRA is just 5% on average.

4.4. Comparison Against Previous Work

DCC [5] is built with a shared-bus as interconnection

network. However, the use of shared-buses will no longer be

possible in future CMP architectures due to area, scalability

and power constraints issues. Therefore, we have studied

the behaviour of DCC whenever a direct network such as a

2D-mesh is used.

The performance degradation exhibited by DCC is caused

by two main reasons: the consistency window and the

checkpoint creation. In contrast to our log mechanism, DCC

uses a consistency window to manage input incoherences.

When a node performs a load or a store, it opens a read or

a write window, respectively, for that address. This window

is closed when the redundant thread executes the same

operation. To assure coherence between redundant nodes,

a sufficient condition is that one node cannot open a write

window for an address which is already opened. In a shared-

bus environment this mechanism is easily implemented

since all the requests are seen for all the nodes. However,

in a direct-network scenario, this mechanism should be

implemented by broadcast requests, which lead to both

performance degradation due to indirection, and network

traffic increase. Indirection is also responsible for the in-

crease in the checkpoint creation, since the multi-phase

synchronization protocol must be augmented to face the new

direct-network scenario [17].

As we can see in Figure 4, LBRA is able to outperform

DCC in a 10% on average for SPLASH-2 applications.

However, in PARSEC and ALP benchmarks the performance

gain is reduced. The reason for this behaviour is that in

PARSEC and ALP applications data sharing is reduced to

the extent that the degradation resulting from the consistency

window affects performance less. In any case, we have to

bear in mind that while LBRA makes use of SMT cores

to provide fault-tolerance, DCC employs twice the number

of cores. This reduces the overall throughput of a system

implementing DCC in more than a 100% over a non fault-

tolerant base case.

We also compare our proposal to REPAS [18], another

RMT-based approach based on SMT-dual execution. REPAS

uses two queues to bypass data between master and slave

thread, the LVQ for load values and SVQ for store values,

providing input replication and output comparison, respec-

tively. In LBRA we avoid the use of these queues allowing

a more decoupled environment in which slave threads can

run thousands of instructions ahead of the master thread,

if necessary. This decoupling also allows to easily turn off

the redundant mechanism. As shown in Figure 4, LBRA

outperforms REPAS in a 7%, 4% and 10% for SPLASH-2,

PARSEC and ALP benchmarks.

4.5. Performance in a Faulty Environment

LBRA introduces an overhead in a fault-free scenario

guaranteeing the correct execution of shared memory appli-

cations, even in the presence of soft errors. Fault detection

and recovery introduce an additional overhead that we study

below.

°

�

�

(

)

�

+

,

-

.

�°

��

��

�
�
��
�
	

�

��
�

�

��
�
��
�
�
�

�
�
��
��
	
�

�
�
��
�	
�

�
�
�

�
��
�
�
	
�
�
�
��
	

�
�
�
�
�
�
�

	
�
�
�
�

�
�
	

�
�
�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

����� !� ��"�#$ ���

a
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��

�

� � �° �°° �°°°

Figure 5. Execution Time Overhead for several fault

rates.

Figure 5 shows the execution time overhead of LBRA

under different fault rates normalized with respect to a non-

faulty environment. Failure rates are expressed in terms of

faults per million of cycles. For a realistic fault ratio, the

performance of LBRA is barely affected. Therefore, in this

experiment, we have used rates which are extremely higher

than those expected in a real scenario, so as to show the

kindness of the proposed architecture.

As we can see, LBRA is able to tolerate rates of 100 faults

per million cycles with an average performance degradation

of 29%, 41% and 35% for SPLASH-2, PARSEC and ALP

benchmarks, respectively, in comparison to LBRA in a non-

faulty environment. When the fault ratio is further increased

to the high (and unrealistic) amount of 1000 fault per million

cycles, the performance shows a noticeable performance

loss. As expected, the performance degradation rises almost

linearly with the increase of the fault ratio, although it still

allows the correct execution of all the studied benchmarks.

The time spent on every recovery varies across the

executed benchmark. This time includes the detection of

the fault, notification to all the potential consumers of the

affected p-XACTs and, finally, the restoration of the log.

Applications such as radix, blackscholes and facerec are

more affected by faults since, on average, the length of

their p-XACTs is greater. As a consequence, the detection

of a fault takes place later, and the number of blocks and

dependencies with other processors is usually higher.

5. Related Work

There is a large body of literature on mechanisms to

deal with the increasing reliability problems in current and

future architectures. One of the first techniques that was

proposed to mitigate the impact of hardware faults was

error coding techniques. Error detection and correction codes

are based on the use of extra bits appended to data. In

microarchitectures, the most studied mechanisms so far are

based on redundant execution in which outputs are compared

in order to detect faults. One of the first approaches to

full redundant execution is Lockstepping [1], a proposal in

which two statically bound execution cores receive the same

inputs and execute the same instructions step by step. Later,

the family of techniques Simultaneous and Redundantly

Threaded processors (SRT) [13], SRTR [19], CRT [10]

and CRTR [4] were proposed. A more recent study [18]

showed that their ability to deal with faults in shared-

memory environments seriously degrades performance even

in a fault-free scenario.

Another set of studies are directly applied to a multipro-

cessor domain. In Reunion [15], it is described a mechanism

in which redundant threads access memory independently

(relaxed input replication) which, unfortunately, leads to

divergences in the memory values obtained (input incoher-

ences). These divergences are treated as faults, inducing a

serialized execution (very similar to lock-stepped execution)

between redundant cores, degrading the performance of the

overall architecture. Dynamic Core Coupling (DCC) [5]

reduces the overhead of Reunion by providing a decoupled

execution of instructions, having larger comparison intervals

(thousand of instructions) and reducing the network traffic.

At the end of each interval, the architectural state of re-

dundant pairs is interchanged and, if no error is detected,

a new checkpoint is taken. Input incoherences are avoided

by a consistency window which forbids data updates as

long as the members of a pair have not observed the same

value. However, DCC is built upon a non-scalable shared

bus as interconnection network, and whenever a direct

network is used as in [17], the performance degradation

grows as a result of the consistency window mechanism.

In the same fashion, Highly-Decoupled Thread-Level Re-

dundancy (HDTLR) [12] is proposed, also using a shared

bus. HDTLR architecture is similar to DCC in the sense

that the recovery mechanism is based on checkpoints which

reflect the architecture changes between epochs. In addition,

memory updates, which are buffered in a PCB (Post Com-

mit Buffer), are not made visible to L2 until verification.

However, in HDTLR each redundant thread is executed in

a different hardware context (computing wavefront and ver-

ification wavefront), maintaining coherency independently.

This way, the consistency window is avoided. Unfortunately,

the asynchronous progress of the two hardware contexts may

lead to memory races, which result in different execution

outcomes. These events are masked by the architecture

as transient faults. In a worst-case scenario, not even a

rollback would guarantee forward progress. Thus, an order

tracking mechanism, which enforces the same access pattern

in redundant threads, is proposed. This mechanism implies

the recurrent creation of sub-epochs by expensive global syn-

chronizations. Our approach provides a decoupled execution

as DCC and HDTLR while using a more scalable network.

Furthermore, our mechanism does not require modifications

on optimized structures such as caches.

Similar to our logging mechanism, we find in literature

approaches such as SafetyNet [16] and ReVive [11], in

which efficient checkpoint mechanisms for recovery are

proposed, relying on other mechanisms to accomplish fault

detection. Our approach, however, provides an integral solu-

tion for both detection and recovery. To maintain checkpoint

consistency ReVive uses a global mechanism in which all

processors must be synchronized to take a new checkpoint.

SafetyNet, however, employs a coordinated local mecha-

nism, in which each processor may create its own checkpoint

but, if interactions are found, the processors involved are also

will be forced to create their own checkpoint. Our approach

falls within this category. With this mechanism we im-

prove the performance of the fault-free execution, avoiding

communication latencies while in the critical path (master

thread execution). This also creates opportunities such as

the concurrent execution of both applications, requiring high

reliability, and those, such as multimedia, which not.

Finally, another approach towards fault detection follows a

scheme based on symptoms [6] which is inspired on ReStore

[20]. This study presents a characterization of how errors

affect either application or OS behaviour with almost no

hardware overhead. The detection mechanism is based on

the observation of abnormal events such as fatal hardware

traps, application exits or hangs in either the program or

the OS. If a fault is detected, the execution is rolled-back

to a previous safe state. However, this approach cannot

provide a solution for those errors which do not modify

the behaviour of applications, such as those affecting values

but not control flow. Furthermore, it still requires the use of

rollback mechanisms such as those previously cited.

6. Conclusions and Future Work

CMOS scaling exacerbates hardware errors making relia-

bility a big concern for present and future microarchitecture

designs. However, mechanisms to provide fault tolerance

in architectures must accomplish several objectives such as

low performance degradation, power consumption and area

overhead.

Several studies have been already proposed to provide

fault tolerance for parallel codes. However, these proposals

have usually been implemented over non-realistic envi-

ronments, including the use of shared-buses among cores

or modifying highly optimized hardware designs such as

caches. Proposals like DCC or Reunion use DMR (Dual

Modular Redundancy) to provide fault tolerance in microar-

chitectures. However, they impose a 2X hardware overhead,

an unacceptable result for manufacturers which claim for a

10% [14] maximum extra area impact.

Our main design goal is to provide transient fault detection

and recovery modifying hardware as less as possible. To

this end, we base our proposal upon LogTM-SE, a well-

established hardware implementation of Transactional Mem-

ory. We propose LBRA, an architecture design in which

two redundant threads are able to detect and recover from

transient faults, by means of a pair-shared cacheable virtual

memory log which keeps the results of the computation. Our

evaluation shows that our log mechanism introduces a small

performance degradation of 5% in a non-faulty environment,

while the overall degradation is mostly due to redundancy

itself. We have also shown that LBRA outperforms previous

proposals such as DCC in a 14% across all the studied

benchmarks.

Besides, we have evaluated the performance of LBRA

in a faulty environment, showing an increase of just 35%

of execution time with a huge fault ratio of 100 faults per

million of cycles. Note that this ratio is much higher than

expected in a real scenario, whereas negligible slowdown is

reported in a realistic faulty environment.

In the future, we plan to study the performance of LBRA

in a scenario in which master and slave threads are executed

in different cores. This way, we could improve performance

since no degradation would be occasioned because of the

redundancy, although the decoupling of the threads should

be higher to support the extra latency of the interconnection

network. Finally, we plan to extend the functionality of our

approach to support Transactional Memory applications.

Acknowledgments

This work was supported by the Spanish MEC and

MICINN, as well as European Comission FEDER funds,

under Grants CSD2006-00046 and TIN2009-14475-C04.

The authors would like to thank the anonymous reviewers

for their insightful suggestions and comments. We would

also like to thank Rubén Titos for his technical support

and Antonio González who provided good suggestions of

an earlier version of the manuscript.

References

[1] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in tandem computer systems.

In The Evolution of Fault-Tolerant Systems. 1987.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:

Characterization and architectural implications. In Proc. of the 17th Int’ Conf.

on Parallel Arch. and Comp. Tech., 2008.

[3] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulksc: Bulk enforcement of

sequential consistency. In Proc. of the 34th Int’ Symp. on Comp. Arch., pages

278–289, 2007.

[4] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-fault

recovery for chip multiprocessors. In Proc. of the 30th Int’ Symp. on Comp.

Arch., San Diego, California, USA, 2003.

[5] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar. Utilizing dynamically

coupled cores to form a resilient chip multiprocessor. In Proc. of the 37th Int’

Conf. on Dep. Sys. and Networks., Edinburgh, UK, 2007.

[6] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou.

Understanding the propagation of hard errors to software and implications for

resilient system design. In Proc. of the 13th Int’ Conf. on Arch. Supp. for Prog.

Lang. and Oper. Sys., Seattle, WA, USA, March 2008.

[7] M.-L. Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes. The alpbench

benchmark suite for complex multimedia applications. In In Proc. of the IEEE

Int. Symp. on Workload Characterization, pages 34–45, 2005.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, B. Werner, and B. Werner. Simics: A

full system simulation platform. Computer, 35(2), 2002.

[9] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s general

execution-driven multiprocessor simulator (gems) toolset. SIGARCH Comput.

Archit. News, 33(4), 2005.

[10] S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design and evaluation of

redundant multithreading alternatives. In Proc. of the 29th Int’ Symp. on Comp.

Arch., Anchorage, Alaska, USA, 2002.

[11] M. Prvulovic, J. Torrellas, and Z. Zhang. Revive: Cost-effective architectural

support for rollback recovery in shared-memory multiprocessors. In Proc. of the

29th Int’ Symp. on Comp. Arch., Anchorage, Alaska, 2002.

[12] M. Rashid and M. Huang. Supporting highly-decoupled thread-level redundancy

for parallel programs. In Proc. of the 14th Int’ Symp. on High-Perf. Comp. Arch.,

Salt Lake City, USA, 2008.

[13] S. K. Reinhardt and S. Mukherjee. Transient fault detection via simultaneous

multithreading. In Proc. of the 27th Int’ Symp. on Comp. Arch., Vancouver,

British Columbia, Canada, 2000.

[14] S. I. F. Remarks. Selse ii reverie. 2006.

[15] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion: Complexity-

effective multicore redundancy. In Proc. of the 39th Int’ Symp. on Micro.,

Orlando, Florida, USA, 2006.

[16] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood. Safetynet: Improving the

availability of shared memory multiprocessors with global checkpoint/recovery.

In Proc. of the 29th Int’ Symp. on Comp. Arch., Anchorage, Alaska, 2002.

[17] D. Sánchez, J. L. Aragón, and J. M. Garcı́a. Evaluating dynamic core coupling

in a scalable tiled-cmp architecture. In Proc. of the 7th Int. Workshop on

Duplicating, Deconstructing, and Debunking., Beijing, China, 2008.

[18] D. Sánchez, J. L. Aragón, and J. M. Garcı́a. Repas: Reliable execution for

parallel applications in tiled-cmps. In Proc. of the 15th Int. European Conference

on Parallel and Distributed Computing (Euro-Par 2009), pages 321–333, Delft,

Netherlands, August 2009.

[19] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient fault recovery using

simultaneous multithreading. In Proc. of the 29th Int’ Symp. on Comp. Arch.,

Anchorage, Alaska, 2002.

[20] N. J. Wang and S. J. Patel. Restore: Symptom-based soft error detection in

microprocessors. IEEE Trans. on Dependable and Secure Comp., 3(3), 2006.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

programs: Characterization and methodological considerations. In Proc. of the

22th Int’ Symp. on Computer Architecture (ISCA’95), Santa Margherita Ligure,

Italy, 1995.

[22] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.

Swift, and D. A. Wood. Logtm-se: Decoupling hardware transactional memory

from caches. In Proc. of the 19th Int’ Symp. on High-Perf. Comp. Arch., pages

261–272, 2007.

