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Abstract—Existing best-effort requester-wins implementations of transactional memory must resort to non-speculative execution to
provide forward progress in the presence of transactions that exceed hardware capacity, experience page faults or suffer
high-contention leading to livelocks. Current approaches to irrevocability employ lock-based synchronization to achieve mutual
exclusion when executing a transaction non-speculatively, conservatively precluding concurrency with any other transactions in order to
guarantee atomicity at the cost of degrading performance. In this work, we propose a new form of concurrent irrevocability whose goal
is to minimize the loss of concurrency paid when transactions resort to irrevocability to complete. By enabling optimistic concurrency
control also during non-speculative execution of a transaction, our proposal allows for higher parallelism than existing schemes. We
describe the extensions to the instruction set to provide concurrent irrevocable transactions as well as the architectural extensions
required to realize them on a best-effort HTM system without requiring any modification to the cache coherence protocol. Our
evaluation shows that our proposal achieves an average reduction of 12.5% in execution time across the STAMP benchmarks, with
15.8% on average for highly contended workloads.
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1 INTRODUCTION AND MOTIVATION

H ARDWARE Transactional Memory (HTM) was originally
proposed in the early 1990s with the promise of simplify-

ing parallel programming by overcoming the major difficulties
associated with conventional locking techniques, namely priority
inversion, convoying, and difficulty of avoiding deadlock [1].
More than a decade after, the omnipresence of multicore ar-
chitectures, and consequently, the urgency for making parallel
programming widely accessible, brought HTM into the spotlight
again. During those years important research efforts were done to
solve many of the pitfalls that the first-generation HTM systems
had, among them transaction virtualization to allow for cache
victimization, unbounded nesting, thread suspension/migration,
paging, etc. It was not until the early years of this decade that
processor manufacturers began to deploy hardware support for
transactional memory on their chips [2], [3]. Unfortunately, HTM
support in commercially available processors is very rudimentary
and is therefore far from what was supposed to be an HTM system
for a general audience.

Particularly, HTM support in current processors is best-effort:
The architecture does not guarantee that a speculative transaction
will ever succeed [4]. Therefore, a non-speculative alternative
software path, often called fallback path, must be combined with
the HTM support to ensure forward progress in circumstances that
otherwise would cause livelock because of insufficient speculative
buffering capacity, page faults, high contention, etc. Atomicity
among transactions is then guaranteed through pessimistic con-
currency control, reverting to execution of transactions in mutual
exclusion in the same way lock-based programs do. In this way,
no matter if intermediate values are evicted to shared levels of
the cache hierarchy, or program execution gets interrupted by the
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kernel (page fault, interrupt or system call), no other speculative
transactions can observe the intermediate state until the non-
speculative transaction (henceforth also referred to as irrevocable)
has completed and released the lock.

Depending on their implementation details and the charac-
teristics of each workload, best-effort HTM systems may need
to resort more or less frequently to the fallback path. How read
and write sets are tracked, how speculative values are handled or
how conflicts are managed, will partly determine whether a given
transaction can commit in hardware (i.e., within the speculative
mechanisms of the HTM substrate), or must fall back to non-
speculative execution to make progress. For instance, the size and
associativity of the buffers used for speculative versioning (typi-
cally the L1 data cache) impose a hard limit on the maximum write
set size. Similarly, HTM designs with eager conflict detection and
requester-wins resolution (like current implementations of HTM in
Intel chips) need to resort to mutual exclusion through the fallback
path to escape livelocks.

Conversely, the way transactional programs are written also in-
fluences the ability of transactions to commit within the hardware
bounds. Workloads with fine-grain transactions and low contention
rarely take the fallback path and when they do, the slowdown
suffered is anyways low—small amount of work is discarded,
and short time is spent waiting for an irrevocable transaction to
complete. On the other hand, programs written with a coarse-grain
synchronization style in mind—precisely the approach promoted
by TM as part of its promise to simplify parallel programming—
are more likely to contain long-running transactions that put
pressure on the speculative buffering capacity, and may be more
prone to exhibit contention. In requester-wins best-effort HTM
implementations, these workloads may need to resort to the
fallback path rather often. Examples of these workloads are found
in the STAMP benchmarks [5], where threads spend a significant
amount of cycles in transactions that eventually must fall back to
irrevocability in order to make progress, as it can be observed in
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Fig. 1: Distribution of transactional cycles (top). Percentage of
aborted transactional cycles directly caused by the irrevocability
mechanism (bottom).

Fig. 1-top. For the requester-wins best-effort HTM system that acts
as baseline in this work, Fig. 1-top breaks down in three categories
the cycles spent executing speculative transactions (cycles in the
abort handler are also included), for 16-thread runs: cycles in com-
mitted transactions (Useful), cycles in aborted transactions that
eventually commit in a later retry (Wasted), and cycles in aborted
transactions that eventually end up taking the non-speculative
path (WastedBeforeIrrevocable). We can see how in benchmarks
such as genome, intruder, kmeans-h and yada, threads waste a
very significant fraction of speculative transactional cycles before
falling back to non-speculative, irrevocable execution. The reader
is referred to Section 4 for further details about our methodology.

The software implementation of irrevocability recommended
by chip manufacturers [4] uses a single global lock, commonly
referred to as the fallback lock, which must be read by all
speculative transactions as soon as speculation begins. This ap-
proach, known as eager subscription, ensures that an irrevocable
transaction never executes concurrently with other speculative
transactions. When the lock is acquired, all subscribed speculative
transactions are aborted as a result of the conflict. For the baseline
HTM system used throughout this work, Fig. 1-bottom shows
that the work discarded because of the acquisition of the fallback
lock is considerable in several STAMP benchmarks. The figure
shows the fraction of aborted cycles caused by the fallback lock
(including both conflict-induced aborts and explicit aborts of
speculative transactions that find the lock held upon subscription),
over the total number of aborted cycles. We can see that in
benchmarks such as vacation-h (medium), vacation-l (medium)
and yada (medium) about 80% of all aborted cycles are caused by
transactions resorting to irrevocability. The results shown in Fig. 1
reveal the importance of minimizing the performance penalty of
resorting to the fallback path.

The rationale behind this work is that precluding concurrency
between irrevocable and speculative transactions is sufficient to
guarantee atomicity, but is not always necessary, as illustrated by
the following example: consider a parallel program that accesses
two distinct shared data structures, A and B, respectively, through
transactions TA (with high contention) and TB (low contention).
In this scenario, when a speculative instance of TA decides to

acquire the lock after repeated conflict-induced aborts, all other
transactions are aborted, including all instances of TB, even though
TB does not pose a risk to the atomicity of TA, given their disjoint
read-write sets. Provided that irrevocable transactions have some
way to detect and prevent conflicting accesses from speculative
transactions, the performance degradation of taking the fallback
path can be diminished by bringing in parallelism. Ideally, the
transition to irrevocable execution shall not immediately give up
the optimistic concurrency control of transactional memory, but
instead only revert to the purely conservative, pessimistic approach
of locking when strictly necessary to preserve atomocity.

Our key observation to realize this idea is that the conflict
detection hardware that a best-effort HTM already has in place
can be leveraged to detect races between speculative and non-
speculative transactions. With minor architectural extensions, the
performance drop of resorting to the fallback path can be largely
reduced through the use of on-demand mutual exclusion, so that
the acquisition of the fallback lock is elided as long as those
situations that threaten atomicity do not arise. To the best of our
knowledge, our work is the first to enable concurrency between
irrevocable and speculative transactions using eager lock sub-
scription. To achieve this goal, we propose a hardware-software
co-design that combines existing HTM mechanisms (ability to
track read-write sets and detect conflict-, capacity- or interrupt-
induced aborts) with traditional synchronization primitives (locks).
Following up the example above, our proposal allows threads exe-
cuting transaction TB to commit concurrently without interference
from contention experienced by concurrent instances of TA: after
repeated aborts, TA eventually resorts to our proposed hardware
support for irrevocability so that one instance of TA is guaranteed
to make progress at a time while side-stepping the acquisition of
the fallback lock in the common case.

In this way, we present a best-effort HTM design that is able
to decouple non-speculative execution from mutual exclusion, two
different concepts that so far have been invariably combined when
implementing irrevocability. To do so, we propose the concept of
concurrent irrevocable transaction (CIT), present its programming
interface, and describe the architectural extensions required to
support CITs on a best-effort HTM system without requiring
any modification to the cache coherence protocol. We coined
the term concurrent irrevocability to describe the ability of our
approach of executing non-speculative transactions in concurrency
with any number of speculative transactions, without imposing
any particular order in their commits. This enables maximum
parallelism among threads also when one takes the fallback path,
allowing it to co-exist with other running transactions for as long
as its progress or atomicity is not at risk. Through detailed full-
system simulation using Gem5 [6], we show that our proposal
achieves an average performance improvement of 12.5% across
STAMP [5], with 15.8% on average for benchmarks with high
contention.

The rest of the manuscript is organized as follows. Relevant
background and related works are discussed in Section 2. Then,
we present our approach for concurrent irrevocable transactions in
Section 3. Section 4 describes our simulation environment and
detailed results are shown and analyzed in Section 5. Finally,
Section 6 contains the main conclusions of this work and avenues
for future work.
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2 BACKGROUND AND RELATED WORK

The typical software implementation of irrevocability when using
the Intel Restricted Transactional Memory (RTM) instructions is
shown in Listing 1. Following the Transactional Synchronization
Extensions (TSX) recommendations [4], all speculative transac-
tions perform eager subscription on a single global lock, which
is invariably present in their read set: immediately after the
transaction begin instruction (xbegin in RTM), transactions must
check the value of the lock (line 6) and only proceed if the lock is
free. This way, when a thread determines that it must resort to non-
speculative execution, it achieves mutual exclusion by acquiring
the lock (line 15), simultaneously meeting the two necessary
conditions to maintain weak atomicity: i) No other transaction can
execute non-speculatively since it must first acquire the fallback
lock, which would be locked for as long as another non-speculative
transaction executes; and ii) the write to the lock variable causes
the immediate abort of all other speculative transactions due to a
transactional conflict on a block in their read set. Race conditions
with newly started speculative transactions not yet subscribed to
the lock, are resolved by explicitly aborting when the fallback
lock is found acquired (line 8). Note that atomicity would be at
risk if speculative transactions were allowed to run concurrently
with a non-speculative transaction, as the latter would not be able
to prevent conflicting accesses made by the former. Thus, after a
speculative transaction has been aborted, the thread must wait for
the fallback lock to be unlocked before it can retry the transaction.

Listing 1: Recommended software implementation of wrappers to
begin/commit a transaction on Intel RTM.
1 void b e g i n T r a n s a c t i o n ( ) {
2 i n t r e t , n r e t r i e s = 0 ;
3 do {
4 r e t = _xbeg in ( ) ;
5 i f ( t r a n s a c t i o n H a s S t a r t e d ( r e t ) ) {
6 i f ( ! i s L o c k e d ( f a l l b a c k L o c k ) )
7 re turn ; / / Execu te s p e c u l a t i v e l y
8 e l s e _ x a b o r t ( ) ;
9 }

10 / / F a l l b a c k p a t h a f t e r a b o r t s t a r t s h e r e
11 whi le ( i s L o c k e d ( f a l l b a c k L o c k ) ) i d l e ( ) ;
12 ++ n r e t r i e s ;
13 } whi le ( canSucceedOnRet ry ( r e t ) &&
14 ! t o o M a n y R e t r i e s ( n r e t r i e s ) ) ) ;
15 a c q u i r e L o c k ( f a l l b a c k L o c k ) ;
16 / / Execu te non−s p e c u l a t i v e l y
17 }
18 void c o m m i t T r a n s a c t i o n ( ) {
19 i f ( i s L o c k e d ( f a l l b a c k L o c k ) )
20 r e l e a s e L o c k ( f a l l b a c k L o c k ) ;
21 e l s e
22 _xend ( ) ;
23 }

Lazy subscription [7] allows some overlap between irrevocable
and speculative transactions by delaying the subscription to the
lock until immediately before the transaction attempts to commit
(e.g., before the xend instruction) [8]. Lazy subscription can lead
to a variety of incorrect behaviors [9] that hinder its use in existing
HTM, as a consequence of letting speculative transactions read
memory locations in an inconsistent state (i.e., the intermediate
values produced by the non-speculative transaction). Ensuring that
a transaction lazily subscribes to the correct lock can only be
accomplished through specific hardware support.

Quislant et al. [10] realize lazy subscription in a best-effort
HTM design that employs a dedicated broadcast-based token
protocol (i.e., a hardware lock) to force correct subscription

and arbitrate commit order and entry into irrevocable mode.
In that work, committing speculative transactions that find an
ongoing irrevocable transaction are not aborted; instead, they wait
and keep detecting conflicts until the irrevocable transaction has
completed. Its main drawbacks are the additional complexity in
the communication fabric required and the challenges to support
multiprogramming or multiple locks for the fallback path, since
the existence of at most one irrevocable transaction (system-wide)
is hardwired.

The reader should note the implicit pessimism inherent in
lazy subscription when compared to our proposal: a speculative
transaction about to commit may not have any overlapping with
a concurrent non-speculative transaction, but it must abort just
in case. As opposed to our proposal, lazy subscription forces a
specific commit order in which all speculative transactions must
invariably serialize after the irrevocable one, since the latter is
unable to detect conflicts. In contrast, our proposal builds atop
eager lock subscription, avoids all the pitfalls caused by observing
inconsistent state of lazy subscription, and it enables concurrency
between speculative and irrevocable transactions without imposing
any particular commit order among them. The atomicity of a
concurrent irrevocable transaction is guaranteed by leveraging
conflict detection hardware so that accesses coming from spec-
ulative transactions are serviced at a later point.

Introducing the ability to prevent conflicting accesses into
requester-wins best-effort HTM systems has also been considered
in recent work [11] with the aim of improving performance
under contention. By extending the coherence protocol to support
negative acknowledgments (nacks), Dice et al. propose selective
inversion of the conflict resolution policy to requester-loses so as
to prioritize one speculative transaction over the rest and allow
it to make forward progress despite conflicting with others, thus
resorting less often to the fallback path. In this way, when a regular
transaction repeatedly aborts due to conflicts, it re-executes with
higher priority instead of directly resorting to non-speculative
execution. Nonetheless, these high priority transactions are still
speculative and thus a fallback path is required to guarantee
progress of transactions that cannot be accommodated in hard-
ware. Thus, power transactions only improve parallelism during
contention, whereas our proposal also benefits large transactions
that exceed hardware capacity limits or encounter page faults, by
allowing concurrency during the fraction of the irrevocable trans-
action executed before such events. Furthermore, our concurrent
irrevocable transactions can be implemented without nacks, as
opposed to power transactions. In this regard, chip manufacturers
willing to modify the coherence protocol may opt for other conflict
resolution policies such as requester-stalls (like LogTM [12]
does), though in this case some scheme of deadlock avoidance
becomes necessary.

Reducing the cost of aborts in best-effort HTM systems has
also been the subject of a recent work by Park et al. [13], where
the authors propose a hardware-software solution to salvage the
aborting transaction’s useful work in some scenarios by trapping
to a software routine on abort signal and executing the appropriate
pre-abort handler while the transaction is paused (before specula-
tion is discarded). On its part, Mohamedin et al. [14] also take a
hardware-software approach at coping with resource limitations of
best-effort HTM: rather than falling back to mutual exclusion for
transactions that run into hardware limits, they propose a slow path
in which a transaction that cannot commit in hardware due to time
or space constraints is split into sub-transactions executed within
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Fig. 2: Legend for diagrams in Figures 3 and 4.

hardware bounds while employing software instrumentation to
maintain atomicity of the original transaction.

Several hybrid schemes that combine HTM support with
software algorithms have also been proposed in order to allow
concurrency between speculative transactions and the fallback
path. In [15], Afek et al. propose a lock-elision algorithm that
provides concurrency between speculative and non-speculative
transactions, by splitting the critical section executed on the
fallback path into segments of dynamically-adjustable size, which
are executed as speculative transactions. In this scheme, the single
global lock of the fallback path is replaced with fine-grained
locking to detect conflicts with the speculative transactions. Dice
et al. also take a similar approach in [16], where they propose
algorithms that rely on existing compiler support to allow threads
to speculate concurrently on HTM along with a thread holding the
lock, at the cost of an additional read/write set instrumentation.

3 CONCURRENT IRREVOCABILITY

In this section, we describe our proposed scheme of hardware-
supported Concurrent Irrevocable Transaction (henceforth re-
ferred to as CIT). We present it as an extension to the Intel RTM
instruction set, and as such the underlying best-effort HTM system
follows the TSX specifications, where transactions can abort
because of conflicts, lack of capacity, page faults or interrupts.

3.1 Overview
CITs differ from speculative transactions in the following aspects:
• A CIT is not speculative. It runs in transactional mode to

reuse the same hardware mechanisms as a speculative trans-
action —mainly, the ability to track read-write sets for conflict
detection— but it always executes to completion, even in the
presence of conflicts, page faults, interrupts or evictions of
speculatively modified (SM) blocks from L1 cache. Coherence
traffic stemming from CITs is not marked as speculative, unlike
messages generated by speculative transactions, which have
slightly different protocol behavior to support speculative ver-
sioning in L1 caches (i.e., conditional invalidation of SM blocks
on abort).

• A CIT performs an early commit in response to those events that
would have raised the abort signal in speculative transactions.
An early commit consists of two steps: first, the processor writes
the 64-bit value 1 to an address specified as operand at the
beginning of the CIT. The expected use is that such address
corresponds to the fallback lock that all speculative transactions
must subscribe to in a best-effort HTM system, as described in
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Fig. 3: Behavioral differences between Baseline HTM and CIT
(a,b). Handling of contention in CIT (c,d,e). Legend in Fig. 2.

Listing 1. When the write that acquires the lock completes (i.e.,
all subscribed speculative transactions have aborted), the actions
of a regular transaction commit are carried out (clear read/write
sets, etc.) and execution continues non-transactionally.

• Page faults do not abort a CIT. Instead, upon detection of a
page fault or interrupt, a CIT self-initiates an early commit
as described above. Interrupt/fault processing begins after the
lock has been acquired and the core is back to non-transactional
execution.

• Conflicting requests do not raise the abort signal. The L1 cache
controller running in CIT mode monitors coherence traffic to
detect remote conflicting requests and delays the response to
accesses from concurrent speculative transactions until the core
running the CIT exits transactional mode.

Fig. 3 a) and b) compare the behavior of existing best-effort
HTMs (Base) against our proposal, when a given transaction (T1)
aborts because of speculative buffering capacity limits (Cap). In
the baseline, the fallback lock is immediately acquired, causing
conflict-induced aborts of all concurrent speculative transactions



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 5

subscribed to the lock (T2 and T3), which must wait until the lock
is released (red fraction) to restart their execution. In our scheme,
the redesigned software abort handler (shown in Listing 2) makes
T1 first acquire an irrevocability lock (Li) to ensure that no other
CIT exists, and then re-execute as a CIT (Bi). This allows other
concurrent speculative transactions (T2, T3 and T4) to coexist with
T1, allowing unlimited commits (T2) and new transactions to begin
(T4), for as long the CIT runs within the hardware limits and
without encountering operating system events. Upon abort signal,
the CIT self-initiates an early commit (C’), the fallback lock (Lf )
is acquired (aborting T3), and from then on T1 continues execution
in mutual exclusion (blue fraction in T1) until the non-speculative
transaction completes, releases both fallback and irrevocable locks
(Uf, Ui) and lets T3 restart.

Fig. 3 c) to e) show some of the key characteristics of our
proposal: in c) we can see the ability of a CIT to run concurrently
with other speculative transactions whose read-write sets are dis-
joint, making our design better at tolerating contention. CITs only
abort truly conflicting speculative transactions, as shown in d),
overcoming the pathological effect of friendly fire [17] seen in the
underlying requester-wins HTM system. Furthermore, as shown
in e), CITs capture a desirable behavior of requester-stalls systems
like LogTM [12], [18], which can resolve conflicts without the
need to discard the work done up to the offending access.

Fig. 4 compares the key behavioral differences between CIT
and the most closely related proposals from the literature, namely
lazy irrevocability (LazyIrr) [10] and power transactions (Power)
[11]. In Fig. 4 a) and b) we can see that while neither scheme pre-
cudes concurrency during irrevocable transactions, the approach
adopted by LazyIrr limits available parallelism since it must
conservatively block all committing speculative transactions to
ensure that the lazy irrevocable transaction commits before. In
contrast, CIT does not impose any particular commit order, allow-
ing an unlimited number of concurrent speculative transactions. As
depicted in Fig. 4 c) and d), the main difference between CIT and
Power lies in the non-speculative nature of CITs, whereas power
transactions are elevated-priority yet still speculative transactions
that require a non-speculative fallback path (similar to Base) to
deal with page faults or capacity limits.

3.2 Application Binary Interface (ABI)

The redesigned wrapper functions to provide concurrent irrevo-
cability transparently to application programmers are shown in
Listing 2. As we can see, the beginTransaction function is
nearly identical to that in Listing 1 except for lines 16 and 17. The
common part of both code snippets works as follows: the value
returned by xbegin (ret) is checked to distinguish between newly
started and aborted transactions. In the latter case, the hardware
has just restored the architectural state at xbegin, and set the
program counter to the instruction following xbegin plus a PC-
relative immediate offset to the abort handler (typically set to
0). The returned code also contains the abort status bits which
indicate whether the transaction may not succeed on retry (e.g., for
capacity-induced aborts). In this case, or if the maximum number
of retries has been exceeded, the abort handler decides to resort to
non-speculative execution. From this point on, our implementation
of the fallback path differs from that in Listing 1. Rather than
immediately acquiring fallbackLock, the acquisition of the
irrevocabilityLock (line 16) ensures that at most one CIT
exists in the program. Note that the role of the fallback lock
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Fig. 4: Behavioral differences between CIT and Power and be-
tween CIT and LazyIrr. Legend in Fig. 2.

remains unchanged (used for eager subscription, acquired by non-
speculative transactions to instantly achieve mutual exclusion).
Then, a new instruction called ixbegin executes (line 17) whose
memory operand is the address of fallbackLock, i.e. a lock
variable, currently unlocked (i.e., a value of zero) which all spec-
ulative transactions must subscribe to. The following subsection
describes the ISA extensions that enable CITs (ixbegin and
xend) in detail.

Listing 2: Implementation of the fallback path using the proposed
ISA extensions for concurrent irrevocability.
1 void b e g i n T r a n s a c t i o n ( ) {
2 i n t r e t , n r e t r i e s = 0 ;
3 do {
4 r e t = _xbeg in ( ) ;
5 i f ( t r a n s a c t i o n H a s S t a r t e d ( r e t ) ) {
6 i f ( ! i s L o c k e d ( f a l l b a c k L o c k ) )
7 re turn ; / / Execu te s p e c u l a t i v e l y
8 e l s e _ x a b o r t ( ) ;
9 }

10 / / F a l l b a c k p a t h a f t e r a b o r t s t a r t s h e r e
11 whi le ( i s L o c k e d ( f a l l b a c k L o c k ) ) i d l e ( ) ;
12 ++ n r e t r i e s ;
13 } whi le ( canSucceedOnRet ry ( r e t ) &&
14 ! t o o M a n y R e t r i e s ( n r e t r i e s ) ) ) ;
15 / / Execu te non−s p e c u l a t i v e l y
16 a c q u i r e L o c k ( i r r e v o c a b i l i t y L o c k ) ;
17 i x b e g i n ( f a l l B a c k L o c k ) ;
18 }
19

20 void c o m m i t T r a n s a c t i o n ( ) {
21 i n t r e t = _xend ( t a g ) ;
22 i f ( r e t == _XEND_LOCKED) {
23 r e l e a s e L o c k ( f a l l b a c k l o c k ) ;
24 r e l e a s e L o c k ( i r r e v o c a b i l i t y L o c k ) ;
25 } e l s e i f ( r e t == _XEND_UNLOCKED) {
26 r e l e a s e L o c k ( i r r e v o c a b i l i t y L o c k ) ;
27 } e l s e ( r e t == _XEND_COMMITTED) {
28 / / Noth ing t o do
29 }
30 }
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The commitTransaction function is a bit different from
that in Listing 1 as a result of the try-or-else semantics of
xend required to support concurrent irrevocability. Depending
on the returned commit status code, different actions need to
be taken at commit time, if any. Speculative transactions return
_XEND_COMMITTED, indicating that no further steps are needed.
Otherwise, the committing transaction is a CIT that may or may
not have acquired the fallback lock. If the CIT performed an early
commit (as indicated by the returned value _XEND_LOCKED), the
fallback lock needs to be released. In either case, the irrevocability
lock also needs to be unlocked.

It is important to note that, unlike previously proposed
schemes of irrevocability found in the HTM literature [10], ours
does not require special hardware support to ensure that a single
irrevocable transaction exists. Moreover, our design does not limit
the number of CIT that can coexist at hardware level. As a result,
the hardware complexity to support CITs is clearly lower than
that of prior work, as a consequence of our hardware-software
codesign that uses existing synchronization mechanisms (locks) in
conjunction with slightly augmented hardware support. Listing 2
represents the simplest use case for CITs, where all speculative
transactions are subscribed to the same fallback lock. Though
in this case a single irrevocabilityLock is used to ensure that at
most one CIT can execute at a time, the ABI does not impose
any limits on how many CITs can execute concurrently, opening
up opportunities for software optimizations in the abort handler.
The general requirement for correctness is that programmers must
allow at most one CIT per fallback lock. Following this rule,
multiple fallback locks could be employed (conveniently protected
by their respective irrevocability lock) if the programmer or
compiler can ascertain which transactions never have overlapping
accesses. In this hypothetical scenario, transactions could safely
subscribe to different locks without risking atomicity violations,
taking further advantage of CITs. Note that in the event that
different fallback locks were mistakenly used for two transactions
that end up having conflicting accesses, atomicity would be at
risk when either thread takes the fallback path and executes the
transaction non-speculatively, since the acquisition of one fallback
lock by one will not cause the abort of speculative instances of
the other (subscribed to another lock). In such circumstances, the
speculative transaction could, for instance, read an intermediate
update by the non-speculative thread and still be able to commit,
hence violating atomicity.

3.3 ISA extensions

The behavior of the instructions that support concurrent irrevoca-
bility is illustrated in Fig. 5 and described next.

ixbegin r64. This instruction takes a 64-bit register
operand that contains the virtual address of a 64-bit value. It in-
crements the transaction level (TL), sets the irrevocable bit (I = 1)
to indicate that the CPU is running an irrevocable transaction and
resets the early commit bit (EC = 0). Both I and EC bits are extra
bits added by our proposal, as explained in Section 3.4. The TL
register is used in RTM to support nested transactions through
flattening: T L is respectively incremented and decremented by
xbegin and xend, so that a value greater than zero indicates
that the CPU is executing a speculative transaction. The role of
T L is slightly changed by our design: T L > 0 means the CPU is
executing a transaction, but its nature may be either speculative
(I = 0) or irrevocable (I = 1). When in irrevocable mode, EC = 0

ixbegin r64

I = 0 ? error

TL ← TL + 1
I ← 1
EC ← 0

lockPhAddr ← MMU_v2p(r64)
Enable R/W set tracking

Execute transactional code

Early commit:
Write 1 to lockPhAddr

Clear R/W sets
Clear CQ bits

Process conflict queue
EC ← 1

Disable R/W set tracking
xend

TL = 1 ?

I = 1 ?

EAX ← _XEND_COMMITTED
Usual commit actions

TL ← 0

EC = 1 ?

EAX ← _XEND_UNLOCKED
Usual commit actions

Clear CQ bits
Process conflict queue

I ← 0
TL ← 0

EAX ← _XEND_COMMITTED
TL ← TL - 1

EAX ← _XEND_LOCKED
I ← 0
TL ← 0

yes

no

abort signal

continue

continueyes

no

yes

no

yes

no
(TL > 1)

Fig. 5: Flow diagram for ixbegin and xend.

means that concurrency with speculative transactions is allowed.
While in a CIT (I = 1 and EC = 0), the transactional status bit of
each in-flight instruction is set (as if in a speculative transaction) to
leverage read-write set tracking for detection of remote conflicting
accesses as well as overflow of speculatively modified blocks from
L1 cache. Unlike xbegin, ixbegin does not take a register file
checkpoint nor does it need a 32-bit relative offset that points
to the abort handler, since CITs are guaranteed to commit in
hardware. Instead, ixbegin takes the virtual memory address
contained in its register operand and sends it to the memory
management unit (MMU). The instruction can commit once the
translated physical address is stored in a dedicated control register
(lockPhAddr in Fig. 5). Subsequent executions of xbegin
with I = 1 simply increment TL as in RTM so as to support
transaction nesting; however, it is an error if I was already set
before executing ixbegin. If the abort signal is raised with I = 1,
the CPU self initiates early commit by signalling the MMU to
automatically perform a write access with a value of 1 to the
physical address stored in the lockPhAddr register. When such
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Fig. 6: Hardware changes to support CIT (highlighted in red).

hardware-generated store completes in cache (i.e., the fallback
lock has been acquired), the CPU clears the read/write sets and
sets the early commit (EC) bit, disabling read/write set tracking.

xend. We extend the behavior of this RTM instruction so
that it is used to commit the transaction currently running on the
CPU, whether it is a speculative (I = 0) or an irrevocable (I = 1)
transaction. As specified by the RTM interface, this instruction
does not take any input operand nor does it return any value/set
any flags. We propose to extend its interface so that the outcome of
the commit operation is returned via EAX register in a similar way
to how xbegin works. As shown in Fig. 5, the CPU checks T L
upon execution of xend. If T L > 1 (nested transaction commit),
then no actions are required other than decrementing T L, and
_XEND_COMMITTED is returned. If T L = 1, then the CPU is
about to commit the outermost transaction, which in turn may be
speculative or irrevocable: if I = 0, the typical actions to commit
speculative updates are performed, and _XEND_COMMITTED is
placed in EAX. If I = 1, then the CPU is running an irrevocable
transaction, and the EC bit indicates whether it has encountered
an event that made it commit early. If I = 1 and EC = 0,
then CPU proceeds in exactly the same way as for speculative
transactions (i.e., read-write sets are cleared), the I bit is cleared
and _XEND_UNLOCKED is returned in EAX. If xend finds I = 1
and EC = 1, it means the irrevocable transaction performed an
early commit. No commit actions are required other than clearing
the I bit and setting the value of EAX with _XEND_LOCKED
to indicate that the memory quadword at the address passed to
ixbegin was set to 1.

3.4 Hardware implementation
The hardware changes to support CITs are ilustrated in Fig. 6 and
summarized below.

CPU status. An additional control register is needed to keep
the physical address obtained once the memory operand passed to
ixbegin is translated by the MMU. Apart from this, the CPU
needs to maintain two extra bits, the irrevocable bit (I) and the
early commit bit (EC), as part of the transactional status, which is

considered together with the transaction level (T L) when handling
xbegin and xend, as described above.

Coherence protocol. CITs are implemented without behav-
ioral modifications to the coherence protocol (i.e., no additional
states), and thus may result more compelling to chip manufac-
turers than prior proposals that rely on nacks [11] or dedicated
communication protocols [10]. Our design introduces a new bit
in both coherence request and response messages: requests must
carry a speculative bit similar to [11], and responses a plea bit
similar to [19]. The speculative bit is set when the originating core
is running a speculative transaction (i.e., T L > 0 and I = 0), and its
use is described in Section 3.7. The use of the plea bit is explained
in Section 3.8. Through these bits, our design seemingly maintains
the same requester-wins nature of existing HTM implementations
and guarantees that all requests eventually get serviced, while
selectively using a best-effort requester-stalls policy under the
hood for conflicting speculative requests.

L1 cache controller. To realize such dual conflict resolution
policy (i.e., requester-wins in regular speculative transactions and
requester-stalls in CITs) while avoiding deadlocks, L1 cache
controllers are augmented with an additional message queue called
conflict queue, while the per cache entry transactional metadata in
L1 cache, i.e., the speculatively modified (SM) bit, is extended
in one bit: the conflict queued (CQ) bit. The conflict queue
is used to maintain coherence messages received from remote
speculative transactions: conflicting requests are inserted into the
conflict queue when the CPU is running a CIT (I = 1), and
removed from it for regular processing by the cache controller
either upon execution of xend with T L = 1, or because of
an abort signal that causes an early commit. The behavior of
the L1 cache controller running speculative transactions (I = 0)
remains unmodified. When in irrevocable mode (I = 1), if the L1
cache controller receives a conflicting coherence request from a
speculative transaction, it sets the CQ bit of the requested cache
block, moves the coherence request to the conflict queue and
does not send any response. Non-transactional conflicting requests
received by CITs are serviced as if no conflict was detected and
thus violate the atomicity of the CIT, as explained in Section 3.6.

L1 cache entry. The additional CQ bit acts as a protocol-level
deadlock avoidance mechanism, as it is used to detect write misses
and replacements during the execution of the CIT, which cannot be
processed by the directory until the coherence controller running
the CIT resumes processing the messages delayed in its conflict
queue. To this end, the CQ bit keeps track of those L1 cache blocks
for which an outstanding conflicting request exists in the conflict
queue. As a result of the response being delayed, the directory
entry for the cache block remains in a transient coherence state
and it cannot process subsequent coherence requests to the same
block address — including those from the L1 cache running the
CIT itself. To break deadlocks, the CQ bit is checked upon L1
upgrade misses (i.e., stores to S-state lines in MESI) as well as on
replacements of E- or M-state blocks: if CQ= 1, then the CIT self-
initiates an early commit and begins the acquisition of the lock.
Once the auto-generated store access to the lock has completed,
an early commit takes place: the read and write sets are cleared
along with the CQ bits in L1 cache, and the L1 cache controller
begins processing the messages buffered in the conflict queue. The
coherence message resulting from the miss or replacement of the
CQ block that triggered the early commit is processed as usual:
it will be eventually processed by the directory after the delayed
conflicting remote request has obtained data/invalidation from the
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early-committed CIT.
Out-of-order core considerations. When CIT support is

implemented on out-of-order cores, raising the abort signal while
I = 1 causes a squash of all inflight instructions, much like a
regular abort. Once the reorder buffer (ROB) and the load queue
are empty, the autogenerated store to the lock address is inserted
into the store queue (SQ) and immediately sent to cache, since
its effective target address and stored value are readily available.
The SQ contains stores already retired from the ROB awaiting
writeback to cache, which are not suppressed when I = 1, but
rather cleared from their transactional status to avoid setting the
SM bit in L1 cache. Note that the autogenerated store access
must overtake any pending stores to correctly deal with early
commits caused by accesses to CQ blocks: it is possible that a
preceding retired store has targeted a CQ block in S-state, in
which case the conflicting store will not be able to complete
until the early commit is complete. Once the lock is acquired, the
remote conflicting request buffered in the conflict queue will be
responded, the directory unblocked and then the overtaken store to
the former CQ block will complete. In spite of such reordering, the
memory consistency model is not affected, since the store to the
fallback lock does not have any particular ordering with respect to
those program stores that are awaiting writeback.

Read signatures. When signatures are used for read-set track-
ing, conflicts may be detected on requests to blocks that are no
longer cached in L1, either due to false positives or to previous
silent evictions. In these cases, the CQ bit is unavailable and thus
the response cannot be delayed; instead, the CIT self-initiates an
early commit and once completed, the request gets serviced.

Replacement algorithm. To minimize early commits caused
by the eviction of a CQ block, the L1 replacement logic is made
aware of the CQ bits in the cache set, so that a CQ entry is only
selected as a victim when no other entry has the CQ bit unset.

3.5 Interactions with Virtual Memory

Programmers of TM runtimes/libraries using CITs must be aware
of the interactions with the virtual memory system, since the
processor expects the virtual memory address pointed by the
operand passed to ixbegin (i.e., the lock variable) to remain
mapped at the same physical memory address for the duration
of the transaction: the CPU must be able to write to that page
immediately after it self-initiates early commit, without kernel
intervention. To achieve this goal, we opt for a hardware-software
codesign approach.

On the software level, the kernel needs to provide user pro-
cesses with support for ensuring that some virtual memory pages
remain mapped in physical memory and keeping a fixed physical
address. The existing mlock system call only guarantees that the
page will be physically present in RAM, but not necessarily in a
fixed frame. Linux kernel developers have released patches that
pave the way to make memory-pinning available to user space
through a mpin system call [20], which would be called at TM
runtime initialization for the page containing the fallback lock.

On the hardware level, the execution of ixbegin causes its
memory operand to be passed to the memory management unit
(MMU) for address translation—but no access is performed at
this point. The ixbegin instruction can only retire once the
translated physical address has been stored in an internal CPU
control register. Hardware page table walks triggered by a TLB
miss at this point can cause page faults, since the parts of the

multi-level page table required to get to the appropriate page
table entry may not be paged-in. Since such page faults occur
in non-transactional code, they are handled as usual by trapping to
the OS and re-executing the faulting instruction after returning
from kernel code. Note that the CPU does not actually enter
transactional (irrevocable) state until ixbegin retires.

3.6 Weak atomicity guarantees
In spite of early commits that allow remote conflicting requests to
complete, atomicity of a CIT is always guaranteed by the acqui-
sition of the lock that causes all remote speculative transactions
to abort, including those that temporarily breached isolation of
the irrevocable transaction. Note that the write to the lock upon
early commit becomes globally visible before the delayed con-
flicting requests are processed, which means that all speculative
transactions are already in the process of aborting (because of
a conflict on the lock) by the time their conflicting coherence
requests receive data or the last acknowledgment from the early-
committed irrevocable transaction. Should a remote conflicting
request be non-transactional, atomicity of the CIT would be
violated. Nonetheless, such inability to provide strong atomicity
for non-speculative transactions is a common limitation of all best-
effort HTM implementations proposed to date, including those
commercially available: in spite of their inability to detect con-
flicting accesses between a non-speculative transaction holding the
fallback lock and non-transactional accesses, the weak atomicity
model offered by current HTMs is sufficient for most codes [21].

3.7 Programs not compliant with the CIT ABI
As stated by its ABI, programmers using CITs are required to
subscribe all speculative transactions with potential data races to
the same fallback lock. The hardware does not restrict how many
CITs can run concurrently at any time: it is the programmer’s
responsibility to ensure that a single CIT can run at any time.

Programs not compliant with such ABI may produce incorrect
results. The atomicity of a CIT is only guaranteed with respect
to other speculative transactions, but not with respect to non-
transactional accesses nor other CITs (as explained above, weak
atomicity is a well-known limitation of any best-effort HTM).
However, in no case would this lead to a deadlock, as CITs are
never allowed to stall conflicting memory accesses coming from a
non-speculative requester (i.e., another CIT or a non-transactional
thread): only those conflicting requests coming from speculative
transactions are subject to CIT’s under the hood requester-stalls
policy. Such selection of conflict policy can be done based on
the speculative bit annotation that coherence request messages
introduced by our proposal. Since coherence messages originating
from CITs are not marked as speculative, a mutual race between
two or more CITs can never result in a deadlock. There are
other examples of programs where CITs are incorrectly used,
thus threatening atomicity. For instance, if a conflicting request
from a speculative transaction not subscribed to the (same) lock is
stalled by a CIT, and the latter then performs an early commit,
the stalled request will be responded and the data used by a
transaction that has not been aborted as a result of the acquisition
of the lock, therefore violating atomicity. Notwithstanding, the
aforementioned examples of incorrect use of CIT are largely
irrelevant to application developers, which will simply continue to
link their codes to the TM runtime/library. Only developers of TM
runtimes/libraries using TM must pay attention when leveraging
hardware support for CIT when implementing the abort handler.
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3.8 CIT-specific hardware capacity limits

A critical part of our design is how to handle the uncommon case
of conflict queue fill-up to guarantee deadlock freedom in spite of
running into such capacity limits. Empirical observation running
the STAMP benchmarks in our simulation environment shows that
the number of distinct simultaneously conflicting addresses seen
by any transaction is small, in most cases less than sixteen. This
number not only depends on the workload characteristics, but also
on the type and number of processing cores —modern processing
cores can maintain many speculative memory accesses in flight
and thus cause more simultaneous conflicts than less aggressive
cores. Regardless of these factors, the hardware must ensure
deadlock-freedom and preserve atomicity amonst transactions at
all times. Our proposal allows conflicting requests that cannot
be accommodated in the conflict queue to be serviced as if no
conflict had occurred (i.e., falling back to requester-wins policy),
and handles this uncommon case using a solution similar to the
plea bit scheme proposed by Park et al. [19]: coherence response
messages are augmented with an extra bit annotation that simply
forces the abort of the requester. Such additional annotations do
not entail any behavioral change to the coherence protocol, and
are simply transported in ack/data messages so that the destination
L1 cache controller raises the abort signal when such bit is found
set. Non-transactional conflicting requests are always immediately
responded and thus in such cases the atomicity of the CIT is not
guaranteed (the plea bit is anyways ignored by the requesting
cache). Note that this is no different from data races that may
occur between a non-transactional thread and a non-speculative
transaction holding the fallback lock in existing HTM systems.

3.9 Limitations

As shown in Fig. 5, the ixbegin instruction cannot be used
while already executing an irrevocable transaction (I = 0). That is,
a CIT cannot be nested within another CIT. However, a system that
uses CITs can easily support nested transactions, since xbegin
is supported within CITs (it increases T L as within speculative
transactions). The runtime must ensure using xbegin to start a
nested transaction when the outer one is already irrevocable.

ixbegin receives the address of the fallback lock at the
beginning of the transaction and the system will automatically
write a 1 to that address when the CIT needs to become exclusive.
This means that the fallback lock used by a system using CITs
needs to be a single word and should be acquired that way. The
rest of the locks used by the system are not affected (i.e., mutexes
from pthreads or other libraries can be used).

4 SIMULATION ENVIRONMENT

We have extended the widely used Gem5 simulator [6] with
transactional memory support, in order to model a variety of HTM
implementations ranging from best-effort solutions to full-blown
virtualized designs like LogTM [18]. The latter approaches the
charateristics of an ideal HTM implementation and it serves as an
upper performance bound that helps to quantify how our proposed
design bridges the gap between best-effort requester-wins HTM
designs and more complex implementations.

The full-system simulation mode of Gem5 is employed to
capture the effects of RTM-unfriendly operating system events on
the performance of transactional workloads. We use the detailed
timing model for the memory subsystem provided by Ruby,

TABLE 1: System parameters.

MESI Directory-based CMP
Core Settings

Cores 16 out-of-order, 4-way width
Load queue / Store Queue 72 / 56

Memory Settings
L1 I&D caches Private, 32KiB, split

8-way, 1-cycle hit latency
L2 cache Shared, 8 MiB, unified

16-way, 24(tag)+12(data)-cycle latency
Memory 3GB, 200-cycle latency

Network Settings
Topology and Routing 2-D mesh (4×4), X-Y
Flit size 16 bytes
Message size 5 flits (data), 1 flit (control)
Link latency / bandwidth 1 cycle / 1 flit per cycle

TABLE 2: HTM systems evaluated.

Base Baseline, perfect read signature, SM-bits in L1 cache
CIT CIT with 16-entry conflict queue
LazyIrr Lazy irrevocability [10] with magic token
Power Power transactions [11]
Power+ Power transactions [11], with report of power-induced aborts.
LogTM LogTM-SE, perfect signatures, 8-entry log filter [18]

combined with the detailed out-of-order CPU model known as
O3CPU. Gem5 provides functional simulation of the x86-64 ISA
and boots an unmodified Gentoo Linux with kernel version 3.2.24.
We perform our experiments on a 16-core tiled CMP system, as
described in Table 1. Each tile contains a processing core with
private L1 instruction and data caches, and a slice of the shared
L2 cache with associated directory entries. A 2-D mesh NoC
is employed to interconnect the tiles. The L1 caches maintain
inclusion with the L2. The private L1 caches are kept coherent
through an on-chip distributed directory (associated with the L2
cache banks), which maintains presence-bit vectors of sharers and
implements the MESI protocol.

HTM systems. Table 2 summarizes the HTM systems evalu-
ated in Section 5. Our baseline is an RTM-like best-effort design
that uses speculatively modified (SM) bits in the L1 data cache
to track write sets, and a perfect signature to track read sets. In
this way, it can maintain much larger read-sets than write-sets,
following the features seen in commercial Intel chips [22], where
write-sets cannot exceed L1 size (32 KiB) but read-sets can reach
several megabytes. Furthermore, in order to model a baseline that
uses the L1 data cache for speculative versioning like existing
best-effort HTM implementations do, the standard MESI coher-
ence protocol is augmented with speculative versioning support:
handling of silent invalidation of M-state SM blocks on abort, and
ensuring that M-state blocks are always written back to the shared
cache level upon the first speculative write.

We implement support for concurrent irrevocable transactions
(CIT) on top of the HTM baseline described above, without
changing the coherence protocol. For the evaluated benchmarks
and inputs, a conflict queue of sixteen entries suffices to hold
pending conflicting requests without running into capacity issues.

We compare CIT to two recent proposals that are most related,
whose aim is also to improve performance of best-effort HTM de-
signs. We have faithfully implemented power transactions (Power)
as described by Dice et al. [11], where software-controlled entry
into power mode was employed and the coherence protocol was
modified to support nacks. Additionally, we consider an optimized
flavour of power transactions (Power+) which overcomes a patho-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 10

logical performance that we observed in Power. In particular, its
cause was the heuristic proposed by the authors to mitigate the
lemming effect [23]: if a regular transaction aborts as a result of a
conflict and finds that a power transaction exists (the power flag is
set), then it assumes that its killer was the power transaction and it
does not count this abort towards the maximum number of retries
threshold for switching to power mode. If the heuristic turns out
to be wrong (i.e., the killer was a regular transaction concurrent
with a power transaction), then transactions may take many more
retries to switch to power mode than they ought to. As shown in
Section 5, this unexpected behavior results in Power performing
worse than Base in several benchmarks. Instead of relying on a
heuristic, in Power+ the abort handler is provided with precise
information about power-induced aborts, using an additional abort
status bit in the value returned via EAX to indicate whether the
conflict was with a power transaction.

Moreover, we model an idealized implementation of the lazy
irrevocability mechanism (LazyIrr) proposed by Quislant et al.
[10], where the irrevocability token is magically handled with
zero-latency of acquisition and no network traffic generated,
through a global shared flag directly accessed by all simulated
CPUs on xbegin/xend. Therefore, the results presented for this
system do not account for the overheads associated to the proposed
token communication protocol.

For fair comparison across best-effort designs evaluated, all
of them check the abort status retry bit returned on abort,
which indicates whether the transaction may succeed on retry.
Furthermore, they follow the Intel RTM specification in regard to
interrupts/faults in speculative transactions, as opposed to [10].

We compare the relative performance of the aforementioned
best-effort designs, against LogTM-SE [18], a popular HTM
system that provides virtualized transactions of any footprint or
duration. LogTM-SE uses a requester-stalls policy to resolve con-
flicts through a timestamp-based scheme of deadlock avoidance.

Benchmarks. The STAMP transactional benchmarks [5] with
recommended small and medium (’+’) inputs are used as work-
loads. The results presented in our evaluation are for 16-thread
runs. Fig. 7 shows the scalability up to 16 threads for our baseline
and LogTM, where we can see the poor parallel performance of
bayes and labyrinth in all HTM systems. The large write-set size
of their transactions in both codes, well above 32 KiB for medium
inputs, leads to poor performance when executed in best-effort
HTM systems due to capacity-induced aborts, as it can be seen
in Fig. 7. Moreover, execution time of bayes varies significantly
in different executions, as it implements a hill climbing search
algorithm that, depending on the thread interleaving, can execute
a different number of transactions for the same input [3], [24], as
clearly seen in Fig. 7. In labyrinth, the reason that lies behind
its poor scalability is the lack of hardware support for early
release [3], [25], which prevents its main data structure from
being removed from the read set after privatization, so that any
thread attempting to commit its work invariably aborts all other
concurrent transactions. Morover, the even more pathological
performance of LogTM in labyrinth is explained by the large write
set size of transactions that repeatedly abort, which not only makes
the undo log compete for cache resources with program data, but
also causes very expensive software rollbacks.

All the results correspond to the parallel part of the applica-
tions and we have accounted for the variability of parallel appli-
cations. For each workload-configuration pair we gather average
statistics over 10 randomized runs, by adding a random jitter of

up to 1 extra cycle to the DRAM response time. Threads were
pinned to cores in order to avoid migration. The results shown in
the following section are normalized to the baseline system.

5 PERFORMANCE EVALUATION

To showcase the potential performance gains of using CIT in
programs where threads encounter varying levels of contention
depending on the data accessed, we have developed a microbench-
mark with mixed contention levels, whose pseudocode is given
in Listing 3 (the atomic construct delimits a transaction). With
the Base HTM system, frequent conflict-induced aborts experi-
enced by threads executing transaction (a) (line 3) repeatedly
force threads attempting to execute transaction (b) (line 9) to
wait on the fallback lock, even though the read-write sets of
(a) and (b) are invariably disjoint. Results are shown in Fig. 8
using numTrans=1024, maxTransLoop=16, innerLoops=32 and
numHighContTransPerLoop=8 with random indices over two ar-
rays of 8 and one million 64-bit integers, respectively. On the left
side, we can see the scalability of all HTMs considered running
such microbenchmark, and on the right the normalized execution
time for the 16 threads. Execution time is categorized as follows:
holding the fallback lock (HasLock); executing speculative trans-
actions that commit (Committed); waiting on the fallback lock
to be released before retrying a speculative transaction (WaitFor-
Retry); and the rest (Other) including aborted transactions, non-
transactional execution and handling of page faults or interrupts.

We can see that the Base system does not scale well beyond
4 threads, while the rest continue scaling up to 8 threads (Power
and Power+) or even 16 (CIT, LazyIrr and LogTM). The factor
limiting the scalability of Base is the increase in the WaitForRetry
time, which CIT largely avoids by allowing concurrency between
one thread executing (a) irrevocably and several other threads ex-
ecuting (b) speculatively. LogTM and especially Power also avoid
increasing the WaitForRetry time but at the cost of doing additional
work (more aborts and more expensive aborts), while our zero-
overhead implementation of LazyIrr (as explained in section 4)
achieves almost the same scalability in this microbenchmark at
the cost of higher complexity.

Listing 3: Pseudocode of the synthetic microbenchmark.
1 f o r ( i =0 ; i < numTrans ; i += t r a n s L o o p ) {
2 f o r ( j =0 ; j < numHighContTransPerLoop ; j ++) {
3 a t om ic { / / ( a ) High c o n t e n t i o n
4 computeNewValues ( sma l lAr r ay , . . . ) ;
5 }
6 }
7 t r a n s L o o p = random ( ) % ( maxTransLoop + 1) ;
8 f o r ( k =0; k < t r a n s L o o p ; k ++) {
9 a t om ic { / / ( b ) Low c o n t e n t i o n

10 f o r ( j =0 ; j < i n n e r L o o p s ; j ++) {
11 computeNewValues ( l a r g e A r r a y , . . . ) ;
12 }
13 }
14 }

Fig. 9 compares the relative execution time of all six HTM
systems considered in this study for all STAMP benchmarks.
For the reasons mentioned in Section 4, bayes and labyrinth
are disregarded in the rest of this section and excluded from
the calculation of Average*. Furthermore, Selected Average also
excludes kmeans-l and ssca2 since they barely resort to the
irrevocability mechanisms. The role that each source of overhead
plays on the performance of each HTM design is depicted by
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Fig. 10, which breaks down execution time into disjoint compo-
nents. For brevity, only data for medium inputs (’+’) are shown
(small input breakdowns are similar). Each execution cycle is
attributed to one of the following categories: non-transactional
and barrier (NonTransactional+Barrier); handling of page faults
and interrupts (Kernel); holding the fallback lock (HasLock);
for LazyIrr and LogTM, blocked in speculative transactions due
to an ongoing irrevocable transaction —LazyIrr— or a conflict
—LogTM— (Stalled); executing speculative transactions (Com-
mitted and Aborted); waiting on the fallback lock to be re-
leased before retrying a speculative transaction (WaitForRetry); for
LogTM, restoring the undo log and backing off (Undo+Backoff );
and cycles in non-speculative transactions that did not preclude
concurrency, including both CIT and lazy irrevocable transactions
(ConcurrentIrrevocable). To quantify the additional parallelism
achieved by CIT, LazyIrr and Power in comparison to Base,
Fig. 11 shows the fraction of committed cycles from speculative
transactions that are (either partially or entirely) concurrent with
an irrevocable (or power) transaction. Naturally, this percentage
is always 0 in Base. Fig. 12 categorizes aborted transactional
cycles per cause of abort, providing a valuable characterization
of the interaction between benchmarks and HTM systems that
helps this analysis. In this figure, aborted cycles due to conflicts
on the subscribed fallback lock (including explicit aborts when
the lock is found held) are accounted for in a category of its own
(FallbackLock). Note how LogTM does not abort transactions for
any reason other than conflicts, unlike best-effort HTMs.

Fig. 13 shows the distribution of committed transactional
cycles per type of transaction: in regular hardware transactions
(concurrent speculative); cycles in CITs before early commit,
and in lazy irrevocable transactions (concurrent non-speculative);
cycles holding the fallback lock (non-concurrent non-speculative).
Cycles spent in power transactions are categorized separately,
though conceptually they are part of concurrent speculative. We
also separate cycles spent stalling before a successful commit,
which may occur in LazyIrr while waiting for a lazy irrevocable
transaction to end, or in LogTM as a result of its requester-

stalls policy. The goal of this plot is to act as an indicator of
how much of the useful transactional work executed in mutual
exclusion in Base is moved into other concurrent components by
CIT and the related works. In Base, all committed transactions are
either concurrent speculative or non-concurrent non-speculative.
In LogTM, all transactions are concurrent speculative, although
the highest priority transaction as per its timestamp could be
considered irrevocable as it cannot be aborted by any other. Note
how, in spite of its indisputable best performance, committed
transactions in LogTM generally take longer than those in best
effort HTMs, due to the overhead of logging, particularly in
benchmarks with large write sets like yada where the log takes
part of available cache resources.

5.1 CIT vs Base
In Fig. 9 we can see that CIT achieves an average reduction in
execution time with respect to Base of 15.8% for the selected
benchmarks (12.5% overall), with improvements of up to 45.8%
in a highly contended benchmark such as kmeans-h+. The reason
for such performance gains lies behind CIT’s ability to side-step
nearly all acquisitions of the fallback lock while still providing
irrevocability, thus allowing both speculative and non-speculative
work done in parallel in scenarios where Base must resort to
mutual exclusion to guarantee atomicity of the irrevocable trans-
action. Fig. 11 gives an idea of all the valid work that Base
discards every time that the fallback lock is acquired, which CIT
is able to salvage. We can see how in intruder, up to 56% of
all committed transactional cycles belong to transactions that run
concurrently with an irrevocable transaction, thus explaining the
overall performance improvement seen for this benchmark. As
we can observe in Fig. 10, for all benchmarks except yada, CIT
virtually eliminates the HasLock component seen in Base, which
in turn dramatically reduces the serialization of threads because
of the fallback lock (WaitForRetry), by 38% on average. Fig. 13
shows how nearly all transactional work done in mutual exclusion
in Base gets done concurrently in CIT (again, except in yada),
either speculatively or non-speculatively, resulting most visible
in benchmarks where conflicts are the primary source of aborts
(genome, intruder and kmeans-h). As we can observe in Fig. 12,
the fraction of aborted cycles due to the fallback lock is reduced
in such benchmarks. As a result of the additional concurrency
permitted among speculative transactions, in many benchmarks
the aborted cycles seen in CIT increase with respect to Base.

The case of yada deserves particular attention: CIT retains
around 40% of HasLock cycles seen for Base (Fig. 10), because
of page faults affecting its very long running main transaction (re-
gionRefine): our results for LogTM indicate that such transaction
takes on average 90,000 cycles to complete, including handling
of eventual page faults. For CIT, experiments reveal that around
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90% of the successful executions of yada’s main transaction are
non-speculative (explaining its poor scalability in all best-effort
HTM systems considered), and 12% of its aborts are caused by
page faults. Additionally, the fraction of irrevocable transactional
cycles executed after a page fault is considerable, explaining why
in Fig. 13 we see that still 50% of all committed transactional
cycles are still done while holding the fallback lock (NonConcur-
rent+NonSpecultive). Note that CIT increases the aborted cycles
caused by page faults, as seen in Fig. 12, which is a consequence of
the additional concurrency: in Base, many speculative transactions
that are bound to suffer a page fault do not reach the faulting access
because of another transaction becoming irrevocable. In CIT, the
same speculative transactions can make further progress in parallel
with an irrevocable one, only to end up reaching the faulting access
and discard more work than Base. Fig. 10 and Fig.13 show that in
Base almost all transactional cycles are executed non-speculatively
(in mutual exclusion), while CIT performs around 7% of all trans-
actional cycles in concurrent speculative transactions, achieving a
reduction in execution time of 21% for yada+. The predominance
of non-speculative transactions throughout its execution explains
why nearly 100% of all committed speculative transactions are
partly or entirely concurrent with a CIT (see Fig. 11).

5.2 CIT vs Power+
This section compares our proposal against Power+, an improved
version of Power which addresses the pathological scenario ex-
plained in Section 4. As it can be seen in Fig. 10, the performance
improvements of Power are very limited and in some benchmarks
it is even slower than Base. On the contrary, Power+ performs
substantially better than Power and never worse than Base. CIT
clearly outperforms Power+ by around 7% on average, due to
its combination of irrevocability and concurrency. Because power
transactions are speculative, their dual-priority mechanism can
only be applied after conflict-induced aborts. Upon page-fault- or
capacity-induced aborts, Power+ falls back to non-speculative ex-
ecution in mutual exclusion for the whole extent of the transaction,
just like Base. This inherent limitation of Power+ becomes clearly
visible in vacation, for which Fig. 9 shows identical performance
to Base, since in this benchmark most aborted cycles are due to
page faults, as depicted in Fig. 12. In the same circumstances, CIT
allows concurrency for the fraction of the transaction executed
up to the early commit, allowing other concurrent speculative
transactions to commit before the fallback lock gets acquired,
and explaining the performance improvement of CIT compared
to Base. According to Fig. 11, in vacation-h+ around 5% of all
committed speculative transactional cycles are concurrent with a
CIT. Note how, because most concurrent irrevocable transactions
eventually resort to mutual exclusion in CIT (upon page fault),
the fraction of aborted cycles caused by the acquisition of the
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fallback lock remains similar to Base in Fig. 12. In regard to yada,
page faults are also the reason behind the limited performance
gains of Power+ over Base. Those transactions that are bound to
suffer a page fault and also suffer repeated conflict-induced aborts
before reaching the faulting access, switch to power mode only to
discover that irrevocability is required in the end. In this manner,
running in power mode becomes futile given the unavoidable
switch to irrevocability, which in Power+ takes place much later
than in Base or CIT. This effect is visible in the extra aborted
cycles (nearly 12× increase over Base shown in Fig. 12), both
due to the work done in power mode up to the page fault, and by
all other conflicting transactions aborted in favor of an elevated-
priority transaction that eventually must abort too.

5.3 CIT vs LazyIrr
When compared to LazyIrr, Fig. 9 shows that CIT’s average
performance is 4.6% better, even though our idealized implemen-
tation of lazy irrevocability does not take into account the latency
and network traffic overheads incurred by the irrevocability token
protocol proposed by Quislant et al. In sight of these results, and
considering the additional hardware complexity of LazyIrr, CIT re-
veals itself as a more cost-effective alternative at improving HTM
performance through concurrency during irrevocable execution.
CIT does so while maintaining eager lock subscription, whereas
LazyIrr requires dedicated communication circuitry to overcome
the many threats of lazy subscription. Fig. 10 shows that CIT
clearly outperforms LazyIrr in benchmarks with frequent conflict-
induced aborts (genome, intruder, kmeans-h), where the difference
in execution time stems partly from CIT’s ability to discard less
work by resolving conflicts through stalls rather than aborts, and
partly from the appearance of the Stalled component in LazyIrr:
in CIT speculative transactions may commit without having to
wait for an ongoing concurrent irrevocable transaction, whereas in
LazyIrr they must stall in order to guarantee its atomicity.

The slowdown relative to the baseline seen in intruder is a
quantitative proof of LazyIrr’s limits to concurrency in workloads
that mix both long- and short-running transactions with high con-
tention. In intruder, a long transaction (decoder_process, average
duration of 900 cycles in Base) frequently becomes irrevocable
and can cause long stalls on other threads executing smaller trans-
actions (e.g., getComplete, duration of 100 cycles in Base/CIT),
which in turn exposes them to further conflicts as a result of their
increased duration. The larger Aborted component in LazyIrr in
Fig. 10 is due to the increase in the number of aborts of the two
shorter transactions compared to Base/CIT, a direct result of their
longer duration (e.g., getComplete shows a 3× increase in average
duration and 6× increase in aborts). Even though LazyIrr nearly
halves the number of aborts of decoder_process, the adverse
effects on the shorter transactions outweigh such an improvement
and cause the slowdown with respect to Base seen in Fig. 10. In
contrast, CIT does not impose any limits to concurrency.

The marginal improvement seen for LazyIrr over CIT in
ssca2 is an artifact of our ideal implementation of LazyIrr: even
though none of the HTMs evaluated resort to irrevocability, the
overhead of software lock subscription penalizes Base and CIT in
comparison to LazyIrr, which magically subscribes to a hardware
lock at no cost. The result is that, because of the small transaction
size, LazyIrr executes around 30% fewer instructions in each
committed transaction than Base or CIT (20 vs 30 instructions).

LazyIrr only achieves a significant improvement over CIT in
one benchmark (vacation), which stems from LazyIrr’s ability to

handle page faults occurring in irrevocable transactions in parallel
with other speculative transactions. Since page faults do not result
in the fallback lock being acquired in LazyIrr, discarded work in
vacation is largely reduced (i.e., LazyIrr eliminates the Fallback-
Lock component in Fig. 12 with respect to Base, CIT or Power+).
As it can be observed in Fig. 11, the consequence of handling
page faults in parallel is that for vacation-h, in LazyIrr 18.1% of
speculative transactional cycles committed are concurrent with an
irrevocable transaction, while in CIT this happens only for around
5.0% of cycles. As opposed to LazyIrr, best-effort HTM systems
using eager subscription (Base, CIT and Power+) must handle
page faults in mutual exclusion. Although out of the scope of this
work, the reader must note that page fault handling could be easily
moved out of the critical path of irrevocable transactions in best
effort HTM systems with eager subscription, if only the hardware
returned the faulting virtual address to the abort handler.

By design, LazyIrr never resorts to mutual exclusion and thus
all committed transactional cycles are concurrent (either specula-
tive or non-speculative), as seen in Fig. 13. However, in LazyIrr
committed speculative transactions may have been blocked at
commit time until a concurrent lazy irrevocable transaction com-
pletes: Stalled cycles are responsible for the increment in the total
cycles spent in committed transactions seen in Fig. 13. Such useful
stalled cycles largely dominate committed transactional cycles
in yada (as a result of its long running transactions), and also
represent an important fraction in genome, intruder, kmeans-h
and vacation. These potentially long stalls introduced at commit
time are challenging to programmers willing to avoid wasting
computational power in scheduled threads that are indeed idle.

6 CONCLUSIONS AND FUTURE WORK

This work proposes Concurrent Irrevocable Transactions (CITs)
for best-effort requester-wins HTM. CITs increase the concur-
rency among transactions by eliminating the need or at least de-
ferring the need of making irrevocable transactions non-concurrent
(i.e., avoiding the acquisition of the fallback lock). We show that
CIT improves performance with respect to the baseline archi-
tecture 15.8% on average in contended benchmarks and 12.5%
on average across the STAMP benchmark suite. CIT increases
concurrency more effectively than Power Transactions because
CIT can execute at least with partial concurrency even transactions
affected by page faults or capacity-induced aborts. Also, CIT
outperforms Lazy Irrevocability because no other transactions can
commit while a lazy irrevocable transaction executes, introducing
stall time and reducing concurrency, a limitation which CIT does
not have despite its lower complexity.

The ISA and hardware changes needed by CIT are minimal but
enable significant performance gains, as shown in this work. As
future work, we expect to further increase concurrency between
transactions using the same hardware extensions with the help
of program annotations and/or the compiler, by allowing the
execution of several irrevocable transactions concurrently as long
as it can be proven beforehand that they access only disjoint data.
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