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Abstract—This manuscript opens the way to a new class of coherence directory structures that are based on the brand-new concept
of way combining. A Way-Combining Directory (WC-dir) builds on a typical sparse directory but allows to take advantage of several
ways in the same set to codify the sharing information of each memory block. The result is a sparse directory with variable effective
associativity per set and variable length entries, thus being able to dynamically adapt the directory structure to the particular
requirements of each application. In particular, our proposal uses just enough bits per entry to store a single pointer, which is optimal
for the common case of having just one sharer. For those addresses that have more than one sharer, we have observed that in the
majority of cases extra bits could be taken from other empty ways in the same set. All in all, our proposal minimizes the storage
overheads without losing the flexibility to adapt to several sharing degrees and without the complexities of other previously proposed
techniques. Detailed simulations of a 128-core multicore architecture running benchmarks from PARSEC-3.0 and SPLASH-3
demonstrate that WC-dir can closely approach the performance of a non-scalable bit vector sparse directory, beating the
state-of-the-art Scalable Coherence Directory (SCD) and Pool directory proposals.

Index Terms—Cache coherence, sparse directory, way combining, scalability, coverage, bit vector, limited pointers, execution time,
network traffic.
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1 INTRODUCTION AND MOTIVATION

C URRENT mainstream multicore architectures implement the
shared-memory abstraction as the low-level programming

paradigm, and this trend is not likely to change in the foreseeable
future [1]. Communication between cores in these devices occurs
by writing to and reading from shared memory, while one or more
levels of private caches in each core enable low-latency memory
accesses and reduced pressure on shared resources (interconnec-
tion network and shared cache levels). A cache coherence protocol
implemented in hardware is responsible for preventing cores from
observing multiple versions of the same data, thus making private
caches functionally invisible to software [2].

Today, general-purpose multicores with close to one hundred
cores are becoming commercially available, such as Intel’s 72-core
x86 Knights Landing MIC [3]. Meanwhile, researchers are already
prototyping thousand core chips, like the KiloCore chip developed
at UC Davis [4], and large-scale NoCs for supporting them [5].
Maintaining coherence across hundreds of cores in these manycore
architectures requires careful design of the coherence directory
used to keep track of current locations of the memory blocks at
the private cache level. Duplicate tag directories employed in some
first-generation multicores [6] are plainly and simply unfeasible
for manycores, since their associativity grows with the number
of cores. Contrarily, sparse directories [7] maintain an explicit
sharer list per entry and can be organized as typical associative
caches, allowing for more scalable implementations. Thus, recent
proposals have built on sparse directories [8], [9], [10], [11], [12],
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[13].
Two aspects determine the area requirements of a sparse

directory [14]: The total number of entries and the number of
bits of each entry. The former determines the maximum number
of addresses that the directory can contain in a given moment,
and therefore has a direct effect on the amount of different
memory blocks that can be stored at the private cache level.
The term coverage is typically used to indicate the number of
directory entries with respect to the total number of entries in the
last level of private cache. Coverage shortage leads to increased
miss rates in private caches due to directory invalidations, hence
affecting performance. Multiprogrammed workloads consisting of
sequential programs place the most stringent demands on the
coverage of a sparse directory, requiring at least as many entries
as the sum of all entries in the last level of private caches, to allow
all such cache entries to be used at the same time. Previous works
(such as [10]) have shown also that in general 100%-coverage is
enough in most cases to eliminate nearly all invalidations due to
directory evictions if enough associativity is provided.

Whereas coverage does not depend on the number of cores
and therefore is not a scalability hurdle, the amount of bits of each
directory entry poses severe limits to system scaling. The size of
each directory entry depends fundamentally on how it stores the
sharers list for the associated address. To be scalable, directory
implementations need to ensure that the number of bits per tracked
sharer scales gracefully (i.e. remaining constant or increasing very
slowly) [10]. Bit vectors are known to be non-scalable, since their
size increases linearly with the number of cores, thus making them
unfeasible for large core counts. Alternative representations such
as limited pointers [15], [16] or compressed sharing codes [7], [17]
curb directory memory overhead. Unfortunately, the improved
scalability comes at the cost of increasing either the number of
messages per coherence event or the miss rates at the private cache
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Fig. 1: Directory occupancy per set: average fraction of sets with
a given number of occupied entries (ways) in a 100% coverage
8-way sparse directory with bit vector sharing code for 128 cores
(1 sample every 100000 cycles).

levels. For instance, the loss of precision introduced by coarse bit
vectors [7] leads to more invalidation messages per write, while
pointer recycling policies [15] must invalidate privately cached
blocks every time a pointer is reused for a new sharer. In the end,
both extra coherence messages and increased miss rates result into
performance degradation.

It is also well-known that the degree of sharing varies across
memory blocks and over time within applications, so that there
is no optimal sharers list organization for all cases. Ideally, each
directory entry should have enough flexibility to adapt to different
situations. Several previous works show that a significant fraction
of the directory entries (approaching 90% in some cases) track
private blocks, for which a single pointer would suffice [9], [18].
Furthermore, amongst entries tracking shared blocks, most of
them have a very small number of sharers (two or three). The
remaining very few entries have many sharers, yet its number does
not grow with system size [13]. Moreover, virtually all directory
entries would track private blocks when sequential workloads are
executed in multiprogramming.

This way, a sparse directory designed for the common case
should have as many entries as the last level of private caches
(with the same or higher associativity), with each entry consisting
of a single pointer. Though this design would fit perfectly well to
the requirements of sequential workloads in a multiprogrammed
environment, when multithreaded applications come into play, the
shortage of bits in each directory entry could have catastrophic ef-
fects on performance. However, when multithreaded applications
are executed, a significant number of directory sets are not fully
occupied (i.e. there are free ways in the set) as a consequence
of blocks being shared by several cores and occupying a single
directory entry. For the benchmarks considered in this work,
Fig. 1 shows that sets are on average at half their maximum
occupation, and Fig. 2 depicts the number of sharers tracked by
each entry (refer to Section 4 for details). Interestingly, most of
those applications that exhibit high occupancy in Fig. 1 (such as
Fft, Radix or Ocean cp) have just one sharer per entry in almost
all entries. This observation is not new as it is what motivates
previous approaches that use multiple entry formats to store
sharing information [10], [19]. We however exploit it differently
than previously done. Particularly, we propose that overflowed
directory entries in a particular set can expand to the free ways
in that set.
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Fig. 2: Sharers per directory entry: average fraction of present
addresses with a given number of sharers in a 100% coverage 8-
way sparse directory with bit vector sharing code for 128 cores (1
sample every 100000 cycles).

Taking into account these observations, in this work we
propose a novel sparse directory architecture that builds on the
following design principles:

• It should be designed for the common case. Considering that the
degree of sharing for most addresses is low (one or two), our
proposal employs just one pointer per entry.

• It should adapt to changing sharing degrees. Though a single
pointer suffices for most addresses, there are others which
require additional storage to track their sharers list. To handle
those with the minimum loss of precision, we leverage the
available ways that often exist in the same cache set to allocate
additional sharing code storage, giving birth to the concept
of way combination. This enables flexible resource assignment
within a set, making each set of the sparse directory appear as
a pool of entries which are dynamically allocated on demand
among the addresses mapped to that set.

• It should entail as lower complexity as possible. Way combi-
nation comes with minimal cost as it avoids the complexity
introduced by other proposals [8], [10], [19]. Our proposal
builds atop traditional sparse directories, relies on existing
replacement algorithms, and does not increase the complexity
of directory operations. Although our proposal is less flexible
than SCD [10], we show that extra flexibility enabled by SCD
barely has any positive influence on final performance.

• It should keep directory memory overhead as low as possible.
Our proposal has lower memory overhead than SCD, which we
consider the most scalable directory proposal to date, and this
overhead grows more slowly with the number of cores.

• It should approach as much as possible the performance of the
non-scalable bit vector sparse directory. Our proposal reaches
this objective (just 2% overhead on average is observed) at
the same time that it improves over a similar-size version of
the previously proposed SCD directory and the bigger Pool
directory.

This manuscript extends our previous conference paper [20] by
presenting a more mature (more finely-tuned) proposal for a way-
combining directory, showing its low hardware complexity and
significantly extending the evaluation of the idea. In particular, we
make the following contributions in this extended version:

• We describe in detail how read and update operations would
proceed in WC-dir, showing that our proposal would intro-
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duce no penalty in terms of extra latency and addressing some
implementation details: policies for replacements, possibility
of hybrid representations and allowed sizes for the coarse bit
vector representation (Section 3).

• We add a new comparison point to the evaluation. In par-
ticular, besides SCD [10], we also consider the Pool di-
rectory [19], as it can scale gracefully and was previously
reported to be a competitive alternative to non-scalable bit
vector directories (Section 5).

• We make a more comprehensive evaluation by presenting
some new results that help understand how WC-dir is able to
beat its counterparts: obtained precision per address, entries
used in each format per address, directory replacements per
instruction (Section 5).

• We also add a sensitivity analysis to illustrate the behavior
of WC-dir with varying directory associativity, showing how
the lack of precision in the directory can be attributed to the
lack of directory associativity (Section 5).

The rest of the manuscript is organized as follows. First, we
give in Section 2 background information about directory cache
coherence and discuss some important related works. Next, we
present our proposed directory architecture in Section 3. Section 4
describes our simulation environment and detailed results are
shown and analyzed in Section 5. Finally, Section 6 contains the
main conclusions of this work.

2 BACKGROUND AND RELATED WORK

The most common way of encoding the set of sharers of a memory
block is a bit vector where each bit represents a core’s local
cache [21]. Unfortunately, the memory requirements of this exact
and simple design grows linearly with the number of cores and
thus is not scalable. The width of a directory can be reduced by
codifying the sharers in an inexact way by excess, which will
still guarantee correct operation of the coherence protocol. The
downside of these compression techniques is that they trade off
entry size for coherence traffic. Maybe the best-known example of
a compression scheme is Coarse Vector [7].

An alternative way to reduce the width of the directory is by
limiting the number of sharers that can be stored exactly in an
entry. In the Limited Pointer scheme [15] each entry can hold a
small number of pointers to sharers, which is enough for most
addresses. When a memory block requires more sharers than
the limit, there are two options: evicting one of the previous
sharers (creating directory-induced invalidations) —DiriNB— or
switching to an inexact representation (creating additional traffic)
like using a bit to indicate that broadcast should be used to
invalidate that memory block (DiriB) or a coarse vector that fits
in place of the pointers (DiriCV ) [7]. The number of bits required
by these techniques is i× (1+ dlog2ne), being i the number of
stored pointers. One extra bit is required in the case of using the
broadcast approach.

Simoni and Horowitz [22] enhance the limited pointers scheme
by having a pool of pointers to allocate the sharers. Each entry in
the pool consists of a valid bit, the node identifier (dlog2ne bits),
and a pointer to the next entry in the pool (log2 p bits, where p
is the number of entries in the pool). Every memory block keeps
a dirty bit, an empty bit, and pointer to the first sharer in the
pool (2 + log2 p bits in total). Pointers are allocated in the pool on
demand and, when the pool is full, evictions are performed causing
invalidations. A main disadvantage of this approach is that getting

the sharing information requires s sequential accesses to the pool,
being s the number of sharers.

The segment directory [16] is a hybrid of the bit vector and
limited pointers schemes. Each entry consists of a segment vector
and a segment pointer. The segment vector is a K-bit segment of
a full bit vector whereas the segment pointer is the dlog2

N
K e-bit

field keeping the position of the segment vector within the full
bit vector. The problem of this representation is that it does not
adapt to the variable sharing degrees of memory blocks. Also,
in [23] the authors propose to design each set of an 8-way sparse
directory to have six pointer ways (used to track private data) and
two bit vector ways (for keeping track of blocks with more than
1 sharer). Ways in each set are assigned to every memory block
depending on its current number of sharers. All ways in WC are
the same, and adaptation to varying sharing degrees is achieved by
combining entries in the same set. Moreover, conversely to these
proposals, WC does not rely on non-scalable bit vectors. Recently,
Shukla and Chaudhuri employ a segment directory representation
in combination with limited pointers in a pool directory [19].

In SCD [10] entries store only a limited number of pointers
but they can be combined to provide more space for storing
a larger number of sharers using bit vectors (hierarchically).
However, to be able to do this SCD increases the size of the tags,
requires the use of a Z-cache [24] and needs several directory
accesses to retrieve the set of sharers. Additionally, for overflowed
entries indexes to other entries must be stored, leading to reduced
effective capacity of the directory. Despite these downsides, we
think that SCD represents the most scalable directory coherence
design to date and we have chosen it as the reference against which
WC-dir is compared.

Hierarchical directories have also been proposed to reduce the
entry size [25] or to navigate more efficiently the cache hierar-
chy [26]. However, hierarchical organizations impose additional
network hops and lookups on the critical path [25] or require
important modifications to the cache coherence protocol [26].

The Tagless Coherence Directory [27] uses multiple-hash
bloom filter to store directory information, working similarly to
an inexact duplicate-tag directory. Ideally, Tagless has constant
per-core overhead, but in practice the bloom filter size needs to
grow with the number of cores to avoid excessive aliasing.

Two-level directory architectures have also been proposed as
a scalable way of organizing the coherence directory [28]. In a
two-level directory, the first level stores the exact sharers set as
a vector of bits, while the second level uses a compressed code.
However, when using compression, area is saved at the expense of
using an inexact representation of the sharer vector in some cases,
thus yielding performance losses. In Stash [11] the second level
directory information is stored along with the shared data cache
and it keeps only a single bit to encode whether any core has the
block. This way, entries in the first level directory are saved for
private blocks.

Coherence Deactivation stores information in the directory
only for shared blocks that are not read-only [9]. The rest of
blocks are tracked by the page table, which acts as a second level
directory at page granularity. Since most of the blocks usually
tracked by the directory are private, its size can be considerably
reduced. However, this proposal relies on the operating system to
keep updated the non-tracked information.

Some other proposals try to exploit the fact that applications
typically exhibit a limited number of sharing patterns, by storing a
limited number of patterns with full bit vectors or bloom filters in a
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Fig. 3: Overview of the Way-Combining Directory. The block
address AddrA is presented to the directory ¶. The corresponding
set is accessed and two of the ways (Way 0 and Way N-1)
happen to store the sharing information for the address ·. From
the contents of these two ways, the list of the sharers (X, Y) is
generated ¸.

sharing pattern table and an address-indexed sparse directory holds
pointers to the pattern table [29] [30]. Although these schemes
increase the range of sharers that can be tracked efficiently, they
are still not scalable and require additional bandwidth.

Spatiotemporal Coherence Tracking [31] saves directory space
by tracking temporarily private data in a coarse-grain fashion.
Multi-grain directories [32] also use different entry formats of the
same length and tracks coherence at multiple different granulari-
ties in order to achieve scalability. However, these proposals are
limited to a range of directory interleavings (those higher or equal
to the size of a memory region) in order to achieve maximum
benefits.

3 THE WAY-COMBINING DIRECTORY

3.1 General Overview
Like any other coherence directory, the way-combining sparse
directory (henceforth, WC-dir) stores sharing information about
block addresses that are kept at the private levels of the on-chip
cache hierarchy typically found in a manycore chip multiproces-
sor.

The structure of WC-dir is nearly identical to that of a tradi-
tional set-associative directory cache. Each address is unequivo-
cally mapped to a set in the cache, and the sharing information,
if present, may be stored in any set entry. However, unlike a
conventional directory cache, WC-dir allows multiple entries of
the set to be allocated to the same address, so that an access to
WC-dir can result in zero, one or more tag hits. In the latter case,
the sharing information stored in the matching entries is combined
to produce the list of sharers for the requested address. Fig. 3 gives
a simple overview of a circuit for obtaining the list of sharers. WC-
dir replaces the N-to-1 multiplexer typically found in an N-way
set-associative cache (which selects the data from the matching
entry) with the WC-dir Logic, a finite state machine (FSM) whose
purpose is to merge the sharing information from all the matching
entries (see Section 3.3 for further details).

Our design is based on the observation that most memory
blocks have only a handful of sharers, most often just one. The
dominance of entries with a single sharer (i.e., tracking private
data) comes at no surprise in single-threaded multiprogrammed
workloads. Nevertheless, even in multi-threaded or parallel ap-
plications the majority of the directory entries also track private
blocks. Furthermore, the common case for shared blocks is that a

large fraction of them are only held by two or three sharers. This
means that traditional sparse directories that use full bit vectors to
encode sharers clearly make a poor utilization of the area dedicated
to storing sharing information.

Another important fact to understand our design is that when
two or more private caches hold copies of a block, only one entry
needs to be allocated in the directory. That means that in a 100%
coverage directory, every additional sharer for those addresses
already tracked by the directory will result in an additional free
directory entry. WC-dir can take advantage of those empty entries
when they happen to be in the same cache set as addresses whose
sharing information does not fit in a single entry.

To take advantage of these observations in a simple design,
WC-dir allows entries of the same cache set with the same tag (i.e.,
referring to the same cache block) to be combined. The sharing
information of each block can be encoded in one or more entries
of the same set by using either pointers or coarse bit vectors. For
this purpose, two formats, namely pointer and coarse vector, are
employed to track the set of sharers of a given block. The format
of each entry is encoded with an additional format field. Entries in
pointer format (assumed to be set to ’1’ in the example) contain
a pointer to a sharer, while entries in coarse bit vector format [7]
(assumed to be set to ’0’), contain a portion of the coarse vector
of sharers. More precisely, in the coarse bit vector format, each
bit of an entry represents a set of nodes (thus, this representation
results in loss of precision since more nodes than real sharers are
typically included). If a bit is set to 1, it means that a copy of the
block is maintained in the private caches of one or more of the
represented nodes, while if a bit is 0, none of them hold a copy.

The list of sharers is jointly stored by all combined entries and
can be decoded using the referred WC-dir logic. The ability of
WC-dir to combine entries in the same set is independent of the
format employed to track the sharers. In fact, the format in which
the sharing code is stored for a given address may change over
time, depending on the number of entries that can be allocated to
the address at a given time.

Every time a new block address is inserted into the directory,
the pointer format is used by default for the new allocated entry.
Subsequent sharers of the same block are also added in pointer
format as long as there are free entries in the same set of the
directory. However, when directory resources become insufficient
to maintain exact sharing information, the format of the stored
information of some addresses changes to coarse bit vector format
(losing some precision) or its amount of storage is dynamically
reduced (losing more precision).

This way, WC-dir dynamically changes the amount of sharing
code storage dedicated to each address in an attempt to maximize
directory utilization and precision while keeping low area over-
head and operation complexity.

When adding a new address to the directory in a set that is full
(i.e., a set where all the entries are valid) but contains at least one
combined entry, WC-dir will reduce the storage of a combined
entry, hence reducing precision. If an address in a combined entry
in coarse format exists, WC-dir makes room by decreasing its
number of allocated entries. Otherwise, WC-dir entries allocated
to an address in pointer format are switched to coarse format using
at least one fewer entry.

Since evicting an address from the directory results in inval-
idations in private caches that may later harm performance due
to additional misses, WC-dir always tries to minimize evictions
at the cost of reducing the precision of the sharing code. Thus,
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Fig. 4: WC-dir: Example of operation.

evictions only occur when a new address is inserted into a full set
where each entry is allocated to a different address, following a
modified LRU replacement algorithm to select the victim. When
adding a sharer to an existing address, no eviction or reduction in
precision of the sharing information of another address happens.

Finally, note that the implementation complexity of WC-dir
would be lower than that of other proposals such as SCD, since in
WC-dir all operations involve only a single set.

3.2 Working Example
To illustrate the behavioral aspects of WC-dir, Fig. 4 shows the
evolution of a 4-way set associative WC-dir for 128 nodes. Each
sharer field consists of 8 bits that, in pointer format, can be
combined to point up to 4 sharers (one per cache way) or, in coarse
format, to compose a 32-bit (4×8) or 16-bit (2×8) sharer vector,
each bit representing 4 (128/32) or 8 (128/16) nodes respectively.

Fig. 4 (a) shows the set containing two addresses addrA and
addrB, both in pointer format and each with a single sharer. New
sharers can be added to an existing address by allocating available
entries in the set, as depicted in Fig. 4 (b). When all entries in a set
are allocated (either to the same or different addresses) using the
pointer format, no sharer can be inserted into the directory without
first taking action to make room in the set, as shown in Fig. 4 (c).
In this case, addrB must change its representation from pointer
format to coarse bit vector format, therefore losing precision (note
that a total of 32 potential sharers would be actually encoded).

Finally, the insertion of a new address (addrC) in the set (Fig. 4
(d)), causes addrA to switch from pointer format over three ways
to coarse vector format over two ways, thus releasing one of its
entries and losing some precision (note that no address is evicted).
The replacement algorithm implemented in WC-dir starts looking
for the candidate among those addresses that comprise several
ways in the set, and among these, those in coarse bit vector
format are considered in the first place. Though in this example
there is only one candidate, in practice there are several heuristics
that could be employed to select the victim among the candidate
addresses. In this work, WC-dir opts for a simple LRU policy,
although other approaches could be used (further details are given
in the next subsection). Also, those candidates whose sharing code
is already stored in coarse format are always chosen over those in
pointer format, in order to keep precise sharing codes for as many
addresses as possible.

3.3 Implementation aspects
The proposed architecture can be implemented using simple
hardware with negligible or no delay over conventional directory

approaches. This section illustrates this claim by discussing, from
a high-level perspective, implementation issues required to support
the two major directory operations, reading and updating contents.

WC-dir builds on a typical set-associative directory cache
structure. Figure 5 presents a block diagram of the WC-dir
directory, where the contents of each cache way (e.g. tag and
sharers) are connected to the WC-dir logic, which is the FSM
responsible for carrying out both update and read operations of
coherence information. The coherence controller is in charge
of receiving the requests (generated on cache misses and re-
placements) and coherence responses from the last-level private
caches, and creating and injecting the corresponding response
and coherence messages into the NoC. As in a typical sparse
directory, the coherence controller in WC-dir has a buffer (the
miss status handling registers, MSHRs) that holds the requests
received from the L2 caches on cache misses and replacements
until they are completely resolved. On receiving a new request,
the buffer is checked to look for a potential in-progress request to
the same block address. If one is found, a pending bit in the entry
allocated to the new request is set to indicate that it must wait for a
previous request to the same address to be completed. Otherwise,
the request may be processed once the FSM implemented by
the coherence controller chooses it. In our implementation, the
coherence controller handles one request in each cycle (coherence
controller cycle), and therefore, a single access is sent to the WC-
dir Logic every time. If the request to the WC-dir Logic takes more
than one cycle to complete (e.g., in a GetX request, for getting the
sharers list from a combined entry), the coherence logic will not
be able to proceed to handle another request until it has received
the complete response. Observe, however, that several requests to
different addresses will typically be in-progress concurrently (for
example, the coherence controller may start processing a different
request while waiting for some in-flight coherence responses).

The coherence controller indicates to the WC-dir logic both
the type of the access (GetS for requesting shared data, GetX for
requesting exclusive data, PutS due to the eviction of shared data
or PutX due to the eviction of exclusive data) and the block address
involved through the IReqType and IAddress entries respectively.
Then, the WC-dir logic performs a read operation to obtain
coherence information for the block address (the set indicated
by OSetSelect ), and informs the coherence logic on whether there
is a hit or a miss (OHit/Miss), and in case of a directory hit,
the coherence state of the memory block (OState) and sharing
information (OSharers). The latter includes the format being used
(i.e. pointer or coarse bit vector), the number of chunks that
sharing information is split in (i.e. number of ways used to store
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Fig. 5: WC-dir proposed implementation.

sharing information) and the contents of a particular way (as we
explain later, the list of pointers or the full coarse bit vector
will be provided using several directory cycles). Finally, directory
information is updated by re-writing one by one the involved ways
in the corresponding set (using OWay and OContent outputs).

The implementation aspects of the read and update operations
are drawn in Fig. 5.

3.3.1 Reading directory information
On receiving a GetS or GetX request, the contents of a target direc-
tory entry must be read to find out the owner of the missing block
or the list of sharers for coherence purposes (such as forwarding
the request to the private cache currently owing the memory block
or invalidating the shared copies of the block in the private caches).
Unlike update operations, directory read operations are on the
critical path of cache misses, so it is important that they take as
little time as possible. In this context, the proposed WC-dir design
is aimed at avoiding extra delays in directory read operations when
compared to a traditional directory.

The time taken to read the contents of the target directory entry
mainly depends on whether or not it is a combined entry (i.e.
whether it comprises just one or several ways in the set). Reading
a non-combined entry, regardless of whether the entry uses pointer
format or coarse bit vector format, is performed identically as in
a traditional sparse directory, since our approach only impacts on
combined entries. Thus, there is not additional penalty over the
baseline in this case. As it will be shown in Subsection 5.3, this
is the common case for most applications, constituting about 85%
of the cases on average.

However, the proposal also needs to take care of combined
entries, especially when a small number of ways in the set are
involved. To this end, WC-dir proceeds as follows on accessing
directory information. First, the tag of the target block address is
compared against the tags of all the ways in the set and the sharers,
format and state fields are read, as usual. The tag comparison
produces a bit mask with the combined ways of the target entry
(e.g., 1010, where 1 refers to a way with a matching tag and 0
refers to a miss, so there are combined entries if there is more
than one 1). Second, the bit mask is used to discard the contents
(sharers, format and state fields) of the non matching ways in
the set. Third, the remaining contents are sent to the coherence
controller one by one, which uses them to identify the private
caches involved in the coherence operation.

For instance, if the combined entry is encoded in two ways
in the set with pointers P1 and P2, then these pointers have to

be delivered by the WC-dir logic to the coherence controller, as
depicted in the bottom side of Fig. 5 along with the coherence state
of the memory block and the format being used in the codification
(pointer format in this case). Since multicast support is not
commonly employed in current on-chip networks, the coherence
controller must create individual coherence messages sequentially
(one by one), thus requiring several directory cycles. This way,
while the coherence controller is creating one coherence message,
the WC-dir logic is providing it with the next sharer or set of
sharers, thus overlapping the time needed to obtain additional
contents in the case of a combined entry with the time to create
coherence messages.

In case the combined entry is in coarse bit vector format, the
chunks of the full coarse bit vector would also be provided to the
coherence controller one by one. The number of chunks is also
sent since the beginning, which allows the coherence controller
to determine how many sharers are represented by each bit. This
way, the coherence controller can start generating the coherence
messages upon receiving the first chunk, overlapping again the
time needed to provide the additional chunks with the time needed
to create coherence messages.

To keep hardware as simple as possible, we enforce that the
number of ways in the set of a combined entry in coarse bit vector
format is constrained to be a power of two (e.g. 1, 2, 4 or 8 in
an 8-way cache design). This allows the coherence controller to
employ the same logic used in a standard directory (like LP1 as
described in section 4.1) to encode or decode the coarse bit vector
with very simple modifications (i.e., adding a multiplexer and
replicating wires). Through experimentation, we have found out
that the impact that this restriction has on precision or performance
is negligible.

PutS and PutX commands would require reading the directory
to obtain the information for the involved block address prior
to update. In these cases, the same course of action would be
followed.

3.3.2 Updating coherence information

Directory information must be updated as a consequence of the re-
quests (GetS or GetX) generated on cache misses, or the associated
replacement notifications (PutS or PutX). For the latter, updates on
receiving a PutX command (that informs about replacement of an
exclusively held memory block) would proceed exactly the same
way as in a traditional sparse directory by releasing the single-
way directory entry associated to the block address. Otherwise,
in those protocols that implement noisy replacements of shared
data (something beneficial for directory structures with limited-
capacity entries such as SCD or WC-dir), only when directory
information is stored in pointer format, can the portion of the
entry tracking the replaced copy of the memory block be released.
Notice that if, otherwise, the coarse bit vector representation is
used, the replacement hint cannot be leveraged as a consequence
of the lack of precision entailed by this sharing code. Overall,
replacements do not suppose any changes regarding a traditional
sparse directory.

Regarding requests (GetS or GetX) generated on cache misses,
if the directory already maintains an entry for the requested ad-
dress (directory hit), the list of sharers must be updated. Otherwise,
a new directory entry needs to be created. In the latter case, as a
result of the limited capacity of the directory structure, another
tracked address could also require updating its associated entry.
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TABLE 1: WC-dir update logic in case of address hit.

GetX
Pointer Coarse Action: establish requester as new owner
• Use one entry in pointer format, release the rest•

GetS
Pointer Coarse Action: a new sharer is to be addedFree way
! Use a free entry in pointer format
% Combine pointers in coarse vector format

• Update the coarse vector to include the new sharer

Below, we first discuss the actions performed in case of a directory
hit, and next those involved in a directory miss.

Upon a directory hit for a GetX request, the directory entry
must be updated to reflect the identity of the new owner of the
block. In this case, a single pointer suffices, so that if the directory
entry is comprised of several combined ways, only one of them is
kept, deallocating the rest and leaving them available for later use.

On the other hand, if the directory hit happens for a GetS
request, the directory entry must be updated so as to add the new
sharer that triggered the request. Now, the actions to be done
depend on both the format being used to track that address and
whether or not there is any free way in the corresponding set of
the directory cache. In case the sharers are being tracked in pointer
format and there is at least a free way in the set, then a way is taken
and the new sharer encoded in pointer format; otherwise, if all the
ways are already in use, the representation is changed and the
pointers of the tracked block are combined in the coarse bit vector
format and the new sharer subsequently added to the vector.

On the other hand, if the sharers are being tracked in coarse
bit vector format then the new sharer must be included among
the existing ones. In this case, it does not matter whether or not
there is any available free way in the set, because the represen-
tation maintains its current setup (number of combined ways and
format). Notice that finding out available ways in the set in this
case would open the door to hybrid-codification directory entries,
in which part of the sharers are codified in coarse bit vector format
and others using pointers (in this case, the newly added sharer).
Having this hybrid representation however would complicate the
hardware implementation, and through experimentation, we have
observed that it would lead to negligible improvements in the
precision of the directory. Therefore, we do not consider it and
we force that all the ways tracking a given memory block must
use the same format.

Table 1 summarizes the main actions that must be taken by the
WC-dir controller in case of an address hit in the directory cache.

To accomplish these updates, the WC-dir logic would select
the target ways to be updated and would generate the new content
(i.e. pointers or chunks of the coarse bit vector) of each way.
Through a demultiplexer, the target way (of the corresponding
set) would be selected and subsequently updated with the contents
generated by the WC-dir logic, as depicted in Fig. 5. Notice that
only one way can be updated in every directory cycle, hence, the
total number of directory cycles needed to complete an update
operation depends on the number of involved ways. However,
as directory updates are not on the critical path of misses, these
additional cycles would have negligible impact on performance.

On the other hand, the way to proceed upon a directory miss is
the same for GetS and GetX requests. In both cases, the directory
must be updated to track the missing memory block address. For
this purpose, firstly, it is checked whether or not there is any free

TABLE 2: WC-dir update logic in case of address miss.

GetX / GetS
Free way Combined entries Action: new entry and shared addedCoarse Pointer
! Use a free entry in pointer format
% ! Release one or more ways by re-encoding

the LRU coarse vector entry
% % ! Release one or more ways by re-formating

the LRU pointer entry into coarse vector
% % % Release one way by by evicting the LRU

entry

cache way in the target directory cache set. In such a case, the free
way is allocated and a new directory entry is created to track the
missing block address in pointer format.

Otherwise, room must be made by releasing one of the
currently used ways in the set and therefore the contents of
two addresses should be updated in the directory structure (the
address being inserted and the address providing the resources
that it needs). For this purpose, the approach prioritizes combined
entries over non combined ones, so as to maximize the number
of addresses that are tracked (and thus to minimize private cache
misses). Among the combined entries, those in coarse bit vector
format are prioritized over those in pointer format, so as to try
to cause minimal impact on precision. In other words, firstly, if
there are several combined entries in coarse bit vector format,
the LRU one is selected, and the size of the coarse bit vector
is reduced so as to release a way that will be used to track
the address being accessed. Otherwise, the LRU combined entry
in pointer format would be selected, and its information would
be recoded in coarse vector format using one fewer entry, thus
losing precision. We have also considered and evaluated other
replacement alternatives, obtaining the same or slightly worse
results for them. Overall, we have observed that the election of
the heuristics used to reclaim space for an incoming new address
has low impact on performance. For this reason, we opt for the
alternative that mimics more closely what would happen in the
baseline.

Remember that to keep hardware as simple as possible, we
assume that the number of ways of a combined entry in coarse
vector format is constrained to be a power of two (e.g., 1, 2, 4 or 8
in an 8-way cache design). Therefore, more than one way may be
released as a result of compacting a combined entry both in coarse
vector format or in pointer format.

Finally, if there are not any combined entries in the set, then
the LRU entry is evicted as would also occur in a traditional
sparse directory. Table 2 summarizes the discussed actions. The
procedure followed for updating directory information would be
the same as that explained above for directory hits.

4 EVALUATION METHODOLOGY

We evaluate the performance of different cache coherence direc-
tories using the GEMS 2.1 simulator [33]. GEMS is fed with
information gathered by a PIN tool [34], which offers detailed
information about the instructions executed, memory references,
and synchronization primitives as is the standard methodology for
large-scale system simulations [35]. We model the interconnection
network with Garnet [36]. The simulated architecture corresponds
to a single chip multiprocessor (tiled-CMP) with 128 cores (one
per tile). All evaluated configurations implement local caches with
MESI states. The most relevant simulation parameters are shown
in Table 3.
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TABLE 3: System parameters.

Memory parameters
Block size 64 bytes
L1 cache (data & instr.) 32 KiB, 4 ways
L1 access latency 1 cycle
L2 cache (data & instr.) 128 KiB, 8 ways
L2 access latency 10 cycles
L3 cache (shared) 1024 KiB/tile, 32 ways
L3 access latency 20 cycles
Cache organization L2 inclusive, L3 non-inclusive
Directory size (SCD75) 1536 entries, 3 ways (75% coverage)
Directory size (SCD) 2048 entries, 4 ways (100% coverage)
Directory size (rest) 2048 entries, 8 ways (100% coverage)
Pool size (Pool) 512 entries, 4 pointers per entry
Directory latency 5 cycles
Physical address size 48 bits
Memory access time 200 cycles

Network parameters
Topology and Routing 2-D mesh (16×8), X-Y
Flit size 16 bytes
Message size 5 flits (data), 1 flit (control)
Link time 2 cycles
Bandwidth 1 flit per cycle

TABLE 4: Benchmarks.

SPLASH-3
Barnes 16K particles, timestep = 0.25, tolerance = 1.0
Cholesky 13992×13992, NZ=316740
Fft 220 total complex data points
Fmm 16K particles, timestep = 5
Lu cb 512×512 matrix, block = 16
Ocean cp 514×514 grid, distance = 20000, timestep = 28800
Ocean ncp 514×514 grid, distance = 20000, timestep = 28800
Radix 4M keys, radix = 4K
Raytrace Balls4, antialiasing with 2 subpixels
Water nsqared 83 molecules, timestep = 3
Water spatial 153 molecules, timestep = 3

PARSEC 3.0
Blackscholes 4096 options
Bodytrack 4 cameras, 1 frame, 1000 particles, 5 annealing layers
Canneal 5000 swaps per temperature step, 2000◦ start temperature,

200000 netlist elements
Dedup 31 MB
Vips 2336×2336 pixels

Our simulations consider representative applications from
PARSEC 3.0 [37] and SPLASH-3 [38] (see Table 4). We have
included as many benchmarks as we have been able to. We have
excluded only those benchmarks that we could not scale up to
128 cores (i.e. execution time with 128 threads is smaller than
with 64 threads) and Freqmine, which uses OpenMP and cannot
be ported to our simulation infrastructure. Input set sizes have
been fixed considering resulting simulation times. The resulting set
of benchmarks contains applications exhibiting varying behaviors
and sharing patterns, with an average L2 miss rate of 64%. All
the results correspond to the parallel part of the applications and
we have accounted for the variability of parallel applications by
repeating each execution 4 times.

4.1 Evaluated directory configurations
We evaluate six configurations for the coherence directory that
we name BV, LP1, SCD, SCD75, Pool, and WC1. BV employs
a sparse directory using non-scalable bit vectors in each directory
entry as the sharing code. LP1 is an implementation of DiriCV [7]
which uses a limited pointer scheme in which the sharing infor-
mation is stored as a single pointer in the case of private blocks
or as a coarse bit vector when several sharers are found. SCD
is an implementation of the SCD architecture [10] using a 4-
way z-cache that explores three levels when finding a replacement
candidate (which means that it is roughly equivalent to a 52-way
associative cache). SCD75 is a different configuration of SCD with

only 75% coverage whose area requirements are closer to those
of LP1 and our proposed WC1, since it uses a 3-way z-cache
that explores four levels (roughly equivalent to a 45-way cache).
Pool is an implementation of the pool directory [19] that has a
512-entry pool with 4 pointers per pool entry. Finally, WC1 is
an implementation of WC-dir that uses 1-pointer entries. BV and
LP1 use silent replacements of shared blocks [39] (no notification
is sent to the directory in case of eviction of a clean shared
block) and WC1, Pool, SCD and SCD75 use noisy replacements
(a notification is always sent to the directory upon eviction). We
have evaluated both options for each configuration and selected
the best shared block replacement policy for each case.

4.1.1 Memory requirements
Table 5 shows the amount of memory required to implement each
of the directory structures considered in this work. The data for
LP1 has been omitted because it is identical to that of WC1. In
addition to the sizes for 128-core systems, which are considered in
the performance evaluation, memory requirements for smaller and
bigger systems are also shown to illustrate the scalability of the
different proposals. For each tile, the BV directory requires more
than 39 KiB to support a 128 KiB last private cache, while WC1
and LP1 require only 9.3 KiB, thanks to the much smaller sharing
code. SCD with the same coverage as the rest requires significantly
more area than LP1 and WC1 both because the sharing code needs
more bits and because the tags required by the z-cache are larger.
Even reducing the coverage of SCD to 75%, it still requires more
memory than LP1 and WC1 for 128 or more nodes. Pool requires
always some more memory that WC1 or LP1, and its overheads
grows with the number of cores as the pointers of the pool need
more bits, but it grows slower than SCD’s.

Moreover, if we look at how the size (per tile) of each directory
scales with the number of nodes, we can see that only LP1 and
WC1 keep their overhead constant. This happens because the tag
size is reduced at the same rate as the sharing code size increases
(i.e., logarithmically). The size of the sharing code of BV grows
much faster, to the point that the directory would need more area
than the tracked caches for a system with 512 nodes or more,
making it non-scalable. SCD scales much better than BV but
worse than LP1 and WC1. This is because its sharing code size
grows faster than WC1 and LP1’s one (as the square root of the
number of nodes) and its tag size remains constant. Pool needs
the same bits for sharing information as WC1 and LP1 for 512
nodes or more, but it needs a bit more for smaller sizes due to the
chosen pool size (512 entries), because the pointer stored in the
directory is larger. Moreover, the memory requirements of the pool
also grow logarithmically with the number of nodes, although we
keep the number of entries constant.

The larger memory requirements imply more area, and thus,
higher static energy consumption for the directory. Hence, for core
counts larger than 64, WC1 (and LP1) is the scheme that would
consume less static energy, being the reduction with respect to the
other approaches more notable as the core count increases.

5 PERFORMANCE EVALUATION

5.1 Directory performance
Each directory design makes use of its allocated resources in a
different way to store the sharing information of the addresses
present in the private caches. This will determine how easy it is to
access and update that information, how precise the information
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TABLE 5: Directory size and overhead for different configurations (LP1 sizes are identical to WC1).

Nodes 64 128 256 512 1024
Directory BV SCD SCD75 Pool WC1 BV SCD SCD75 Pool WC1 BV SCD SCD75 Pool WC1 BV SCD SCD75 Pool WC1 BV SCD SCD75 Pool WC1

Tag (bits) 28 36 36 28 28 27 35 35 27 27 26 34 34 26 26 25 33 33 25 25 24 32 32 24 24
Sharing Code (bits) 64 11 11 10 7 128 16 16 10 8 256 20 20 10 9 512 28 28 10 10 1024 37 37 11 11
Pool / Tile (KiB) 2.4 2.7 2.9 3.2 3.4
Size / Tile (KiB) 23.5 12.3 9.2 10.0 9.3 39.3 13.3 9.9 9.8 9.3 71.0 14.0 10.5 9.5 9.3 134.8 15.8 11.8 9.3 9.3 262.5 17.8 13.3 9.3 9.3

% over L2 17.2 8.9 6.7 9.1 6.8 28.6 9.7 7.3 9.1 6.8 51.8 10.2 7.7 9.1 6.8 98.4 11.5 8.6 9.1 6.8 191.6 13.0 9.7 9.3 6.8

is, and how much information can be simultaneusly stored. An
ideal directory must have low access latency to obtain the sharing
information, perfect precision, and no replacements of sharing
information due to directory capacity (or conflicts).

In this first part of the evaluation, we focus on these three
aspects: the precision, the number of directory replacements, and
the latency at the L3 (where the directory is placed). In some
cases, a directory will increase the number of tracked sharers by
reducing the precision of the stored information (always by storing
a superset of the actual sharer set) at the cost of more invalidation
traffic. In other cases, a directory will stop tracking some sharers
in benefit of new ones by evicting entries and invalidating the
corresponding cached copies, causing extra cache misses.

Fig. 6 shows the average precision per address stored in the
directory during the whole execution of the applications (we take
a sample of all addresses in the directory every 100 000 cycles
and report the overall average). As shown in Equation 1, this is
measured for each address as the number of actual sharers divided
by the number of sharers encoded by the sharing code, being A the
total number of block addresses and N the number of samples1.

Precision =
1
N

N

∑
1
A

A

∑
#Real Sharers

#Codi f ied Sharers
(1)

Both SCD and Pool achieve perfect precision with much fewer
resources than BV. LP1 and WC1, using even fewer resources,
have lower precision, but we can see that way combining allows
WC1 to improve the precision of the information stored in the
directory with respect to LP1, which needs the same amount of
resources. As expected, the improvement is more marked in those
benchmarks that have fewer occupied entries per set (see Fig. 1).
Note, however, that not all tracked blocks will be necessarily
written (read-only blocks), and some blocks will be updated more
frequently than others. Thus, approaching perfect precision is
generally important but in some cases it could come without any
benefits.

Fig. 7 plots the number of directory replacements per instruc-
tion. As already explained in Section 3, WC1 is designed so that
it can hold exactly the same number of addresses as BV and LP1.
Obviously, WC1 stores these addresses with increased precision
over LP1 (see Fig. 6). To ensure this, WC1 only combines
entries when empty ways are found in a particular set. This way,
WC1 never allocates new entries to an address at the expense of
expelling another address in the same set. In that case, the first
address is transitioned into the coarse vector representation. We

1. The actual number of sharers for each address is calculated by counting
the number of L2 caches holding a copy of the memory block at each
measuring point. Note that the resulting value is less than or equal to the
number of sharers codified in BV, as this configuration implements silent
replacements for clean shared data (a node may cease being a sharer of an
address without notifying the directory). This is the reason why BV does not
reach 100% precision in some cases.

can see that WC1 has fewer directory replacements than BV and
almost as many as SCD. This is because, as explained in Section 4,
both WC1 and SCD are using noisy replacements of shared blocks
while BV is using silent replacements, and noisy replacements
enable the deallocation of entries for addresses evicted by all
sharers, reducing the directory occupancy. Regarding SCD, we
can see that reducing the size of the z-cache to 75% (SCD75)
increases dramatically the number of directory replacements. This
is because L2 caches are usually almost full and a directory with
75% coverage, even when SCD provides increased flexibility in
allocating directory entries, is unable to keep all the addresses
which could be stored at the L2 caches (i.e., L2 cache resources
are wasted). Interestingly, we can also notice that in some cases
(i.e., Canneal, Ocean cp, Ocean nc and Vips), SCD with 100%
coverage results into increased directory replacements with respect
to WC1. This is because SCD uses one extra entry to store
indexing information for blocks with several sharers, thus reducing
the total effective capacity of its cache. Fig. 8 shows the number
of L2 cache replacements per instruction, where we can see that
SCD75 reduces the number of L2 replacements with respect to
the rest because its reduced coverage often forces the invalidation
of many lines before the sets get full, wasting space in the
caches. Pool also has a lower number of L2 replacements because
sometimes, in order to be able to add a new sharer to an address, it
first has to make room in the pool invalidating sharers from other
addresses, hence creating empty entries in the L2 caches.

Regarding the access latency to the directory information,
arguably, the only two implemented directory schemes that in-
crease access latency are SCD and Pool directory. The reason
is that SCD and Pool may require several sequential accesses to
gather the whole directory information. Although in most of the
cases they find the directory information with only one access
(e.g., private blocks), for some other cases this extra latency can
noticeably affect the average L2 miss latency. Fig. 9 shows the
average L2 miss latency split in five components: the time that
the miss spends in L2 before being issued (At L2), the time that
the request takes to arrive to L3 (To L3), the time that it spends
waiting before being attended (At L3), the time spent accessing
memory (Main memory) and the time until the data and all
acknowledgments arrive to the requestor (To L2). The At L3 time
of SCD, SCD75 can increase for some benchmarks (e.g., Canneal).
But more interestingly, the At L3 time of Pool increases for even
more benchmarks and to a larger extent (e.g., Barnes, Bodytrack,
Canneal, Fmm, Ocean cp, Water nsquared, and Water spatial).
This extra latency in the Pool directory is caused by extra directory
accesses to collect the sharing information and it affects the overall
miss latency (e.g., Canneal, Fmm, and Water spatial).

Fig. 9 also shows that LP1 and WC1 increase the To L1 time
for a few benchmarks (i.e., Barnes, Canneal, Cholesky, Fmm,
Ocean cp, Ocean ncp, Water nsqared and Water spatial). This
is because these configurations generally send more invalidations
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Fig. 6: Precision per address measured as the average for each address of the ratios between the actual number of sharers and the
number of sharers encoded in the directory. The directory is sampled every 100 000 cycles.
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Fig. 7: Directory replacements per instruction.
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Fig. 9: Breakdown of L2 miss latency.

on write misses due to the lack of precision of their sharing
information, as we will see in the next subsection. But the increase
incurred by WC1 is much smaller than that of LP1 on most
benchmarks, becoming practically none in some of them (e.g.,
Barnes, Fmm and Ocean cp).

5.2 Impact on network traffic and execution time

The most direct effect of the lack of precision and capacity of the
directory information is that unnecessary invalidation messages
are sent upon write misses, as shown in Fig. 10, and upon
directory replacements. These extra messages can have in some
cases significant effect in the total network traffic, as shown in
Fig. 11. Particularly, we plot in this figure the total number of
flits generated along applications’ execution. Note, thus, that there
is no correlation among the amount of extra traffic shown in
Fig. 11 and the increases in L2 average latency shown in Fig. 9.
For most benchmarks, the increase in traffic does not have an
important effect on miss latency, as can be seen in Fig. 9, and
hence will not affect the execution time in a significant extent.

Here again we see that the increased precision afforded by the way
combination technique allows WC1 to have much lower traffic
than LP1, although it is still higher than BV’s, SCD’s, and Pool’s.
Interestingly, though SCD and Pool reach perfect precision, the
difference in average traffic regarding WC1 is just 10%, even
though SCD and Pool have larger area requirements. In this figure
we show, in addition to the global average, the average of a
selection of those benchmarks that have more L2 replacements
(Canneal, Fft, Ocean cp, Ocean ncp, Radix, Raytrace and Vips).
We can see that the traffic increase of WC1 for these benchmarks
is slightly higher, but still lower than LP1.

Dynamic energy consumption is fundamentally affected by the
differences in network traffic. First, the dynamic energy consump-
tion of the interconnection network is proportional to its traffic
load and has been reported to constitute a significant fraction of
the total energy budget [40]. Second, unnecessary invalidation
messages increase the number of snoops in the private caches.
These snoops, however, are much less frequent than the accesses
from the local processor, and therefore, the difference on dynamic
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Fig. 12: Increase in the normalized execution time with respect to BV.

energy consumption is minimal.
Fig. 12 shows the relative increase in normalized execution

time for each directory structure. First, it proves that reducing
the coverage of SCD to 75%, to make its memory require-
ments similar to LP1’s and WC1’s has a very negative effect
in many benchmarks (e.g., Canneal or Ocean cp), such that on
average SCD75 performs worse than LP1. SCD with full coverage
achieves an execution time that is less than 1.3% slower on average
than BV, and it even outperforms it in some cases (e.g., Fft and
Radix). The latter is due to the increased effective associativity
provided by the z-cache used in SCD, that eliminates some conflict
misses appearing in BV. Additionally, WC1 average overhead with
respect to BV is just 2.1%. If we look only at those benchmarks
with many L2 replacements, both SCD and WC1 obtain a higher
performance degradation (1.8% and 3.4%). Finally, Pool entails
higher performance degradation than WC1 (3%) due to the extra
latency accessing the directory, for example, in Canneal.

5.3 Sensitivity analysis of associativity in WC
As already discussed, WC-dir combines entries that belong to the
same directory set. Therefore, the more associativity the direc-
tory has, the more combining opportunities appear. This section
analyzes the behavior of WC-dir with varying associativity and
discusses the limit of these opportunities.

The directory tracks copies of blocks cached in the private
caches. However, a block in a private cache cannot be placed
at an arbitrary position, but it has to be placed at a particular
set, commonly given by the least significant bits of the block
address. On the other hand, directory information is distributed

between several banks (i.e., one bank per tile in the configuration
assumed in this work), and the sharing information for a memory
block is also placed in a particular bank and set, commonly using
again the least significant bits of the block address to select the
bank, first, and set, then. If a directory with 100% coverage (same
number of directory entries as last-level private cache entries)
is designed with enough associativity, such that the address bits
used for indexing the cache matches the bits used for indexing the
directory bank and set, then directory conflicts would vanish and
there would be a possible one-to-one mapping between the cache
entries and the directory entries. This property, was previously
leveraged to propose a distributed, duplicated-tag directory in [41].

The same property leads to a theoretical upper limit in the
advantages of increasing directory associativity in WC-dir, which
results in an ideal directory from the point of view of precision
and lack of replacements. In our case this limit is a 1024-way
(i.e., with just 2 sets) directory. Note that each of the 128 L2
caches in our configuration has a total of 256 sets (2 048-entry, 8-
way L2 caches). This way, the 8 least significant bits of the block
address are used for indexing each L2 cache and a maximum of
8× 128 = 1024 different block addresses could be stored in the
same set number in all the L2 caches. The 7 least significant bits
of the block address are also used for determining the directory
bank (home directory) for every block address, and thus, all block
addresses mapping the same set in the L2 caches map also the
same directory bank (every directory bank would register the
sharing information for the block addresses stored in two of these
128× 8 global L2 sets). Therefore, a 100%-coverage directory
organized as 128 2-set, 1024-way sparse directories removes all
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number of sharers encoded in the directory. The directory is sampled every 100 000 cycles. Associativity is varied from 4 ways to 2048
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Fig. 16: Increase in the normalized execution time of WC1 with respect to BV with varying directory associativity.

possible directory conflicts and their negative effects (i.e., the
necessity to compress the sharing information or to invalidate
addresses in the L2 caches due to directory evictions). Such a
WC-dir behaves like a duplicated tag directory. Obviously, due to
such a large associativity, the directory access time in this case
may increase to the point of making it impractical (which is also
the main concern with duplicated-tag directories), but we use this
configuration point as the theoretical upper limit in associativity
for WC-dir.

Fig. 13 shows the precision of WC-dir as the number of ways
increases up to the theoretical upper limit (2 sets and 1024 ways
per set). For this configuration, perfect precision (100% precision)
is reached for most applications, but not for all of them. The

reason is that in the simulated cache coherence protocol, L2
replacements are issued to the directory in parallel with the request
of the block that causes the replacement. If the request happens to
arrive to the directory before the replacement, then the directory
may require one extra entry for a short period of time (until the
replacement arrives to the directory), provoking the compression
of the directory information for some block addresses. This is the
reason for the loss of precision observed in some applications and,
as shown, it can be significant in some cases2. To confirm this

2. Notice that 100% precision could be achieved in these cases if both the
replacement message and the request message were issued together, as with
the Implicit Replacements technique presented in [42], so that they arrive at
the same time to the directory.
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end, we added 128 ways to each set of the theoretical upper-limit,
such that in the worst case, the L2 cache replacements that arrive
before the corresponding requests that cause them never result
into compression in the directory. As it can be observed with the
2304e-1152w bars (i.e., 2 sets of 1024+128 ways), in that case
100% precision is obtained for all applications.

Fig. 14 shows the formats in which the directory information
is found during the execution of the applications. The possible
formats are: combined coarse, that is a coarse bit vector scheme
comprising several ways in the set; combined pointer, that is
several ways in the set with all pointers devoted to a single
address; notcombined coarse, that is a single way in the set in the
coarse bit vector format; and notcombined pointer, that is a single
way in the set in the pointer format. Only combined pointer and
notcombined pointer store directory information in a precise way.
The other two formats generally lead to a loss of precision. As as-
sociativity is increased, and therefore conflicts in the directory sets
are reduced, there is less need to compress sharing information,
and therefore precise formats are employed more often. Again, the
race of requests with replacements to arrive to the directory is the
reason for the use of the compressed formats in some cases even
with 1024 ways.

We analyze in Fig. 15 the evolution of directory occupancy
with varying associativity. For comparison purposes, we also
present the results for the baseline (the non-scalable bit vector
directory). Two observations can be drawn in light of the results
shown in Fig. 15: the first is that way combination allows for
better use of the limited number of entries available in a typical
sparse directory, and the second is that increasing associativity
in WC-dir always results in increased occupancy. From these
two observations, it can be explained that WC-dir can reach the
capabilities of the non-scalable bit vector directory by making the
most of the directory entries.

Finally, we show in Fig. 16 the execution times of WC-dir as
the associativity of the directory increases to 1152 ways. As this
figure aims to show the potential benefit of increasing the number
of directory ways, directory access latency has been maintained
to 5 cycles for all the configurations. The execution time of each
configuration is normalized with respect to a BV directory with the
same associativity as WC-dir, which marks the lowest possible
execution time in each case. We can see that effectively WC-
dir reaches the performance of a non-scalable BV directory as
directory associativity is increased. Particularly, from the 64-way
configuration on, the performance degradation that is observed is
less than 1% on average.

5.4 Varying private cache size and core count

Scaling the private data cache size (L2 in our case) has direct
impact on the number of entries that are active in the direc-
tory cache. Assuming that 100% coverage is maintained in all
cases, we observe that at small private data cache sizes, single-
sharer entries dominate. In this case, L2 cache replacements are
frequent, which avoids exposing sharing patterns on-chip, and
most addresses would be true or temporally private [13]. In such
scenarios, shared addresses are rare and WC1 would approach
very closely the behavior of BV. As the L2 cache size increases,
so does sharing (i.e., temporary private addresses turn into shared
ones [13]), and therefore, opportunities for combining entries also
grow because fewer directory entries are needed to track all the
addresses stored at the L2 caches (i.e., in the case of a shared

address, one directory entry tracks several entries in the L2 caches,
leaving other directory entries unused due to the 100% coverage).
Moreover, as most shared addresses require only a few pointers
to cover all active sharers, WC1 can track them precisely by
combining a few entries. For widely shared addresses (which are
very few and whose number does not increase with private cache
size scaling [13]) WC1 would use the coarse vector representation
with one or several ways (depending on set occupation). Note that
loss of precision is not so critical for widely shared lines.

Core count scaling has also impact on the number of directory
entries that are active in a particular moment. In this case,
however, the impact is more limited as increasing core count
tends to increase the number of sharers only for widely shared
addresses [13]. When the core count is large, WC1 tracks widely
shared addresses using the coarse vector representation because
the associativity is never going to be large enough to have one
pointer for each sharer. This way, going through larger core counts
would entail minimal additional precision losses. On the other
hand, for configurations with a small number of cores, the impact
that precision loss has on performance is significantly lower, and
therefore, the advantage of WC1 with respect to LP1 also becomes
smaller.

6 CONCLUSIONS

This work presents and evaluates WC-dir, a novel sparse directory
architecture designed putting the focus on the common case, where
just one pointer per entry provides enough space for tracking
sharers. This way, WC-dir fits perfectly to the necessities of
sequential workloads. For parallel workloads, where one pointer
is not enough, our proposal takes advantage of the until now
unexploited observation that several entries remain free in most
sets of the sparse directory in these cases, and applies the new way
combining concept to provide more space for sharing information
to the few addresses in the set that need it. Thus, the way
combining concept allows to see each set of the sparse directory
as a pool of entries which are allocated dynamically as needed
among the addresses mapping to that set, minimizing the storage
overheads without losing the flexibility to adapt to several sharing
degrees.

WC-dir can be derived with minimal changes from a sparse
directory that uses the well-known Dir1CV sharing code [7]. Like
other contemporary proposals such as SCD and Pool, it can track
the list of sharers through multiple formats, going from the limited
pointers representation to the coarse vector one when there are
no free entries left in a particular set and a new sharer needs
to be added to any of the addresses in that set. However, and
contrarily to SCD, WC-dir achieves this flexibility without the
extra complexity of a z-cache that SCD uses, avoiding also the
iterative re-insertions that keep the directory controller busy for
longer times. In comparison to the Pool directory, WC-dir avoids
the need to have to handle an additional structure (the pool of
pointers added by Pool). Moreover, the fact that WC-dir remains
very similar to a traditional sparse directory allows using simple
replacement algorithms and simplifies directory operations.

Through detailed simulations of a 128-core architecture using
a set of benchmarks exhibiting varying sharing patterns, we have
shown that WC-dir can reach the average execution times of the
more expensive SCD and improves over Pool and SCD75 (an
implementation of SCD of comparable size). Compared to the
non-scalable bit vector sparse directory, we also show that WC-dir
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can practically meet its performance levels (just 2% overhead on
average is observed). Moreover, concerning the area overhead, we
have shown that for WC-dir, overhead with respect to the private
caches is lower than SCD’s and Pool’s for 128 cores, and moreover
it remains constant as we increase the number of cores, whereas it
grows for SCD, and to a lesser extent, for Pool. The only downside
that we have observed for WC-dir is some more extra network
traffic. Particularly, WC-dir increases traffic about 5% on average
when compared with a similarly sized SCD (SCD75 configuration)
and about 10% compared with a SCD configuration with the same
number of entries, which requires 43% more area. The difference
in network traffic is even lower as compared to Pool (about 3% on
average) despite the latter needing also 34% more area.

Observe, however, that the WC1 design evaluated in this work
puts the emphasis on minimizing area overhead while maintaining
(or closely approaching) the execution time of the non-scalable
bit vector directory. The area requirements can be increased
in exchange of reduced traffic by, for example, duplicating the
number of bits per entry (and thus the number of initial pointers
and the size of the coarse vectors) in WC-dir, that would cut down
the traffic penalty whilst still preserving advantages over SCD
and Pool (lower execution time, less area —although to a lesser
extent— and simpler implementation).
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