PfTouch: Concurrent Page-Fault Handling for Intel
Restricted Transactional Memory

Rubén Titos-Gil', Ricardo Ferndndez-Pascual, Alberto Ros, Manuel E.
Acacio

Dept. de Ingenieria y Tecnologia de Computadores, Universidad de Murcia, Spain

!Corresponding author at : Facultad de Informética, Campus de Espinardo, 30100
Murcia, Spain. E-mail address: rtitos@um.es (R. Titos-Gil).

Preprint submitted to Journal of Parallel and Distributed Computing October 28, 2020

PfTouch: Concurrent Page-Fault Handling for Intel
Restricted Transactional Memory

Rubén Titos-Gil', Ricardo Ferndndez-Pascual, Alberto Ros, Manuel E.
Acacio

Dept. de Ingenieria y Tecnologia de Computadores, Universidad de Murcia, Spain

Abstract

Page faults occurring within transactions jeopardize concurrency in Intel Re-
stricted Transactional Memory (RTM). To make progress in spite of page-
fault-induced aborts, the program must resort to the non-speculative fallback
path and re-execute the affected transaction. Since the atomicity of a non-
speculative transaction is guaranteed by impeding the execution of any other
speculative transactions until the former completes, taking the fallback path
is particularly harmful for performance. Therefore, such page-fault-induced
aborts currently lead to thread serialization during the potentially long pe-
riod of time taken to resolve them. In this work we propose PfTouch, a
simple extension to RTM that allows page-fault handling to be moved out of
non-speculative transactional execution in mutual exclusion. Our proposal
sidesteps taking the fallback path in these cases and thus avoids its associ-
ated performance loss, by triggering page faults in the abort handler while
other speculative transactions can run concurrently. PfTouch requires mini-
mal modifications in the Intel RTM specification and keeps the OS unaltered.
Through full-system simulation, we show that PfTouch achieves average re-
ductions in execution time of 7.7% (up to 24.4%) for the STAMP bench-
marks, closely matching the performance of the more complex suspended
transactional mode in the IBM Power ISA.

Keywords:
Parallel programming, Transactional memory, Intel TSX, Page fault,
Serialization, Fallback path

ICorresponding author at : Facultad de Informética, Campus de Espinardo, 30100
Murcia, Spain. E-mail address: rtitos@um.es (R. Titos-Gil).

Preprint submitted to Journal of Parallel and Distributed Computing October 28, 2020

10

15

20

25

30

35

1. Introduction

Hardware Transactional Memory (HTM) was proposed long ago to get
over the hurdles of traditional lock-based synchronization, namely priority in-
version, convoying, and deadlock [I]. Early HTM implementations appeared
in Azul [2] and Rock [3] processors. Not until early this decade, however, has
Hardware Transactional Memory support made its way into the commercial
processor arena, when firstly IBM [4], and later on Intel [5], announced its
adoption in the BlueGene/Q and Haswell chips, respectively. Although its
inclusion in commercial processors could be seen as a first step forward to
help simplify parallel programming, current HTM support is still too rudi-
mentary to fulfill the Transactional Memory promise of bringing parallel
programming to a general audience, and some parallel applications require
extensive modifications to get benefit from current HTM support [6].

Particularly, current Intel’s HTM support, called Intel Restricted Trans-
actional Memory (RTM), is best-effort, i.e, the architecture provides no guar-
antee that a hardware transaction will ever succeed [7]. Aborts in these HTM
systems not only arise from conflicting memory accesses amongst concurrent
transactions, but also from lack of buffering resources, interrupts, and page
faults. Therefore, a non-speculative fallback path in software must be com-
bined with the HTM support to ensure forward progress. To make things
even more complicated, Intel RTM does not provide escape actions [8]. With-
out escape actions, non-transactional instructions cannot be executed within
the context of a hardware transaction, thus restricting the ways in which a
software fallback path can interact with the HTM [9].

By resorting to the fallback path, a transaction becomes non-speculative
(also known as irrevocable), and can always complete execution, freeing itself
from hardware limits. Although the hardware does not prohibit the concur-
rent execution of speculative and irrevocable transactions, the typical fallback
path design recommended by the RTM specification [7] uses a single global
lock (fallback lock) to enforce mutual exclusion between irrevocable and spec-
ulative transactions. In this way, the TM runtime ensures that concurrent
speculative transactions do not access the same data as the irrevocable one
in order to guarantee atomicity. While other more complex schemes are
possible, such as using multiple locks on the fallback path, they complicate
the programming model as the programmer/compiler must determine under

40

45

50

55

60

65

70

which circumstances allowing concurrency with an irrevocable transactions
does not threaten its atomicity.

Regardless of the specific implementation of the fallback path, irrevoca-
bility often entails thread serialization and missed opportunities for parallel
execution: All concurrent transactions whose read-write set potentially over-
laps with that of the irrevocable transaction must wait. Thus, performance
suffers if transactions frequently resort to irrevocability. We have found out
that for an Intel RTM-like HTM running STAMP [10], 25.1% on average
of the total executed cycles are due to serialization caused by irrevocable
transactions (Section [5| details our evaluation methodology). Deeper inspec-
tion of the results revealed that among the different causes for switching to
irrevocability, page faults occurring within the boundaries of a transaction
represent a major contributor. In STAMP, page faults are the cause for
30.9% of the waiting cycles associated to the fallback path, on average. The
reason for this is how page faults are managed in RTM (via irrevocability),
coupled with the coarse-grained synchronization style that characterises the
STAMP benchmarks. On the contrary, in-transaction page faults are rare
in parallel programs that employ fine-grained synchronization, such as many
programs from HTMBench [11] in which fine-grained locks were replaced by
transactions. From these results, we observe that without adequate hardware
support, page faults can be an important performance bottleneck in those
programs that have been written from scratch keeping the TM paradigm
in mind (its promise of making parallel programming easier through more
coarse-grained transactions[I2]). Other authors have also found page faults
to be a limiting factor [13][14][15].

According to the Intel Transactional Synchronization Extensions (TSX)
specification for the RTM interface, every time a page fault occurs within
a transaction, it is suppressed as if the faulting memory access had never
occurred. The transaction aborts and the hardware informs the abort handler
that the transaction may not succeed on retry. The abort handler then
determines that it must take the fallback path, and proceeds to abort all other
concurrent speculative transactions — ensuring that no new transactions can
begin. Subsequently, the irrevocable transaction re-executes everything up
to the point where the faulting memory access was found. This time, the
transaction is not speculative and thus triggers the page fault: once handled
by the operating system (OS), the transaction resumes its execution.

Handling page faults in this simple manner not only avoids the need for
non-trivial hardware support to pause/resume speculative transactions while

4

75

80

85

90

95

100

105

110

the kernel executes, but also makes HT'M support completely transparent to
the OS. The downside of this approach is that it can have a significant im-
pact on performance [16]: page faults occurring within transactions preclude
concurrency, as no transaction but the irrevocable one can make progress.
Since such OS events may take thousands to millions of cycles to be resolved
(for instance, when contents must be loaded from disk), performance may
drop dramatically as no other transaction can execute in the meantime.

In this work we propose PfTouch, a simple technique that allows page-
fault handling in RTM out of the transactional execution in mutual exclusion.
Our proposal moves page-fault triggering to the abort handler, sidestepping
the switch to irrevocability and therefore eliminating its associated perfor-
mance loss. In particular, the hardware informs the abort handler that the
transaction has aborted because of a page fault and provides the address
that triggered the page fault. The abort handler then touches the same ad-
dress, causing a page fault that will be handled in the usual way by the OS.
Other transactions can concurrently do useful work while the OS handles the
page fault. After it has been resolved, the transaction restarts speculative
execution.

The modifications required in the Intel RTM specification to support this
optimization are minimal: additional information about the abort cause and
the causing address must be returned to the abort handler via the RAX
register. In this way, the abort handler can detect that the abort was due to
a page fault, and use the faulting address reported by the hardware in order
to fire the page fault. Note that the OS remains unchanged, oblivious to the
HTM support. Also, exposing the faulting address to the abort handler does
not open up new side channels, as the same information could be inferred
with the existing interface.

Through detailed simulations of a 16-core CMP running a rich set of
transactional programs (including the STAMP benchmarks), we show that
PfTouch achieves noticeable reductions in execution time when in-transation
page faults happen (7.7% on average for the STAMP benchmarks and up to
24.4% in Vacation-h). We compare PfTouch against the suspended trans-
actional mode in the IBM Power ISA [I7], and observe that our proposal
closely matches the performance of this more complex alternative. Our eval-
uation also shows that PfTouch improves performance in workloads where
page faults have diverse sources, gains which are unattainable with software-
only solutions such as heap pre-faulting [13]. We would like to highlight that
the simple changes involved in PfTouch would relieve programmers from hav-

115

120

125

130

135

140

145

ing to worry about the occurrence of in-transaction page-faults, thus paving
the way for efficient support of more coarse-grained transactions. This is,
in our view, imperative if the promise of Transactional Memory of simpler
parallel programming is to be fulfilled.

The rest of the manuscript is organized as follows. Section [2| presents
some background on how page-faults are managed in Intel RTM. Then, Sec-
tion |3| gives the details of the modifications required to support PfTouch and
their implications. Some current alternatives to handle page faults in trans-
actions without the need of aborts are discussed in Sectiondl. The simulation
environment used to evaluate PfTouch is explained in Section [5| and the ob-
tained results are explaind in Section[6] Finally, Section [7] contains the main
conclusions of this work and avenues for future work.

2. Background: Page-fault handling in Intel RTM

The typical software implementation of the functions to begin and commit
a transaction when using the Intel RTM instructions is shown in Listing [1]
The beginTransaction function will attempt to execute the transaction spec-
ulatively using the hardware support, and fall back to irrevocability (i.e.,
non-speculative execution with mutual exclusion enforced by a global lock)
if necessary. Following T'SX recommendations [7], speculative transactions
must perform eager subscription on a single global lock [I8], hence invari-
ably present in their read set: transactions check the value of the lock (line
6 in Listing (1) immediately after the xbegin instruction and only proceed
if the lock is free. This way, when a thread determines that it must resort
to non-speculative execution, it achieves mutual exclusion by acquiring the
lock (line 15), simultaneously meeting the two necessary conditions to main-
tain atomicity: i) no other transaction can execute non-speculatively (the
fallback lock will be locked for as long as another non-speculative transac-
tion executes); and ii) the write to the lock variable causes the immediate
abort of all other speculative transactions due to a transactional conflict on
a block in their read set. Race conditions during lock acquisition with newly
started speculative transactions which had not yet subscribed to the lock,
are resolved by explicitly aborting when the fallback lock is found acquired
(line 8). Note that atomicity would be at risk if speculative transactions are
allowed to run concurrently with a non-speculative transaction, as the latter
would not be able to prevent conflicting accesses made by the former. To
avoid the lemming effect, threads wait for the fallback lock to be unlocked

150

155

160

165

170

175

180

185

(line 11) after a speculative transaction has been aborted, before they can
retry the transaction.

Listing 1: Recommended software implementation of wrappers to begin/commit a trans-
action on Intel RTM.

1 void beginTransaction () {

2 int ret, nretries = 0;

3 do {

| ret = _xbegin ();

5 if (transactionHasStarted (ret)) {

6 if (!isLocked (fallbackLock))

7 return; // Execute speculatively
8 else _xabort();

5 }

0 // Abort handler starts here

1 while (isLocked (fallbackLock)) idle();
2 4++nretries;

} while (maySucceedOnRetry(ret) &&

| ltooManyRetries(nretries)));
acquireLock (fallbackLock);

¢ // Execute non—speculatively

s void commitTransaction () {

o if (isLocked(fallbackLock))
0 releaseLock (fallbackLock);
I else

2 —xend () ;

The current RTM specification reports the cause of the abort through a
set of flags in the 6 least significant bits of the EAX register (ret in Listing [1)).
Bit 0 is set for explicit aborts, i.e., those caused by the execution of the
_xabort instruction. Of particular interest is bit 1: when set, the transaction
may succeed on retry (maySucceedOnRetry in line 13 of Listingwill be true).
Bit 1 unset means that the fallback path must be taken to make progress
(this is the case of a page fault). Bit 2 indicates that the abort was caused
by a conflict with another thread. Bit 3 warns about the transaction having
overflowed hardware resources. Bit 4 is set in case of a debug breakpoint
has been encountered, while bit 5 reports that the transaction was aborted
within a nested transaction.

When a page fault occurs within a transaction, the hardware simply sup-
presses it and execution continues at the abort handler (line 10) with bit 1 in
the EAX register unset (maySucceedOnRetry in line 13 will be false). Note

7

190

195

200

205

210

215

220

that retrying speculatively is very likely to trigger again the same page fault
and thus another abort. Therefore, the thread must acquire the fallback lock
(line 15) and re-execute the transaction non-speculatively in mutual exclu-
sion. If the page fault is triggered again, it will be handled as usual by the
OS while the affected thread is holding the fallback lock. Although manag-
ing page faults in this way simplifies the design of both the hardware and
the OS, it could entail serious performance degradation for benchmarks with
long-running transactions. This is not only due to the large amount of work
discarded as a result of the conflict on the fallback lock, but most impor-
tantly because of the long time that other threads must block on the lock
while page faults are being handled and then until the faulting transactions
complete and release the lock (i.e., page faults occurring within transactions
cause the serialization of all threads attempting to execute transactions).
Figure [1] (left) sketches this situation. Here, transaction TO suffers a page
fault while transaction T1 is executing. The acquisition of the fallback lock
by TO implies: i) aborting T1 as result of a conflict on the cache line that
contains the lock, since T1 is amongst its sharers after lock subscription (line
6 in Listing [I)); and ii) preventing any speculative transactions (T2) from
executing, since transactions explicitly abort when the fallback lock is found
held during lock subscription (line 8 in Listing . Then, TO restarts exe-
cution from the beginning in the irrevocable mode, while T1 and T2 keep
waiting until the fallback lock is released (thus precluding concurrency for
all the time taken to resolve the page fault). Once TO finishes, T1 and T2
can restart executing again.

3. PfTouch: Enabling concurrency in the presence of page faults
for Intel RTM

To reduce the high cost of taking the fallback path to resolve page faults
inside transactions, we propose in this work PfTouch, a straight-forward ex-
tension to RTM that enables handling of such page faults in the abort han-
dler: by providing it with information indicating that the transaction has
aborted due to a page fault, including the address that caused it, the abort
handler only needs to touch the reported address and let the OS handle it in
the usual way. After the page fault is resolved, the transaction can be retried
again speculatively. With a very high probability, the transactional code will
access again the same address that previously caused the page fault, but this
time the access will not fault. This way the transaction does not need to be-

225

230

235

240

T0 11 T

\

Abort Abort @ % Abort @
Page fault @ handler Page fault €@ N handler
(suppressed) |Acquire © Abort (conflict) (suppressed) g)orr

fallback
lock @

T2
V ;ﬂ@ Abort
| | 1 |(explicit,fallback
lock held)

o

%,

Re-start as

irrevocable @ Detect page

fault &
touch address B

Page fault
(handled as
usual by OS

(~1000-1000000
cycles to resolve

~ 1000-1000000 page fault)

cycles to resolve
page fault

© Re-start
execution as
regular
transaction

TIME

O Release

fallback lock @ Re-start

waiting
transactions

Speculative transaction
v @ Irrevocable transaction
B Kernel

O Waiting on fallback lock

Figure 1: Page-fault handling in Intel RTM (left) vs PfTouch (right).

come irrevocable (i.e., the fallback lock is not taken) and other transactions
can concurrently do useful work while the OS handles the page fault.

This scheme does not guarantee that the transaction will not be aborted
again due to another page fault: though unlikely, the transaction may not
access the exact same memory locations when it re-executes, and such newly
accessed locations may trigger additional page faults. If a transaction aborts
repeatedly due to page faults, it will be necessary to take the fallback lock in
the end (as currently done with other kind of aborts), although this should
be very infrequent.

3.1. Hardware modifications

The modifications required to support PfTouch are minimal. The current
Intel RTM specification returns the abort status via the EAX register (32
bits), broadly indicating the cause of the abort using the 6 less significant
bits (e.g., explicit, capacity, or conflict). However, page faults do not have
a category on its own. We propose modifying the RTM interface to inform
the handler whether the abort was due to a page fault and in that case, the
faulting address. We advocate for the use of the 58 most significant bits
of RAX (the 32 most significant bits, currently unmodified, and bits 31:6
of EAX, currently reserved in non-explicit aborts). We propose the use of

245

250

255

260

265

270 25

275

280

bit 6 as a new status bit, set if the abort was caused by a page fault, in
which case bit 7 would indicate whether the faulting access was a read or a
write operation. Finally, bits 63:8 would contain the faulting virtual address,
excluding its 8 least significant bits.

Listing 2: Recommended implementation of wrappers to begin/commit a transaction on
Intel RTM. Changes to leverage PfTouch are highlighted.

void beginTransaction () {

1

2 int ret, nretries = 0;

3 do {

4 ret = _xbegin () ;

5 if (transactionHasStarted (ret)) {

6 if (!isLocked (fallbackLock))
7 return; // Execute speculatively
8 else _xabort();

10 // Abort handler starts here

11 if (abortedByPageFault(ret)) {

12 assert (! maySucceedOnRetry (ret));

13 touch (getFaultAddr (ret), getFaultType(ret));
14 // Do not exit do..while loop

15 setMaySucceedOnRetryMask(&ret) ;

17 while (isLocked(fallbackLock)) idle();
18 ++nretries;

19} while (maySucceedOnRetry(ret) &&

0 'tooManyRetries(nretries)));
acquireLock (fallbackLock);

// Execute non—speculatively

}

void commitTransaction () {
if (isLocked(fallbackLock))
releaseLock (fallbackLock);
else
_xend () ;

NONNN NN
N o ok W o

NN NN
8 o

-

3.2. Abort handler modifications

Assuming the ISA extensions described above, the highlighted code in
Listing [2| (lines 11 to 16) shows the required changes in the abort handler.
After architectural state is restored upon abort, the program counter points
at the instruction following xbegin, and RAX (ret) has been set with the
abort status (transactionHasStarted will be false). Then, the abort handler

10

285

290

295

300

305

310

315

checks if the abort was due to a page fault and, if so, touches the faulting
memory page extracting the virtual address from ret (bits 63:8), as well as
the faulting access type (bit 7). If the faulting access was of read type (load or
instruction fetch), the memory address is simply read. Otherwise, a compare
and swap using identical values —cas(addr, 0, 0)— is executed, so that the
contents of the page are not modified, but a write operation is performed.
Then, it modifies the ret value (line 15), enabling bit 1 (maySucceedOnRetry
in line 19 will be true) so that the transaction is retried speculatively, not
through the fallback path. The OS remains totally oblivious to this change:
all software modifications are confined to the abort handler. Figure (1| (right)
illustrates how with PfTouch the page fault occurring in transaction T0 does
not affect the execution of transactions T1 and T2, which can continue to
execute while the OS resolves it.

3.3. Security implications

While it has been shown how the Intel RTM HTM support can be lever-
aged in order to improve the bandwidth of side channel attacks such as
Meltdown [19], it has also been shown that this HTM support can be used
for just the opposite, to help prevent them [20] [21].

In this regard, the proposed change to the RTM interface does not open
up new side channels [22], as the same information can be inferred with the
existing interface. Relying on the current RTM interface, a userspace process
can already determine whether a particular virtual memory page is mapped
in memory or not, without mapping it. This can be done by using a custom
abort handler, and accessing the memory page from a single thread inside a
small transaction. With conflict- and capacity-induced aborts ruled out, and
ensuring that the transaction does not execute RT'M-unfriendly instructions,
the only remaining abort reasons are interrupts and page faults, which can
be distiguished by looking at bit 1 in the returned abort status (XABORT
RETRY).

4. Current alternatives

Current proposals for handling page faults in transactions without abort-
ing them rely in much more complicated hardware and OS support. Fully
virtualized HTM systems found in the literature like LogTM-SE [23] provide
escape actions [§] allowing the transactional code to escape to selected points
of run-time libraries, virtual machines, or the OS. Code in a escape action

11

320

325

330

335

340

345

bypasses transaction version management and conflict detection. Escape ac-
tions can be invoked explicitly via new instructions or implicitly as part of a
trap and, this way, can be used to allow the OS to handle page faults without
aborting a transaction, in addition to system calls and other interrupts. A
similar mechanism has been implemented in the best-effort HT'M support in
IBM’s Power ISA [17] with the name of suspended transactional mode. This
mode is entered as the result of an interrupt (like a page fault) or an explicit
instruction. While in this mode, memory accesses from the thread are not
added to its read or write set (allowing the execution of the OS code), but
accesses from other threads are still observed to detect conflicts. If the trans-
action detects a conflict or other cause of failure, the abort is deferred until
its execution is resumed (after the OS handles the fault/system call).

The performance degradation of page faults ocurring inside transactions
can also be mitigated in certain cases using software-only strategies. When
page faults happening within transaction boundaries are caused by heap
accesses to newly allocated memory, transaction aborts can be avoided by
touching, before speculation begins, the region of memory that will be re-
turned by subsequent calls to malloc [13]. As opposed to the above hard-
ware techniques, this software approach —henceforth referred to as heap
pre-faulting— has limited applicability since it only addresses a specific type
of page faults, and is not helpful for other important sources such as memory-
mapped 1/O [24]. Unlike pre-faulting, hardware-based schemes can avoid a
sudden performance drop when the working set exceeds physical memory.
Another important shortcoming of pre-faulting besides its limited applica-
bility is that it adds a fixed overhead to every transaction, and thus it may
slow down certain programs.

Both hardware alternatives described above allow handling the page-fault
without aborting the transaction and without precluding concurrency with
other transactions, in contrast to our proposal that aborts the transaction,
handles the page fault, and then retries the transaction from the beginning.
This means that they can achieve better performance, but at the cost of
higher complexity in hardware and/or intrusive OS support. Our evaluation
compares PfTouch against IBM suspended transactions as well as heap pre-
faulting.

12

350

355

360

365

370

375

380

385

5. Simulation Environment

We have extended the widely used Gem5 simulator [25] with transactional
memory support in order to model an Intel RTM-like best-effort solution [7],
our baseline design. The full-system simulation mode of Gem5 is employed
in order to capture the effects of RTM-unfriendly OS events on the perfor-
mance of transactional workloads. We employ the detailed timing model for
the memory subsystem provided by Ruby, combined with the simple single-
issue, in-order processor model known as TimingSimple CPU. Gemb provides
functional simulation of the x86-64 ISA and boots an unmodified Gentoo
Linux. We perform our experiments on a 16-core tiled CMP system. Mem-
ory and network parameters are detailed in Table[ll The results presented in
Section [0] are for 16-thread runs in all benchmarks except QuakeTM, whose
game server allows at most 8 threads. Results correspond to the parallel part
of the applications. We account for the variability of parallel applications by
gathering average statistics over 10 randomized runs with a random jitter of
up to 1 extra cycle to the DRAM response time, except for the performance
analysis using vacation-ws-dr, in which we run 20 simulations for each input
size, given the higher variability of execution time when major faults arise.

5.1. HTM Systems evaluated

Table 2| summarizes the HTM systems evaluated in Section [0} Our RTM-
like baseline (Base) uses speculatively modified (SM) bit-annotations in the
L1 data cache to track write sets, and a perfect signature to track read
sets. Thus, it can maintain much larger read-sets than write-sets, following
features seen in commercial Intel chips [I3], where write-set size cannot ex-
ceed L1 size (32 KiB) but read-sets of several MiB are allowed. As existing
best-effort HTM implementations do, the L1 data cache supports specula-
tive versioning, and a requester-wins policy is used to resolve conflicts. The
MESI coherence protocol was augmented to support speculative versioning
as follows:

e Silent invalidation of M-state blocks is supported. On abort, the L1
data cache discards speculative updates through gang-invalidation of
SM blocks. Thus, exclusive ownership information at the directory may
become outdated. To handle this, a former exclusive L1 cache can send
a negative acknowledgment (nack) to the L2 directory upon forwarded
request from a remote L1 cache, indicating that it no longer has the
block, in which case the request is serviced with data from L2.

13

390

395

Table 1: System parameters.

MESI Directory-based CMP

Core Settings

Cores

16, single issue
in-order, non-memory IPC=1

Memory Settings

L1 I&D caches
L2 cache

Memory
Cache coherence

Private, 32KiB, split

8-way, 1-cycle hit latency

Shared, 8 MiB, unified

16-way, 24(tag)+12(data)-cycle latency
2 GiB, 200-cycle latency
Directory-based, MESI states

Network Settings

Topology and Routing
Flit size

Message size

Link latency

Link bandwidth

2-D mesh (4x4), X-Y

16 bytes

5 flits (data), 1 flit (control)
1 cycle

1 flit per cycle

e Speculative writes to M-state blocks whose SM bit is unset must write
back L1 data to the L2 cache before the store completes in L.1. Thus,
the L1 cache controller must be able to read the value of the SM bit
before deciding on the actions to perform. SM bits are typically stored
alongside coherence state bits, so this can be done at no extra cost. Like
regular replacements, these writebacks that retain exclusive ownership

are not in the critical of the originating write.

Our baseline model uses the abort handler implementation shown in
Listing [We implement our scheme of concurrent handling of page-faults
(PfTouch) by modifying the abort handler as depicted in Listing 2] while the
underlying HTM system remains identical to Base except for the additional
information about page-fault-induced aborts provided on the abort status
returned in the RAX register.

We then compare PfTouch to the three related works discussed in Sec-
tion[d Our baseline best-effort requester-wins HTM is augmented to support
suspended transactions (Suspended), which uses the same abort handler as

14

405

410

415

420

425

430

Table 2: HTM systems evaluated.

Base Baseline, perfect read signature, SM-bits in L1 cache
PfTouch Concurrent page-fault handling in abort handler
Suspended | Suspended transactions [17]

Prefault Heap pre-faulting [13]

LogTM LogTM-SE, perfect signatures, 8-entry log filter [23]

Base. The hardware model is modified so that a trap to kernel code due
to interrupts or page faults does not abort an ongoing transaction. Instead,
the kernel code executes non-transactionally (i.e. stores are not versioned)
while the hardware keeps monitoring both coherence traffic and evictions
of speculatively modified blocks from the local L1 cache. If a conflict- or
capacity-induced abort signal occurs while the transaction is suspended, its
processing is deferred until the CPU resumes the transaction upon return
from kernel code. If an abort was signalled while the transaction was sus-
pended, its processing begins as soon as the CPU is back executing user
code. Otherwise, transactional execution is resumed successfully after the
interrupt/page-fault was handled.

On its part, the heap pre-faulting scheme (Prefault) is implemented en-
tirely in software, by extending the thread-local memory allocator in the
STAMP library with a new function (memory_touch), which writes the mem-
ory location that would be returned by a subsequent call to memory _get (the
replacement of malloc used inside transactions in STAMP benchmarks). If
such location lies less than 128 bytes from the page boundary, the first byte
of the following page is also touched. Then, a call to the memory_touch func-
tion is added to the beginTransaction wrapper in Listing [I} between lines
2 and 3.

Additionally, we compare the relative performance of the aforementioned
best-effort designs, against LogTM-SE[23] (LogTM), a popular HTM system
that provides wvirtualized transactions of any footprint or duration. LogTM-
SE uses a requester-stalls policy to resolve conflicts through a timestamp-
based scheme of conservative deadlock avoidance that also prevents the starv-
ing writer pathology [26]. Perfect read and write signatures are employed for
book-keeping. A software abort handler walks the undo log to restore mem-
ory. To make a fair comparison against the aforementioned best-effort HTMs,
no randomized exponential backoff is performed after abort in LogTM. Re-

15

435

440

445

Table 3: STAMP benchmarks and inputs.

STAMP

bayes -v32 -r4096 -n2 -p20 -i2 -e2

genome -gb12 -s32 -n32768

intruder -al10 -116 -n4096 -s1

kmeans-1 -m40 -n40 -t0.05 -i random-n16384-
d24-c16

kmeans-h -m15 -n15 -t0.05 -i random-n16384-
d24-c16

labyrinth -i random-x48-y48-z3-n64.txt

ssca2 -s14 -i1.0 -ul.0 -19 -p9

vacation-1 -n2 -q90 -u98 -r1048576 -t4096

vacation-h -n4 -q60 -u90 -r1048576 -t4096

yada -a10 -i ttimeul10000.2

Modified STAMP
intruder-v-mmap -al0 -sl -f20 -i packetstream-1128-
n4096
ssca2-tx -s14 -i1.0 -ul.0 -19 -p9
vacation-ws-dr -n2 -q10 -ul00 -r4220000 -t131072

dundant writes to the log are minimized by means of a log filter that contains
the eight most recently logged block addresses. To accommodate syscalls
ocurring inside transactions in certain HTMBench benchmarks, we augment
our LogTM model with the ability to run a transaction non-speculatively in
mutual exclusion by means of a fallback lock which only gets acquired upon
syscall-induced aborts, whose acquisition aborts all other speculative trans-
actions and forces them to wait, similar to how irrevocability is implemented
in the best-effort HT'Ms considered.

5.2. Benchmarks

The STAMP transactional benchmarks [10] as well as a selection of bench-
marks from HTMBench[I1] are used as workloads. For STAMP, the recom-
mended medium-sized inputs shown in Table [3 are used, while in Table [we
can see the selection of HTMBench benchmarks considered and their inputs.
Figure [2| shows the scalability up to 16 threads for Base and LogTM, where
we can see the poor parallel performance of bayes and labyrinth in all HTM
systems. The large write-set size of their transactions in both codes, well
above 32 KiB for medium inputs, leads to poor performance when executed
in best-effort HTM systems due to capacity-induced aborts, as it can be seen
in Figure[2 Moreover, execution time of bayes varies significantly in different

16

Time (normalized)

Table 4: HT'MBench benchmarks and inputs.

HTMBench

avl 1000000 1 0.8 100000
berkeleydb -i 4096
bplus-tree -items=100, -times=100
dedup-cp -¢ -p -f -r 1 -i simsmall.dat
kyotocabinet (kcforesttest) queue -it 1 -bnum 10000

-psiz 1000 casket 20000
leveldb -num=4096 -benchmarks=fillseq
linkedlist -w 30 -u 20 -i 16000 -r 32000
quaketm 50 frames
skiplist -w 100000 -u 20 -i 16000 -r 32000
ua Class S

l Base,1 W Base,2 [Base4 [1Base,8 [1Base,16
[JLogTM,1 [JLogTM,2] LogTM,4 [l LogTM,8 Ml LogTM,16

defc,\k“\e Y\?(’NN\\ sca'l \\0(\ A \Jada a\l\ 3\ % “?0% \“ e\‘k?e %\Le“i}\\p\\s‘ RE:S

Figure 2: Scalability of baseline and LogTM HTM systems up to 16 threads.

17

450

455

460

465

470

475

480

485

executions, as it implements a hill climbing search algorithm that, depending
on the thread interleaving, can execute a different number of transactions for
the same input [27, 5], as clearly seen in Figure[2] In labyrinth, its poor scal-
ability is partly due to the lack of hardware support for early release [3], 28],
which prevents its main data structure from being removed from the read
set after privatization, so that any thread attempting to commit its work
invariably aborts all other concurrent transactions. Morover, the even more
pathological performance of LogTM in labyrinth is explained by the large
write set size of transactions that repeatedly abort, which not only makes
the undo log compete for cache resources with program data, but also causes
very expensive software rollbacks. For the aforementioned reasons, results
for bayes and labyrinth are not presented in Section [0}

As for the HTMbench benchmarks considered in this work, we had to
adapt them in several ways to make them suitable for our simulation in-
frastructure. For QuakeTM, apart from fixing several important program-
ming bugs that caused data corruption, we transformed it from its original
client-server model (where the server spends the majority of its time in the
kernel waiting to receive datagrams from a socket), into a stand-alone pro-
gram where the server obtains clients’ commands from a trace file previously
recorded by running the original client-server program in native hardware.
We also adapted dedup, whose original version creates n threads for each
of the three stages of its parallel pipeline, in order to isolate the effects of
thread scheduling and context switching overhead when using more threads
than available cores. We derived dedup-cp, a version in which the region
of interest is the pipeline stage which employs coarse-grained transactions
(chunk process), which then we run with higher thread counts to better ob-
serve the effects of contention and page faults on HTM performance without
the interference from the kernel due to thread descheduling and reschedul-
ing. To present scalability numbers similar to those presented for STAMP
(Figure[2), we further modified HTMbench benchmarks with additional com-
mand line arguments to control their runtime based on work-units (e.g., it-
erations) to execute rather than based on duration (wall-clock time). Also,
where applicable we distributed work among threads, in an attempt to keep
the amount of work constant across runs with varying thread counts. More-
over, to reduce spurious aborts due to conflicts among transactions because
of the data structures used by the memory allocation library, we replaced
calls to libc’s malloc by calls to the STAMP’s thread-local malloc. In this
way, concurrent transactions can allocate dynamic memory without experi-

18

490

500

505

510

515

520

525

encing conflict-induced aborts. The patch to produce the modified versions of
HTMBench codes is available in [29]. Figure [2] (right) shows that all selected
benchmarks from HTMBench scale up to 8/16 threads in LogTM except for
berkeleydb and leveldb. In linkedlist, capacity-induced aborts lead to barely
no speedup over single thread runs for the best-effort HTM system used as
baseline. As for bplus-tree, at least 4 threads are required to create work-
loads with similar amounts of work executed, and thus numbers shown in
Figure |2 for 1- and 2-thread configurations are not directly comparable.

Table [5| shows the number page-fault-induced aborts occurred in Base
and PfTouch during the execution of the benchmarks mentioned in Tables
and [4, along with the average number of cycles spent in the touch function
(line 13 in Listing [2)) waiting for the kernel to handle the fault. Page faults
have been classified in minor (those that do not require reading or writing
any data from or to the swap file or partition or the backing file in case of
mmaped I/O) and major (those that do). We can see that all the page faults
in the STAMP benchmarks are minor. In fact, all of them are caused by the
first accesses to unused heap pages which are initially zeroed.

To enrich our performance characterization, we consider three additional
benchmarks, intruder-v-mmap, vacation-ws-dr and ssca2-tr, which attempt
to better measure the applicability of each page-fault-abort mitigation tech-
nique. As shown in Table 5 all page faults experienced by transactions in
the STAMP benchmarks using medium inputs are minor faults. As shown
in Section [0, such faults are exclusively caused by accesses to memory dy-
namically allocated inside transactions. To this end, intruder-v-mmap and
vacation-ws-dr attempt to fill this gap by mimicking workloads where page
faults in transactions have other sources.

Intruder-v-mmap [30] is a modified version of intruder that attempts to
capture the behavior of real-world workloads that perform memory-mapped
I/O during transactions [24]. The changes are explained in detail in [30]. In
short, threads obtain network packets from a memory-mapped input file that
contains a packet stream, instead of generating it during the initialization
phase. This way, page faults that occur during initialization of input data in
the original version of intruder are moved to the region of interest when ob-
taining packets from the memory-mapped file. Furthermore, this optimized
version uses a vector instead of a linked list to store packets belonging to the
same flow, since flow length (i.e., vector size) is known in advance. Note that
this change alone achieves nearly a 3x speedup in single-thread executions
over the original benchmark.

19

Table 5: Number of aborts caused by page faults in PfTouch, and average duration (in
cycles) of the touch in the abort handler.

Minor page faults

Major page faults

Benchmark | Count Average duration | Count Average duration
genome 55 67510 0 —
intruder 144 62643 0 —

intruder-v-mmap 391 60417 0 —
kmeans-h 0 — 0 —

kmeans-1 0 — 0 —

ssca2 0 — 0 —

ssca2-tx 0 — 0 —

vacation-h 68 65619 0 —

vacation-1 54 67583 0 —

yada 56 65510 0 —

avl 57 60609 0 —

berkeleydb 0 — 0 —

bplus-tree 126 45172 0 —

dedup-cp 2929 51597 4 661028
kyotocabinet 125 73227 0 —

leveldb 7 47303 0 —

linkedlist 0 — 0 —

quaketm 4 54075 0 —

skiplist 1207 70465 0 —

ua 0 — 0 —
vacation-ws-dr-220000 2056 44625 0 7074122
vacation-ws-dr-225000 2147 43355 4 13306006
vacation-ws-dr-230000 2171 43325 6 9791788
vacation-ws-dr-235000 2159 43679 11 16946642
vacation-ws-dr-240000 2137 44107 8 14776571
vacation-ws-dr-245000 2390 40170 15 23105994
vacation-ws-dr-250000 2185 42309 17 26510093
vacation-ws-dr-255000 3325 33654 55 21284268
vacation-ws-dr-260000 2858 36689 38 22006238
vacation-ws-dr-265000 2838 37469 70 32240634

20

530

535

540

545

550

555

560

On its part, vacation-ws-dr [31] is used to showcase the behavior of all
HTM systems considered under heavy-load scenarios where major page faults
arise. With that goal in mind, the input size chosen for this benchmark (-r
option) is set slightly above four million relations, in order to push its phys-
ical memory requirements slightly above the 2 GiB limit of the simulated
system. To prevent work imbalance among threads due to the appearance of
such page-faults that take millions of cycles to be resolved, the static work-
load assignment scheme of the original benchmark is replaced with a dynamic
scheme as if using work stealing, so that at the end of the parallel phase each
thread may have performed a different number of database transactions de-
pending on its particular throughput, while the total amount of work remains
constant (as specified by the -t option). Furthermore, unlike the original va-
cation in which the query range (-¢ option) of objects identifiers is the same
for all threads, in this version threads query disjoint ranges, so that the sum
of all ranges spans all the identifiers present in the database. This change
favours progress of threads whose working set remains in physical memory
in the presence of major page faults affecting other threads. The patch to
produce this flavour of vacation is available in [31].

As we can observe in Table 5] the only benchmark that has major page
faults is vacation-ws-dr, which has been designed precisely to exhibit this
behavior. In the case of intruder-v-mmap, there are no major page faults
either, although we may expect them since it is accessing a file on disk which
has been mmaped. We have verified that this happens because the OS reads-
ahead the memory-mapped file eagerly into the page cache, as part of the
mmap system call or shortly after it. This way, no major faults to read data
from disk occur during the parallel phase, but accesses to the mmaped region
during this phase still cause minor faults in order to set up the mappings in
the page table of the process, pointing to the kernel’s page cache.

Ssca2-tx simply zooms into the execution time of the only phase in ssca2
that uses transactions (inspection of adjacency arrays), in order to better
characterize the fixed overhead incurred by Prefault in benchmarks where
small, short-running transactions dominate.

6. Results

In Figures [3land [6] we compare the relative performance of all HTM sys-
tems considered for STAMP and HTMBench, respectively, normalized to our
baseline system (Base). We show the role that each source of overhead plays

21

565

570

575

580

H NonTransactional B Kernel I Touch [HasLock J Committed
[J Aborted [WaitForRetry [WaitForRetryPF B Undo+Backoff

\Base PfTouch Suspended Prefault LogTM\

1.27
1.17
@ 1000 T m w7 e
5 0.97
> 08
- 0.7
S 067
T 0.57
E 0.4
S 0.37
= 0.2
0.17
0.0~ \ \ T i
e X N = v SIS S o Cc
ge(\o‘“ .\“\(\)de . \H““\aQ «\ea\'\‘5 \m\e’ax\s 5509255032‘a(;a“0“ aca\\o“ \J’dd P\\le(ag
(s \ N N

Figure 3: Execution time for STAMP benchmarks, broken down into categories.

on the performance of each configuration by breaking down execution time
into disjoint components, where each execution cycle is attributed to one of
the following categories: non-transactional (including time spent in barriers,
NonTransactional); handling of interrupts/page-faults (Kernel); holding the
fallback lock (HasLock); executing speculative transactions (Committed and
Aborted); waiting on the fallback lock to be released before retrying a spec-
ulative transaction, either because the lock is being held by a transaction
that is handling a page fault (WaitForRetryPF') or any other cause (Wait-
ForRetry); lastly, Touch categorises cycles spent either handling page faults
triggered by the abort handler (in PfTouch) or touching the heap area (in
Prefault).

6.1. STAMP

Benchmarks such as intruder and vacation clearly show the performance
gains achieved by all three page-fault-abort mitigation techniques consid-
ered. In the case of Suspended and PfTouch, the ability to handle page faults
without acquiring the fallback lock enables more concurrency, as seen in the
elimination of the WaitForRetryPF time. The rest of the waiting time due
to irrevocable transactions that acquire the fallback lock for other causes re-
mains almost the same in all cases. As for vacation, page faults are nearly
the only reason why transactions resort to irrevocability in Base, and hence
virtually all the cycles in HasLock, WaitForRetry and WaitForRetryPF are
eliminated. In genome, intruder and yada, the HasLock and WaitForRetry

22

585

590

595

600

605

610

615

620

components remain as threads need to break livelock situations caused by re-
peated conflict-induced aborts, a direct consequence of the conflict resolution
policy (requester-wins).

We can see how part of the cycles that were attributed to Kernel in
Base (page faults while in non-speculative transactions) are moved to the
Touch component in PfTouch. This is the time spent handling the page
faults in both cases and has a larger impact on performance that may be
apparent at first sight because in Base those kernel cycles are executed while
no other thread can make useful transactional work (because the fallback lock
is taken), whereas in PfTouch and Suspended those same kernel cycles (Touch
or Kernel components) are executed concurrently with other transactions.
Furthermore, in Base, the page faults that occur in a transaction invariably
trigger the irrevocability mechanism which in turn forces the abort of all
other concurrent speculative transactions. On the other hand, with PfTouch
or Suspended, the rest of transactions are not affected.

Comparing the performance of PfTouch against Suspended, we can see
that they achieve very similar performance levels in benchmarks like genome,
intruder and vacation. As said before, the reason for their advantage is the
increased concurrency while handling page faults, but each one achieves this
differently: Suspended does it by suspending the transaction to handle the
page fault and then resuming it without discarding any work, while PfTouch
aborts the transaction, handles the page fault, and then retries it. These
resutls confirm that our slightly augmented RTM interface is able to capture
the majority of the benefits of a more complex hardware solution such as
suspended transactions.

The performance exhibited by Prefault approximates that of Suspended in
all STAMP benchmarks significantly affected by page-fault-induced aborts,
indicating that almost all such aborts are due to dynamic memory allocation.
This is the result of STAMP’s simplistic thread-local memory allocator, which
does not even support freeing memory: since memory never gets reused, page
faults in the heap area become recurrent. Prefault triggers all those page
faults before the transaction and sidesteps such aborts, thus reducing the
Aborted component in some cases as much as Suspended. This is clearly
visible in Figure {4 for vacation, where page-fault-induced aborts occur close
to the end of its large transactions, hence resulting in a lot of discarded work
for Base. On the downside, the inability of Prefault to help performance when
page-fault-induced aborts are not caused by dynamic memory allocation is
visible in intruder-v-mmap, in which both PfTouch and Suspended show

23

625

630

635

640

645

650

655

their key advantage over a software-based heuristic such as heap prefaulting:
their general applicability. Another key shortcoming of Prefault, the extra
overhead added to every transaction, becomes apparent in ssca2: to make
heap pre-faulting transparent to the programmer, it is implemented inside
the beginTransaction function of Listing [I, by touching the heap before a
transaction is speculatively executed for the first time. Depending on the cost
of such blind heap prefetch, Prefault may slow down programs with many
small-sized transactions like ssca2, in which we see a slowdown of 14.4% in
its transactional phase (4.0% overall). Note that as a result of STAMP’s
simple memory allocator, the heap touch operation only comprises less than
20 instructions, but more realistic allocators would likely increment its fixed
cost.

To further understand the performance of the different ways of handling
page faults, we can see their effects in the time spent doing work in a trans-
action that is finally aborted, which is shown in Figure 4l This would cor-
respond to the cycles included in the Aborted category in Figure [3 split in
seven finer grained categories: Conflict are cycles aborted due to conflicts
between transactions; L1Capacity and L2Capacity are cycles wasted due to
aborts caused by the limited capacity of the L1 and L2 caches respectively
(capacity aborts); the cycles wasted before an abort is triggered due to a
page faults are accounted for as PageFault; Interrupt are the cycles of trans-
actions aborted due to interrupts; FallbackLock are the cycles that are wasted
due to aborts caused by the acquisition of the fallback lock. Syscall are the
cycles that are wasted due to aborts caused by system calls ocurring inside
transactions.

Figure [] shows that in most cases more than half of the cycles due to
aborts are caused by conflicts among transactions. The only exceptions are
vacation and yada. As observed by looking at Figures[3|and [4] the additional
concurrency achieved by side-stepping thread serialization on the fallback
lock caused by page faults results in performance gains over Base yet causes
slightly more discarded work in certain benchmarks in all other best-effort
HTM configurations. On its part, a virtualized HTM implementation like
LogTM generally discards less work than best-effort counterparts as LogTM
only aborts transactions because of conflicts. The exception is yada, where
LogTM achieves a dramatic reduction in execution time (almost 90%) at the
cost of discarding 5x more transactional work than best-effort HT'M systems,
simply because the absence of a fallback path lets threads execute speculative
work without serializing for any reason other than conflicts (some of them

24

660

665

670

675

680

l Conflict M FallbackLock @ Interrupt ‘
[0 L1Capacity (] L2Capacity []PageFault

|Base PfTouch Suspended Prefault LogTM |
3.507 3.67 7.46

normalized cycles
=
~
4

2l fl—'\‘ls

e et 2P A o g
geﬂo‘“ ‘\(\““:de‘_q_(“m 20> \,\“\ea“ osC¢ e o

J4 e
oV \O!
e e o Y

Figure 4: Cycles wasted due to aborts in STAMP benchmarks, categorized by cause of
abort.

resolved by stalls in LogTM).

In most benchmarks, the page fault component in the aborted cycles is
not visible because aborts caused by conflicts (including conflicts on the fall-
back lock) clearly dominate. It is interesting to see the effects that Prefault
has in the case of genome, where it eliminates WaitForRetryPF cycles but
in turn increases the amount of wasted cycles due to conflicts. The reason
for this is that page-fault-induced aborts in Base that throttle down concur-
rency in a highly-contended phase of the benchmark are removed by Prefault,
giving way to repeated conflict-induced aborts which eventually result in the
fallback lock being acquired anyways, explaining the increase in the Conflict
category shown in Figurdd] for this benchmark. In PfTouch, this pathologi-
cal scenario does not arise because contending transactions affected by page
faults give way to others while the transaction aborted by the page fault
handles it again in the abort handler.

The poor scalability seen in Figure[2]for yada in Base, and by extension in
all best-effort HT'Ms evaluated, is mainly due to the contention experienced
by its very long running main transaction (regionRefine). Single-threaded
runs indicate that such transaction takes on average 200,000 cycles to com-
plete in LogTM, while in Base around 85% of all executions of such transac-
tion are non-speculative (i.e., through the fallback path), with the remaining
15% committed speculative executions taking around 100,000 cycles. With
only one thread, mostly page-faults and interrupts, and to a lesser extent
capacity-induced aborts, make threads resort to the fallback path. In multi-

25

685

690

695

700

710

715

720

threaded runs, it is the friendly fire [26] caused by the requester-wins policy
of the evaluated best-effort HTM systems what makes all threads take the
fallback path after repeated conflict-induced aborts, explaining why over 75%
of all aborted cycles are the result of a conflict on the fallback lock shown in
Figure

In vacation, the PfTouch optimization removes all aborted cycles caused
by the acquisition of the fallback lock when one transaction suffers a page
fault. However, the amount of wasted cycles is only reduced by 25% overall,
because some of those speculative transactions concurrent with the page fault
processing in the abort handler are now aborted by interrupts. The Page-
Fault component seen in Base remains unchanged in PfTouch configuration,
and only gets removed by Prefault, Suspended and LogTM configurations,
since in these cases either the page fault occurs before the transaction starts
(Prefault), or there is no need to abort transactions to handle page faults
(Suspended and LogTM). As shown in the figure, the performance advantage
of Prefault over PfTouch comes mostly from the interrupt-induced aborts af-
fecting the latter, and to a lesser extent the ability of the former to sidestep
page-fault induced aborts. Further analysis of this matter revealed that the
unexpected increase in the number of interrupts seen in PfTouch is caused
by the cmpxchg instruction as simulated in Gem5 and its interaction with the
operating system. In the simulated x86 processor model, such instruction is
decoded into several micro-instructions, including a load to the given mem-
ory location followed by a store to it, whose result is two consecutive page
faults generated by the instruction. The load micro-instruction causes a mi-
nor page fault to a zeroed virtual page (previously mmapped by the memory
allocator to fulfill requests) which the operating system handles mapping it
to a shared zeroed physical page which backs many virtual pages from the
same or different processes. Later, the store micro-instruction causes another
minor page-fault because the operating system has to allocate a new physical
page for the virtual address before actually modifying it (this copy-on-write
optimization is crucial to allow sharing of static code and data between pre-
cesses and to allow the operating system to overcommit memory). The page
table entry and the TLB entry allocated by the first page-fault have read-
only permissions to allow the operating system to detect the second fault
caused by the write. Unfortunately, since the TLB translation allocated by
the load micro-instruction needs to be updated before executing the write
micro-instruction, the operating system must ensure that the TLB transla-
tion is not present in any other TLB, and thus it must interrupt all other

26

725

730

735

740

M NonTransactional W Kernel @ Touch [HasLock [J Committed ‘

[Aborted [WaitForRetry [0 WaitForRetryPF B Undo+Backoff

[Base PfTouch Suspended Prefault LogTM| [Base —PfTouch —Suspended —Prefault —LogTM |
. [— 530

B I 350" | J
g 3257 { [
o I 3007 i
(2]

5 = 2757 }
E 2507]
" 225 | 1 1
£ S

= 2000 7 :

175 T T T

'),‘25000 135000 1A5000 165000

Figure 5: Execution time of vacation-ws-dr when running into physical memory limits.

cores to invalidate the appropriate TLB entry (even though it is very unlikely
in this case that this mapping is actually present in any other TLB). These
bursts of interrupts affecting all cores are the cause of interrupt-induced
aborts seen in Figure 4| for PfTouch. Prefault does not show this component
because it uses a store instruction instead of a compare-and-swap to touch
the heap area: writing any value (in our case, zero) when touching the next
page from the free pool is only possible because in Prefault it is known that
the memory location touched does not contain valid data. On the contrary,
PfTouch is a general mechanism that is capable of dealing with page-faults
that occur in any memory region (including, but not limited to the heap),
and thus cannot modify its contents. Note that the extra penalty of a double
fault incurred by PfTouch could be avoided if the first access performed by
cmpxchg was handled as a store.

On their part, both Suspended and LogTM eliminate aborted cycles
due to interrupts and page faults, achieving nearly identical performance in
vacation-l, while the marginal gains of LogTM over Suspended in vacation-
h are attributed exclusively to its ability to resolve conflicts through stalls
rather than aborts. Yada, and in less extent, genome, also show a notice-
able fraction of the aborted cycles caused by interrupts when PfTouch is
employed, for the aforementioned reason.

6.2. Major page faults

Figure 5| compares the performance of Base, PfTouch, Suspended, Pre-
fault and LogTM using vacation-ws-dr. The benchmark is executed with

27

745

755

760

770

775

increasing input sizes (see Table , starting with a value of -r (number of
relations) which creates a database whose memory size is slightly below the
physical memory available in the simulated system (see Table . The goal
is to show HTM performance under workloads that may experience major
page faults. Real-world applications can approach and surpass the physical
memory available to the process, either due to large working set sizes, or be-
cause of resource contention amongst several processes in multi-programmed
environments. Figure [5| shows that Prefault performs slightly better than
PfTouch in the absence of major faults, for the reasons explained for the
original vacation, related to the behavior of compare-and-swap. LogTM and
Suspended perform best as they avoid discarding work when a page fault oc-
curs. However, as soon as the working set of the workload begins exceeding
the available physical memory (in vacation-ws-dr that happens at 4,225 mil-
lion database relations), major faults begin to arise. At this point, PfTouch
and Suspended becomes the only schemes that can tolerate them without
sustaining a severe slowdown: in Figure [5| we can see how, when increasing
input size from 4, 225 to 4, 245 million relations, PfTouch gracefully handles
the appearance of major faults with barely no performance loss, while Base
and Prefault begin experiencing significant performance drops, more acute
as more and more major faults appear. It is interesting to see that from
4,225 million relations, PfTouch and Suspended outperform LogTM because
of the extra memory requirements of the undo log that leading to additional
major page faults suffered, for the same input size. Prefault is unable to
trigger the fault ahead of the affected transaction, and thus cannot prevent
thread serialization on the fallback lock in such scenarios where the page
fault is not caused by accesses to newly allocated dynamic memory. On the
contrary, PfTouch sidesteps thread serialization and allows the remaining
threads to continue executing while the affected thread remains halted until
the requested page is brought back from the swap area in disk.

6.5. HTMbench

Since most of these benchmarks contain fine-grained transactions that are
the result of replacing locks by transactions, the amount of data speculatively
accessed is typically small. As a result, most of the benchmarks suffer few or
no page faults, as shown in Table [f] Only dedup-cp and skiplist show some
potential for performance improvement by a page-fault-mitigation technique.
As expected, execution time and aborted cycles shown in Figures [6] and [7] are
similar in Base, PfTouch and Suspended in most of the benchmarks. Only

28

785

790

795

800

805

810

815

dedup-cp, which consists of coarse-grained transactions that dynamically al-
locate and operate on memory chunks of hundreds to thousands of bytes in
size, shows differences among the considered HTM systems: Prefault cannot
perform at par with PfTouch and Suspended since the prefaulting window
is not adequately sized (the heuristic is tuned for the STAMP benchmarks
and only touches memory up to 128 ahead of the next available location).
However, Prefault outperforms Base and PfTouch in skiplist thanks to a
25% reduction in the cycles wasted due to conflict-induced aborts, which in
turn is a consequence of the prefetching effect of touching the next available
heap before beginning the transaction: by moving cache misses ahead of the
transaction, its duration is reduced and this in turn shrinks its window of
exposure to aborts by a concurrent conflicting transactions. Although this
positive effect on contention also occurs in berkeleydb and ua, it does not
translate into performance improvement for several reasons: unlike skiplist,
in both benchmarks transactions only account for a small fraction of all exe-
cuted cycles. Moreover, Prefault suffers a slowdown in ua for the very same
reason as explained for ssca2 in the previous section (many small-sized trans-
actions in which overhead of touching the heap every time becomes notable,
as shown by the Touch component). Finally, the varying performance seen
for LogTM is worth mentioning: in avl, the moderate contention setup (80%
tree lookups, 20% tree insertions) causes frequent aborts, which in LogTM
are expensive since the log unroll is done in software. Furthermore, the
conflict resolution policy of LogTM (requester-stalls) causes the futile stall
pathology [26]. On the other hand, LogTM achieves very important im-
provements in benchmarks like kyotocabinet and linkedlist, in both cases by
sidestepping the fallback to irrevocability of best-effort HT'Ms upon repeated
conflict-induced aborts (kyotocabinet) or capacity-aborts (linkedlist).

7. Conclusions

In this work, we address one of the limitations of the Intel TSX specifica-
tion: how page faults occurring inside transactions has to be managed. Ac-
cording to it, fault occurring within the boundaries of a transaction must be
suppressed as if the faulting memory access had never occurred. The transac-
tion aborts and the hardware informs the abort handler that the transaction
may not succeed on retry. The abort handler then determines that it must
take the fallback path, and proceeds to abort all other concurrent speculative
transactions — ensuring that no new transactions can begin. Subsequently,

29

B NonTransactional B Kernel [Touch O HasLock 0 Committed
[Aborted [WaitForRetry [0 WaitForRetryPF l Undo+Backoff

\Base PfTouch Suspended Prefault LogTM

e
[N

normalized cycles

W\ \J e g et \8} WSt JIIRTE=S 2 e
ie‘\ke\eﬂ“w\“s-“e de(\“‘);’;)\ocab\“e \eved et Q“a\@\m Qdot® V7 ere?
®

Figure 6: Execution time for HTMBench benchmarks, broken down into categories.

l Conflict l FallbackLock @ Interrupt [0 L1Capacity
[L2Capacity (] PageFault [Syscall

\Base PfTouch Suspended Prefault LogTM
3.507 777 20.77 5.99

normalized cycles
=
~
9

. et o st st a
QU0 :%‘Ooa“‘“e \eved \‘\“\@d\\s Q“a\@\m 2ap® o
A'S

a\l\ N\ (e
e ‘0‘,\\)5‘ 3

pef

Figure 7: Cycles wasted due to aborts in HTMBench benchmarks, categorized by cause
of abort.

30

820

825

830

835

840

845

850

the irrevocable transaction re-executes everything up to the point where the
faulting memory access was found. This time, the transaction is not specula-
tive and thus triggers the page fault: once handled by the operating system
(OS), the transaction resumes its execution.

Although handling page faults in this simple manner avoids the need for
non-trivial hardware support to pause/resume speculative transactions while
the kernel executes, and also makes HTM support completely transparent to
the OS, it can have significant impact on performance as page faults occur-
ring within transactions preclude concurrency during such high-latency OS
events. This way the programmer must by all means avoid page faults within
transactions, something that struggles with the HTM premise of helping sim-
plify parallel programming or that cannot always be guaranteed in some cases
(i.e., programs that perform memory-mapped 1/O during transactions [24]
or simply whose working set exceeds physical memory).

To overcome this, we propose PfTouch, a very simple extension of the
Intel RTM specification that enables page faults within transactions to be
handled by the operating system concurrently with the execution of other
speculative transactions. Particulary, with PfTouch, page faults informs the
abort handler about the reason for the abort (a page fault) and the address
causing it through the hitherto unused bits of the RAX register. In this way,
the abort handler can detect that the abort was due to a page fault, and use
the faulting address reported by the hardware in order to fire the page fault.
The OS remains unchanged, oblivious to the HT'M support. Also, exposing
the faulting address to the abort handler does not open up new side channels,
as the same information could be inferred with the existing interface.

Through detail simulations of a 16-core CMP architecture, we demon-
strate that despite its simplicity, PfTouch achieves significant performance
gains (average reductions in execution time of 7.7%) thanks to circumventing
irrevocability, and thus serialization, for these costly events.

As part of our ongoing work, we are developing several additional op-
timizations that require minimal hardware changes and no intrusion in the
operating system, with the goal of bridging the performance gap between
best-effort HTM systems like Intel RTM, and more sophisticated implemen-
tations appeared in the literature so far, such as LogTM-SE [23].

31

855

860

865

870

875

880

Acknowledgments

This work has been supported by the Spanish MCIU and AEI, as well

as European Commission FEDER funds, under grant “RTI2018-098156-B-
Ch3”.

1]

M. Herlihy, J. E. B. Moss, Transactional memory: Architectural sup-
port for lock-free data structures, in: 20st Int’l Symp. on Computer
Architecture (ISCA), 1993, pp. 289-300.

C. Click, Azul’s experiences with hardware transactional memory, in:
2009 Transactional Memory Workshop, 2009.

D. Dice, Y. Lev, M. Moir, D. Nussbaum, Early experience with a com-
mercial hardware transactional memory implementation, in: 14th Int’l
Conf. on Architectural Support for Programming Language and Oper-
ating Systems (ASPLOS), 2009, pp. 157-168.

C. Jacobi, T. Slegel, D. Greiner, Transactional memory architecture and
implementation for IBM System z, in: 45th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), 2012, pp. 25-36.

R. Yoo, C. Hughes, K. Lai, R. Rajwar, Performance evaluation of intel

transactional synchronization extensions for high performance comput-
ing, in: ACM/IEEE Conf. on Supercomputing (SC), 2013.

R. Quislant, E. Gutierrez, E. L. Zapata, O. Plata, Privatizing transac-
tions for lees algorithm in commercial hardware transactional memory,
Journal of Supercomputing 74 (2018) 1676 — 1694.

Intel Corporation, Intel 64 and TA-32 architectures optimization refer-
ence manual, chapter 15: Intel TSX recommendations (2019).

M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit,
M. M. Swift, D. A. Wood, Supporting nested transactional memory in
LogTM, in: 12th Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), 2006, pp. 359-370.

I. Calciu, J. Gottschlich, T. Shpeisman, M. Herlihy, G. Pokam, In-
vyswell: a hybrid transactional memory for haswell’s restricted transac-

tional memory, in: 23rd Int’l Conf. on Parallel Architectures and Com-
pilation Techniques (PACT), IEEE, 2014, pp. 187-199.

32

885

890

895

900

905

910

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Cao Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford
transactional applications for multi-processing, in: IEEE Intl. Sympo-
sium on Workload Characterization, 2008, pp. 35-46.

Q. Wang, P. Su, M. Chabbi, X. Liu, Lightweight hardware transactional
memory profiling, in: 24th Int’l Symp. on Principles & Practice of Par-
allel Programming (PPoPP), 2019, pp. 186-200.

U. Drepper, Parallel programming with transactional memory, Commu-
nications of the ACM 52 (2) (2009) 38-43.

B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, P. Stenstrom, Performance
and energy analysis of the restricted transactional memory implementa-

tion on haswell, in: 28th Int’l Parallel and Distributed Processing Symp.
(IPDPS), 2014, pp. 615-624.

Z. Wang, H. Qian, J. Li, H. Chen, Using restricted transactional memory
to build a scalable in-memory database, in: Proceedings of the Ninth
European Conference on Computer Systems, 2014, pp. 26:1-26:15. doi:
10.1145/2592798.2592815.

V. Leis, A. Kemper, T. Neumann, Scaling htm-supported database
transactions to many cores, IEEE Transactions on Knowledge and Data
Engineering 28 (2) (2016) 297-310.

M. M. Pereira, M. Gaudet, J. N. Amaral, G. Aratjo, Study of hard-
ware transactional memory characteristics and serialization policies on
haswell, Parallel Computing 54 (2016) 46-58.

H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, H. Le,
Robust architectural support for transactional memory in the power
architecture, in: 40th Int’l Symp. on Computer Architecture (ISCA),
ACM, 2013, pp. 225-236. |doi:10.1145/2485922 . 2485942,

I. Calciu, T. Shpeisman, G. Pokam, M. Herlihy, Improved single global
lock fallback for best-effort hardware transactional memory, in: 9th
ACM SIGPLAN Workshop on Transactional Computing, 2014.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown,
arXiv:1801.01207 (Jan. 2018).

33

https://doi.org/10.1145/2592798.2592815
https://doi.org/10.1145/2592798.2592815
https://doi.org/10.1145/2592798.2592815
https://doi.org/10.1145/2485922.2485942

915

920

925

930

935

940

945

[20]

[21]

[22]

23]

[24]

[25]

[20]

[27]

28]

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, M. Costa,
Strong and efficient cache side-channel protection using hardware trans-
actional memory, in: 26th USENIX Security Symposium, 2017, pp. 217—
232.

S. Chen, F. Liu, Z. Mi, Y. Zhang, R. B. Lee, H. Chen, X. Wang, Leverag-
ing hardware transactional memory for cache side-channel defenses, in:
Proc. of the 2018 on Asia Conference on Computer and Communications
Security, 2018, pp. 601-608.

P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: Proceedings
of the Advances in Cryptology — CRYPT099, 1999, pp. 388-397.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, D. A. Wood, LogTM-SE: Decoupling hardware transac-

tional memory from caches, in: 13th Int’l Symp. on High-Performance
Computer Architecture (HPCA), 2007, pp. 261-272.

M. Ghilardi, High performance concurrency in common lisp: Hybrid
transactional memory with STMX, in: 7th European Lisp Symposium,
2014, p. 38.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., The gemb
simulator, ACM SIGARCH Computer Architecture News 39 (2) (2011)
1-7.

J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift, D. A.
Wood, Performance pathologies in hardware transactional memory, in:
34th Int’l Symp. on Computer Architecture (ISCA), 2007, pp. 81-91.

A. Dragojevic, R. Guerraoui, Predicting the scalability of an STM, in:
5th ACM SIGPLAN Workshop on Transactional Computing, 2010.

T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, H. Tomari, Quan-
titative comparison of hardware transactional memory for blue gene/q,
zenterprise ec12, intel core, and power8, in: 42nd Int’l Symp. on Com-
puter Architecture (ISCA), 2015, pp. 144-157.

htmbench-gemb, website (2020).
URL http://ditec.um.es/~rtitos/patches/htmbench-gemb

34

http://ditec.um.es/~rtitos/patches/htmbench-gem5
http://ditec.um.es/~rtitos/patches/htmbench-gem5

[30] intruder-v-mmap, website (May 2019).
URL http://ditec.um.es/~rtitos/patches/intruder-v-mmap

[31] vacation-ws-dr, website (May 2019).
950 URL http://ditec.um.es/~rtitos/patches/vacation-ws-dr

35

http://ditec.um.es/~rtitos/patches/intruder-v-mmap
http://ditec.um.es/~rtitos/patches/intruder-v-mmap
http://ditec.um.es/~rtitos/patches/vacation-ws-dr
http://ditec.um.es/~rtitos/patches/vacation-ws-dr

	Introduction
	Background: Page-fault handling in Intel RTM
	PfTouch: Enabling concurrency in the presence of page faults for Intel RTM
	Hardware modifications
	Abort handler modifications
	Security implications

	Current alternatives
	Simulation Environment
	HTM Systems evaluated
	Benchmarks

	Results
	STAMP
	Major page faults
	HTMbench

	Conclusions

