ICS '17, June 14-16, 2017, Chicago, IL, USA

R. Titos-Gil, A. Flores, R. Fernandez-Pascual, A. Ros, M.E. Acacio

Way-Combining Directory: An Adaptive and Scalable Low-Cost
Coherence Directory

Rubén Titos-Gil, Antonio Flores, Ricardo Fernandez-Pascual, Alberto Ros and Manuel E. Acacio
Dept. Ingenieria y Tecnologia de Computadores
Universidad de Murcia
30100 Murcia (SPAIN)
{rtitos,aflores,rfernandez, aros, meacacio } @ditec.um.es

ABSTRACT

Today, general-purpose commercial multicores approaching one
hundred cores are already a reality and even thousand core chips are
being prototyped. Maintaining coherence across such a high number
of cores in these manycore architectures requires careful design of
the coherence directory used to keep track of current locations of the
memory blocks at the private cache level. In this work we propose
a novel organization for the coherence directory that builds on the
brand-new concept of way combining. Particularly, our proposal
employs just one pointer per entry, which is optimal for the common
case of having just one sharer. For those addresses that require more
than one pointer, we have observed that in the majority of cases
extra pointers could be taken from other empty ways in the same
set. Thus, our proposal minimizes the storage overheads without
losing the flexibility to adapt to several sharing degrees and without
the complexities of other previously proposed techniques. Through
detailed simulations of a 128-core architecture, we show that the
way-combining directory closely approaches the performance of a
non-scalable bit-vector sparse directory, and beats other scalable
state-of-the-art proposals.

ACM Reference format:

Rubén Titos-Gil, Antonio Flores, Ricardo Fernandez-Pascual, Alberto Ros
and Manuel E. Acacio. 2017. Way-Combining Directory: An Adaptive
and Scalable Low-Cost Coherence Directory. In Proceedings of ICS ’17,
Chicago, IL, USA, June 14-16, 2017, 11 pages.

DOI: http://dx.doi.org/10.1145/3079079.3079096

1 INTRODUCTION AND MOTIVATION

Current mainstream multicore architectures implement the shared-
memory abstraction as the low-level programming paradigm, and
this trend is not likely to change in the foreseeable future [19].
Communication between cores in these devices occurs by writing
to and reading from shared memory, while one or more levels of
private caches in each core ensure low-latency memory accesses and
reduced pressure on shared resources (interconnection network and
shared cache levels). A cache coherence protocol implemented in
hardware is responsible for preventing cores from observing multiple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ICS ’17, Chicago, IL, USA

©2017 ACM. 978-1-4503-5020-4/17/06. .. $15.00

DOI: http://dx.doi.org/10.1145/3079079.3079096

versions of the same data, thus making private caches functionally
invisible to software [30].

Today, general-purpose multicores with close to one hundred
cores are becoming commercially available, such as Intel’s 72-core
x86 Knights Landing MIC [29]. Meanwhile, researchers are already
prototyping thousand core chips, like the KiloCore chip developed
at UC Davis [7]. Maintaining coherence across hundreds of cores in
these manycore architectures requires careful design of the coher-
ence directory used to keep track of current locations of the memory
blocks at the private cache level. Duplicate tag directories employed
in some first-generation multicores [5] are plainly and simply unfea-
sible for manycores, since their associativity grows with the number
of cores. Contrarily, sparse directories [16] maintain an explicit
sharer list per entry and can be organized as typical associative
caches, allowing for more scalable implementations. Thus, recent
proposals have built on sparse directories [10, 12, 14, 25, 33, 36].

Two aspects determine the area requirements of a sparse direc-
tory [11]: The total number of entries and the number of bits of each
entry. The former determines the maximum number of addresses
that the directory can contain in a given moment, and therefore has
a direct effect on the amount of different memory blocks that can
be stored at the private cache level. The term coverage is typically
used to indicate the number of directory entries with respect to the
total number of entries in the last level of private cache. Coverage
shortage leads to increased miss rates in private caches due to direc-
tory invalidations, hence affecting performance. Multiprogrammed
workloads consisting of sequential programs place the most stringent
demands on the coverage of a sparse directory, requiring at least
as many entries as the sum of all entries in the last level of private
caches, to allow all such cache entries to be used at the same time.
Previous works (such as [25]) have shown also that in general 100%-
coverage is enough in most cases to eliminate nearly all invalidations
due to directory evictions if enough associativity is provided.

Whereas coverage does not depend on the number of cores and
therefore it is not a scalability hurdle, the amount of bits of each di-
rectory entry poses severe limits to system scaling. The size of each
directory entry depends fundamentally on how it stores the sharers
list for the associated address. To be scalable, directory implementa-
tions need to ensure that the number of bits per tracked sharer scales
gracefully (i.e. remaining constant or increasing very slowly) [25].
Bit vectors are known to be non-scalable, since their size increases
linearly with the number of cores, thus making them unfeasible
for large core counts. Alternative representations such as limited
pointers [2, 9] or compressed sharing codes [16, 22] curb directory
memory overhead. Unfortunately, the improved scalability comes at
the cost of increasing either the number of messages per coherence

Way-Combining Directory: An Adaptive and Scalable Low-Cost Coherence Directory ICS '17, June 14-16, 2017, Chicago, IL, USA

event or the miss rates at the private cache levels. For instance, the
loss of precision introduced by coarse bit-vectors [16] leads to more
invalidation messages per write, while pointer recycling policies [2]
must invalidate privately cached blocks every time a pointer is reused
for a new sharer. At the end, both extra coherence messages and
increased miss rates result into performance degradation.

It is also well-known that the degree of sharing varies across
memory blocks and over time within applications, so that there is no
optimal sharers list organization for all cases. Ideally, each directory
entry should have enough flexibility to adapt to different situations.
Several previous works show that a significant fraction of the direc-
tory entries (approaching 90% in some cases) track private blocks,
for which a single pointer would suffice. Furthermore, amongst
entries tracking shared blocks, most of them have a very small num-
ber of sharers (two or three). The remaining very few entries have
many sharers, yet its number does not grow with system size [36].
Moreover, virtually all directory entries would track private blocks
when sequential workloads are executed in multiprogramming.

This way, a sparse directory designed for the common case should
have as many entries as the last level of private caches (with the
same or higher associativity), with each entry consisting of a single
pointer. Though this design would fit perfectly well to the require-
ments of sequential workloads in a multiprogrammed environment,
when multithreaded applications come into play, the shortage of
bits in each directory entry could have catastrophic effects on per-
formance. However, when multithreaded applications are executed,
a significant number of directory sets are not fully occupied (i.e.
there are free ways in the set) as a consequence of shared blocks
appearing in the L2 caches. For the benchmarks considered in this
work, Figure 1 shows that sets are on average at half their maximum
occupation, and Figure 2 depicts the number of sharers tracked by
each entry (refer to Section 3 for details). Interestingly, most of
those applications that exhibit high occupancy in Figure 1 (such as
Fft, Radix or Ocean_cp) have just one sharer per entry in almost all
entries. This observation is not new as it is what motivates previous
approaches that use multiple entry formats to store sharing infor-
mation [25][27]. We however exploit it differently than previously
done. Particularly, we propose that overflowed directory entries in a
particular set can expand to the free ways in that set.

Taking into account these observations, in this work we propose
a novel sparse directory architecture that builds on the following
design principles:

e [t should be designed for the common case. Considering that
the degree of sharing for most addresses is low (one or two), our
proposal employs just one pointer per entry.

e It should adapt to changing sharing degrees. Though a single
pointer suffices for most addresses, there are others which require
additional storage to track their sharers list. To handle those with
the minimum loss of precision, we leverage the available ways
that often exist in the same cache set to allocate additional sharing
code storage, giving birth to the concept of way combining. This
enables flexible resource assignment within a set, making each
set of the sparse directory appear as a pool of entries which are
dynamically allocated on demand among the addresses mapped
to that set.

(H0E10203040506 W7 M8 |

0.12] = =gl - 5

0.00~ T T T L T
0 X & a Qa a x o 9 w® o
o © 8 ¥ 5 ¥ o o F5 o 9o S o
s 8 ¢c g © s & 85 T ©
e £ ¢ 2 o c I = 5 Q o
5352 ° 55 ® 5
2 & © 5 o @ = Lo
S o s 9 3
< o ©
< =

water nsquaredL1 [[[}

Figure 1: Directory occupancy per set: average fraction of sets
with a given number of occupied entries (ways) in a 100% cov-
erage 8-way sparse directory with bit-vector sharing code for
128 cores (1 sample every 100000 cycles).

[064..124 W127..128
.63 125..126

EO'Omex— aQ Q X © 9@ T g O
mgoﬁx:*soooiogm-gm
c © [£ | | € 8 3T = T ©
E 2 £ € o0 38 = 5] ® = c © &
S 5§ 5 S 5 © = & c s 2 3 9o
o Q2 T « T o >

7] o < @ «© © |
¥ O] o o = @ <
c QO o o < 9
° o <
o L =2
©
H

Figure 2: Sharers per directory entry: average fraction of
present addresses with a given number of sharers in a 100%
coverage 8-way sparse directory with bit-vector sharing code
for 128 cores (1 sample every 100000 cycles).

o It should entail as lower complexity as possible. Way combining
comes with minimal cost as it avoids the complexity introduced by
other proposals [14][25][27]. Our proposal builds atop traditional
sparse directories, relies on existing replacement algorithms, and
does not increase the complexity of directory operations. Of
course, it is not as flexible as SCD [25], but we show that extra
flexibility enabled by SCD barely has any positive influence on
final performance.

o It should keep directory memory overhead as low as possible.
Our proposal has a lower memory overhead than SCD, which we
consider the most scalable directory proposal to date, and this
overhead grows more slowly with the number of cores.

e It should approach as much as possible the performance of the
non-scalable bit-vector sparse directory. Our proposal reaches this
objective (just 2% overhead on average is observed) at the same
time that improves over the previously proposed SCD directory.

ICS '17, June 14-16, 2017, Chicago, IL, USA

address

By [noe ||
LV tag format sharers V tag format sharers
log(N) log(N)
i FBVectorConv
Hit Sharers

Figure 3: Implementation of the Way-Combining Directory.

2 THE WAY-COMBINING DIRECTORY

The way-combining sparse directory (henceforth, WC-dir) stores
sharing information about block addresses that are kept at the private
levels of the on-chip cache hierarchy typically found in a manycore
chip multiprocessor. The structure of WC-dir is nearly identical to
that of a traditional N-way set associative directory cache. Figure 3
gives an overview of the WC-dir implementation. Each address is
univocally mapped to a set in the cache, and the sharing information,
if present, may be stored in any of the N entries of the set. However,
unlike a conventional cache, WC-dir allows multiple entries of the
set to be allocated to the same address, so that an access to WC-dir
can result in zero, one or more fag hits. In the latter case, the sharing
information stored in each matching entry is combined to produce
a full bit-vector of sharers for the requested address. As depicted
in Figure 3, WC-dir replaces the N-to-1 multiplexer typically found
in an N-way set-associative cache (which selects the data from the
matching entry) with a combinational unit named FBVectorConv
whose purpose is to merge the sharing information from all matching
entries. To conserve energy, we assume that only the matching ways
of the data array are accessed after the tags have been compared, as
would be the case in a standard cache (alternatively, all ways could
be activated from the start to minimize access latency).

Our design is based on the aforementioned observation that most

memory blocks have only a handful of sharers, most often just one.

The dominance of entries with a single sharer (i.e., tracking private
data) comes at no surprise in multiprogrammed workloads, but in
parallel applications the majority of the directory entries also track
private blocks. Furthermore, the common case for shared blocks is
that a large fraction of them are only held by two or three sharers. In
this scenario, traditional sparse directories that use full bit-vectors to
encode sharers clearly make a poor utilization of the area dedicated
to storing sharing information.

Another important fact to understand our design is that when two
or more private caches hold copies of a block, only one entry needs
to be allocated in the directory. That means that in a 100% coverage
directory there has to be an empty directory entry for every sharer

but the first one of every address present at the private cache level.

WC-dir can take advantage of those empty entries when they happen

R. Titos-Gil, A. Flores, R. Fernandez-Pascual, A. Ros, M.E. Acacio

to be in the same cache set as addresses whose sharing information
does not fit in a single entry.

To take advantage of these observations in a simple design, WC-
dir allows entries of the same cache set to be combined (i.e., allocated
to the same address). The sharing information of each address is
encoded using one or more entries by means of either pointers or
coarse bit-vectors. In the coarse bit-vector representation [16], each
bit stores whether one or more of the nodes it represents maintain
a copy of the address (bit value 1) or none of them are currently
holding the address in their private caches (bit value 0). This repre-
sentation therefore results in loss of precision since more nodes than
real sharers are typically included.

Only when directory resources become insufficient to maintain
exact sharing information, WC-dir entries switch from the default
pointer-based format to the coarse bit-vector representation. Overall,
the WC-dir dynamically changes the amount of sharing code storage
dedicated to each address, in an attempt to maximize directory
utilization and the precision of the stored information while keeping
its area overhead and operation complexity low.

The ability of WC-dir to combine entries in the same set is inde-
pendent of the representation employed to track the set of sharers
of a given address. In fact, the format in which the sharing code
is stored for a given address may change over time, depending on
the number of entries that can be allocated to the address. As in-
troduced earlier, WC-dir entries may store sharing information in
one of two formats: pointer or coarse vector. The format of each
entry is encoded by an extra bit, called the format bit. Entries in
pointer format contain a pointer to a sharer, while entries in coarse
vector format, contain a portion of the coarse vector of sharers. The
sharing information is jointly stored by all combined entries and can
be decoded using a combinational circuit.

To illustrate the behavioural aspects of WC-dir, Figure 4 shows
the evolution of a set in a 4-way WC-dir for 128 nodes. Thus,
each entry in the set contains a 7-bit pointer so that, when using 4
combined entries, at most four sharers can be tracked for each block
when in pointers format and up to 28 bits are available to form a
coarse vector.

Every time a new address is inserted into the directory, the format
of the newly allocated entry is set to pointer, and the sharing code
points to the only sharer. Figure 4 (a) shows the set containing two
newly inserted addresses addrA and addrB, both in pointer format
and each with a single sharer. New sharers can be added to an
existing address by allocating available entries in the set, combining
several entries to store the sharing code, as depicted in Figure 4
(b). When all entries in a set are allocated (either to the same
or different addresses) and in pointer format, no new sharers can
be inserted into the directory without first taking action to make
room in the set. Because evicting an address from the directory
results in invalidations in the private caches that may later harm
performance by causing additional misses, WC-dir always tries to
minimize evictions at the cost of reducing the sharing code precision.
Thus, evictions only occur when a new address is inserted into a
full set with each entry allocated to a different address, following a
typical LRU replacement algorithm to select the victim. Note that
this behavior ensures that the addresses stored in the WC-dir are
same as the ones that would be stored in a full-map sparse directory.

Way-Combining Directory: An Adaptive and Scalable Low-Cost Coherence Directory ICS '17, June 14-16, 2017, Chicago, IL, USA

(a) Initial set content:

tag format sharers \ tag format sharers \ tag format sharers \ tag format sharers
[(Tasan] + [2 | [o] [| | [es]+ [% J[o] 1 | |
(b) Adding two new sharers to addrA (nodes 32 & 34):
tag format sharers \ tag format sharers \ tag format sharers \ tag format sharers
[1Jawa] 1 [26 | [1]addA] 1 [3 | [1JaddB] 1 | 32 | [1]addA] 1 [34 |

(c) Adding a new sharer to addrB (node 12):

V tag format sharers V tag format _sharers

tag format sharers) format sharers

v
[1]addA]| o fs.26:27.35] [1] addA| 0 [i8.2627.35] [1]addrB |

tag
| [1] addB]

1] e T 12]
(d) Adding new address addrC (node 12):
V tag format sharers V tag format sharers V tag format sharers V tag format sharers
[1]agda [0 | 1835 | [1]addC] 1 | 12 | [1faddB [1t | 82 | [1]adaB] 1 | 12]
(e) Adding new sharer to addrA (node 80):
Vv tag format sharers \ tag format sharers \ tag format sharers \ tag format sharers
[1Jaddra [0 [8.3572.89] [1]addc] 1 | 12 | [tfadaB | t [82 | [1]addB] 1 [12 |

Figure 4: WC-dir: Example of operation.

If any combined entry exists when inserting a new address in a full
set, WC-dir makes room by reducing the number of entries allocated
to one of the addresses with combined entries, reducing the precision
of its sharing information. Figure 4 (c) shows how before inserting a
new sharer for addrB, addrA must switch from pointer format over
three entries to coarse vector format over two entries, thus freeing
one of its entries (note that no address is evicted). Though in this
example there is only one candidate, in practice there are several
heuristics that could be employed to select the victim amongst the
candidate addresses. WC-dir opts for a simple LRU approach. Also,
those candidates whose sharing code is already stored as a coarse
vector are always chosen over those in pointer format, in order to
keep precise sharing codes for as many addresses as possible (as
in Figure 4 (d)). Once selected, if the victim address v is already
in coarse vector format and has K combined entries allocated, the
combined sharing code gets recomputed according to its new size
(K — 1 entries) to make an entry available for the new address. If
v is still using pointers, it is switched to a coarse vector, which is
computed from the K initial pointers and is subsequently stored in
the remaining K — 1 entries.

As said before, inserting a new sharer for an existing address does
not cause evictions in spite of finding a full set. If the address is
already in coarse vector format, the appropriate bit of the coarse
vector is simply set, as shown in Figure 4 (e). If in pointer format
with K allocated entries, its format is switched to coarse vector,
which gets computed from the K pointers plus the new sharer, and
stored in the same K entries.

Low-level implementation details. All ways can be read in paral-
lel (tags and sharer data) but the final sharer list is built considering
all matched ways. Regarding updates, adding a new sharer to an
address spanning K combined entries always requires a single write
to one of the ways, no matter the format: either a new pointer is
added, or a bit in the coarse vector is set. Reducing sharing infor-
mation precision takes up to K — 1 writes to the set, as those entries
in coarse vector format need to be updated after their recalculation.
These writes could be carried out in a single access to the set, at
the cost of additional combinational logic, or a simpler sequential
circuit could perform each of the required writes in a different cycle.
Note that the implementation complexity of WC-dir would be lower
than in other proposals such as SCD, since in WC-dir all operations
(reads and updates) involve a single set.

Table 1: System parameters.

Memory parameters

Block size 64 bytes

L1 cache (data & instr.) 32 KiB, 4 ways

L1 access latency 1 cycle

L2 cache (data & instr.) 128 KiB, 8 ways

L2 access latency 10 cycles

L3 cache (shared) 1024 KiB/tile, 32 ways
L3 access latency 20 cycles

L2 inclusive, L3 non-inclusive

1536 entries, 3 ways (75% coverage)
2048 entries, 4 ways (100% coverage)
2048 entries, 8 ways (100% coverage)

Cache organization
Directory size (SCD75)
Directory size (SCD)
Directory size (rest)

Directory latency 5 cycles
Physical address size 48 bits
Memory access time 200 cycles

Network parameters
Topology and Routing 2-D mesh (8x8), X-Y

Flit size 16 bytes

Message size 5 flits (data), 1 flit (control)
Link time 2 cycles

Bandwidth 1 flit per cycle

3 EVALUATION METHODOLOGY

We evaluate the performance of different cache coherence directories
using the GEMS 2.1 simulator [18]. GEMS is fed with information
gathered by a PIN tool [17], which offers detailed information about
the instructions executed, memory references, and syncronization
primitives as is the standard methodology for large-scale system
simulations [20]. We model the interconnection network with Gar-
net [3]. The simulated architecture corresponds to a single chip
multiprocessor (tiled-CMP) with 128 cores (one per tile). All evalu-
ated configurations implement local caches with MESI states. The
most relevant simulation parameters are shown in Table 1.

We evaluate five configurations for the coherence directory that
we name BV, LP1, SCD, SCD75 and WC1. BV employs a sparse
directory using non-scalable bit-vectors in each directory entry as
the sharing code. LP1 is an implementation of Dir;,CV [16] which
uses a limited pointer scheme in which the sharing information is
stored as a single pointer in the case of private blocks or as a coarse
bit-vector when several sharers are found. SCD is an implementation
of the SCD architecture [25] using a 4-way z-cache that explores
three levels when finding a replacement candidate (which means

ICS '17, June 14-16, 2017, Chicago, IL, USA

Table 2: Benchmarks.

SPLASH-3
Barnes 16K particles, timestep = 0.25, tolerance = 1.0
Cholesky 1399213992, NZ=316740
Fft 220 total complex data points
Fmm 16K particles, timestep = 5
Lu_cb 512x%512 matrix, block = 16
Ocean_cp 514514 grid, distance = 20000, timestep = 28800
Ocean_ncp 514 %514 grid, distance = 20000, timestep = 28800

Radix 4M keys, radix = 4K

Raytrace Balls4, antialiasing with 2 subpixels
Water_nsqared 83 molecules, timestep = 3
Water_spatial 15 molecules, timestep = 3

PARSEC 3.0
Blackscholes 4096 options
Bodytrack 4 cameras, 1 frame, 1000 particles, 5 annealing layers
Canneal 5000 swaps per temperature step, 2000° start tempera-
ture, 200000 netlist elements
Dedup 31 MB
Vips 2336x2336 pixels

that it is roughly equivalent to a 52-way associative cache). SCD75
is a different configuration of SCD with only 75% coverage whose
area requirements are closer to those of LP1 and WCl, since it uses
a 3-way z-cache that explores four levels (roughly equivalent to a
45-way cache). Finally, WC1 is an implementation of WC-dir that
uses 1-pointer entries. BV and LP1 use silent replacements of shared
blocks (no notification is sent to the directory in case of eviction
of a clean shared block) and WCI1, SCD and SCD75 use noisy
replacements (a notification is always sent to the directory upon
eviction). We have evaluated both options for each configuration
and selected the best shared block replacement technique in terms
of execution time for each case.

Our simulations consider representative applications from PAR-
SEC 3.0 [6] and SPLASH-3 [23] (see Table 2). We have included
as many benchmarks as we have been able. We have excluded only
those benchmarks that we could not scale up to 128 cores (i.e. ex-
ecution time with 128 threads is smaller than with 64 threads) and
Freqmine, which uses OpenMP and cannot be ported to our simu-
lations infrastructure. Input set sizes have been fixed considering
resulting simulation times. The resulting set of benchmarks con-
tains applications exhibiting varying behaviors and sharing patterns,
with an average L2 miss rate of 64% All the results correspond to
the parallel part of the applications and we have accounted for the
variability of parallel applications.

4 EVALUATION

Table 3 shows the amount of memory required to implement each of
the directory structures considered in this work. The data for LP1
has been omitted because it is identical to that of WCI. In addition
to the sizes for 128-core systems, which are considered in the rest of
this section, the data of smaller and bigger systems are also shown to
illustrate the scalability of the different proposals. For each tile, the
BV directory requires more than 39 KiB to support a 128 KiB last
private cache, while WC1 and LP1 require only 9.3 KiB, thanks to
the much smaller sharing code. SCD with the same coverage as the
rest requires significantly more area than LP1 and WC1 both because
the sharing code needs more bits and because the tags required by

R. Titos-Gil, A. Flores, R. Fernandez-Pascual, A. Ros, M.E. Acacio

the z-cache are larger. Even reducing the coverage of SCD to 75%,
it still requires more memory than LP1 and WC1 for 128 or more
nodes. Moreover, if we look at how the size (per tile) of each
directory scales with the number of nodes, we can see that only LP1
and WCI keep their overhead constant. This happens because the
tag size is reduced at the same rate as the sharing code size increases
(i.e., logarithmically). The size of the sharing code of BV grows
much faster, to the point that the directory would need more area
than the tracked caches for a system with 512 nodes or more, making
it non-scalable. SCD scales much better than BV but worse than
LP1 and WCI. This is because its sharing code size grows faster
than WC1 and LP1’s one (as the square root of the number of nodes)
and its tag size remains constant.

The larger memory requirements imply more area, and thus,
higher static energy consumption for the directory. Hence, for core
counts larger than 64, WC1 (and LP1) is the scheme that would
consume less static energy, being the reduction with respect to the
other approaches more notable as the core count increases.

Each directory design makes use of its allocated resources in a dif-
ferent way to store the sharing information of the addresses present
in the private caches. This will determine how easy it is to access
and update that information and how precise it is. In some cases, a
directory design will reduce the precision of the stored information
(always by storing a superset of the actual sharer set) at the cost of
more invalidation traffic. Figure 5 shows the average precision per
address stored in the directory during the whole execution of the
applications. Both BV and SCD achieve perfect precision, although
SCD does that with much fewer resources. LP1 and WCI have
lower precision, but we can see that way combining allows WCl1
to improve the precision of the information stored in the directory
with respect to LP1, which needs the same amount of resources. As
expected, the improvement is more marked in those benchmarks that
have fewer occupied entries per set (see Figure 1). Note, however,
that not all tracked blocks will be necessarily written (read-only
blocks), and some blocks will be updated more frequently than oth-
ers. Thus, approaching perfect precision is generally important but
in some cases it could come without any benefits.

Figure 6 plots the number of directory replacements per instruc-
tion. As already explained in Section 2, WCI is designed so that
it can hold exactly the same number of addresses as BV and LP1.
Obviously, WC1 stores these addresses with increased precision
over LP1. To ensure this, WC1 only combines entries when empty
ways are found in a particular set. This way, WC1 never allocates
new entries to an address at the expense of expelling another address
in the same set. In that case, the first address is transitioned into
the coarse vector representation. We can see that WC1 has fewer
directory replacements than BV and almost as many as SCD. This
is because, as explained in Section 3, both WC1 and SCD are us-
ing noisy replacements of shared blocks while BV is using silent
replacements, and noisy replacements enable the deallocation of
entries for addresses evicted by all sharers, reducing the directory
occupancy. Regarding SCD, we can see that reducing the size of
the z-cache to 75% (SCD75) increases dramatically the number of
directory replacements. This is because L2 caches are usually almost
full and a directory with 75% coverage, even when SCD provides
increased flexibility in allocating directory entries, is unable to keep
all the addresses which could be stored at the L2 caches (i.e., L2

Way-Combining Directory: An Adaptive and Scalable Low-Cost Coherence Directory ICS '17, June 14-16, 2017, Chicago, IL, USA

Table 3: Directory size and overhead for different configurations (LP1 sizes are identical to WC1).

Nodes 64 128 256 512 1024
Directory BV SCD SCD75 WC1| BV SCD SCD75 WCI1| BV SCD SCD75 WC1| BV SCD SCD75 WC1| BV SCD SCD75 WCl1
Tag (bits) 28 36 36 28| 27 35 35 27| 26 34 34 26 25 33 33 25 24 32 32 24
Sharing Code (bits) 64 11 11 7128 16 16 81256 20 20 91 512 28 28 10| 1024 37 37 11
Size / Tile (KiB) 235 123 92 9.3/393 133 99 9.3|71.0 14.0 10.5 9.3]134.8 15.8 11.8 9.31262.5 17.8 133 93
% over L2 172 89 6.7 6.8{28.6 9.7 7.3 6.8|51.8 10.2 77 6.8 984 11.5 8.6 6.8[191.6 13.0 9.7 6.8
[OBVOLP1ESCDESCD75@WCH |

F00.09 T 7 TP M =T FF 1 FF 17 T R o T o e e e o T T R e e R e o B e R e |

g 87.57 u I I

@ 75.07 L]

[$]

o 6257 -

Q.

g 50.07 || I

8 3757 = | | ||

2 2507 1 = L] = [l

8 1257 W 1

@ 0.0 T T T T T T T T T

bames Ke,o\’\o\es d\;\rac\‘ Cannea\ .“o\eSW ded\lp o gmm P ocean- CP ! ncP qadit (aytrac® \1\9‘5 squared Spa\'\a\ pverad®

ater e atet

Figure 5: Precision per address measured as the average for each address of the ratios between the actual number of sharers and the
number of sharers encoded in the directory. The directory is sampled every 100000 cycles.

% 5.0 082 [OBVOLP1OSCDESCD75EWCT | M
e
8 4.0
@ 3.07
c
[0}
£ 2.0
Q
810
5 1.07
g . |l 0
T T T T T T T T
barg\es scnoes od\;“"‘ok canned aoesty ded\m * km“‘ w_oP ocean - P pan! r\0¥’ (ad‘* (ayrac® a\é(\a(:s“swated iy gpatd erag®
Wi
Figure 6: Directory replacements per instruction.
550 o [®H17,0 [O clean O dirty @ shared [silent | otz
s o123 [BV LP1 SCD SCD75 WC1] GorTees A
S 4.07 . 6.9
- =
@ 3.07
£ 2.0
Q
o - -
< 1.01
o |- [I
&) 0.0 ﬂ_}r\m T D_D]] T: @:Q T T T T T T T 77T77 T T 77T:7
\ t i i \
barg\e:oksc“o\ezod‘i“aok cae® rolesty gedu® o \“/Cbocea“’ogoea“»“cp a0 (oyace a:(\a‘:snsa\»‘a‘e or 5P pyerad®
Wi

Figure 7: L2 cache replacements per instruction.

cache resources are wasted). Interestingly, we can also notice that in
some cases (i.e., Canneal, Ocean_cp, Ocean_nc and Vips), SCD with
100% coverage results into increased directory replacements with
respect to WC1. This is because SCD uses one extra entry to store
indexing information for blocks with several sharers, thus reducing
the total effective capacity of its cache. Figure 7 shows the number
of L2 cache replacements per instruction, where we can see that
SCD75 reduces the number of L2 replacements with respect to the

rest because its reduced coverage often forces the invalidation of
many lines before the sets get full, wasting space in the caches.
Figure 8 shows the average L2 miss latency split in five com-
ponents: the time that the miss spends in L2 before being issued
(Az_L2), the time that the request takes to arrive to L3 (70_L3), the
time that it spends waiting before being attended (A7_L3), the time
spent accessing memory (Main_memory) and the time until the data
and all acknowledgments arrive to the requestor (To_L2). We observe

ICS '17, June 14-16, 2017, Chicago, IL, USA

350
__ 300 H
&

2 250
>

£ 200 N H1 m
> 3

& 1507 T
[0}

T 1007 -

5079 1T [

R. Titos-Gil, A. Flores, R. Fernandez-Pascual, A. Ros, M.E. Acacio

[OAt_L2[@0To_L3 E At_L3 [Main_memory E To_L2 |

[BV LP1 SCD SCD75 WCH |

0 T T T T T T T T

ba‘g\e;c\&soh"\esbodv“"’“ canne? cnoesty geduP m

0 00 ean P a0 P

X ce ApS ed i3\ e
o8 ytea a“';‘: nsav s sPA pvered
watet !

Figure 8: L2 miss latency.

EMOm1E2030405016.63064..124 M 125..126 M 127..128 |

[BV LP1 SCD SCD75 WCH |

028 ayte paned gesty geduP g

es
ba(\"“)\ac\,\so\'\

WP

P

oceanj\o\) rad™ rac® \f\psnsqua(ed /spa\'\a\ pyerad®

ean
o¢ " el ! W atel

Figure 9: Frequency of each number of sharers invalidated per L2 write miss.

that LP1 and WC1 increase the 7o_L/ time for a few benchmarks
(i.e., Barnes, Canneal, Cholesky, Fmm, Ocean_cp, Ocean_ncp, Wa-
ter_nsqared and Water_spatial). This is because these configurations
generally send more invalidations on write misses due to the lack
of precision of their sharing information, as can be seen in Figure 9.
But the increase incurred by WC1 is much smaller than that of LP1
on most benchmarks, becoming practically none in some of them
(e.g., Barnes, Fmm and Ocean_cp).

Also, we can see in Figure 8 that the Ar_L3 time of SCD and
SCD75 increases for some benchmarks (i.e., Canneal, Ocean_cp
and Vips). We have found that this is caused by extra directory
replacements due to having to use more than one entry per address
(as already commented on) and because replacements in SCD are
more expensive than in any of the other configurations. Particularly,
on a replacement in SCD, more accesses to the z-cache are necessary
to move entries to make room, keeping the directory busy for more
time. WCI, on the other hand, prefers to dynamically reduce the
precision of the sharer set of some addresses rather that evict them.
The results show that the extra traffic and latency due to the extra
invalidations is not so bad as the extra latency in SCD due to the
directory replacements.

The most direct effect of the lack of precision of the directory
information is that unnecessary invalidation messages are sent upon
write misses, as shown in Figure 9, and upon directory replacements.
These extra messages can have in some cases significant effect in
the total network traffic, as shown in Figure 10. Here again we
see that the increased precision afforded by way combining allows
WC1 to have much lower traffic than LP1, although it is still higher
than BV’s and SCD’s. For most benchmarks, the increase in traffic
does not have an important effect on miss latency, as already seen in

Figure 8, and hence will not affect the execution time in a significant
extent. Interestingly, though SCD reaches perfect precision, the
difference in average traffic regarding WCl is just 10%, even though
SCD has significantly larger area requirements. In this figure we
show, in addition to the global average, the average of a selection
of those benchmarks that have more L2 replacements (Canneal, Fft,
Ocean_cp, Ocean_ncp, Radix, Raytrace and Vips). We can see that
the traffic increase of WC1 for these benchmarks is slightly higher,
but still lower than LP1.

Dynamic energy consumption is fundamentally affected by the
differences in network traffic. First, the dynamic energy consump-
tion of the interconnection network is proportional to its traffic load
and has been reported to constitute a significant fraction of the total
energy budget [21]. Second, unnecessary invalidation messages
increase the number of snoops in the private caches. These snoops,
however, are much less frequent than the accesses from the local pro-
cessor, and therefore, the difference on dynamic energy consumption
is minimal.

Figure 11 shows the relative increase in normalized execution
time for each directory structure. First, it proves that reducing the
coverage of SCD to 75%, to make its memory requirements similar
to LP1’s and WCl’s has a very negative effect in many benchmarks
(e.g., Canneal or Ocean_cp), such that on average SCD75 performs
worse than LP1. SCD with full coverage achieves an execution
time that is less than 5% slower on average than BV, and it even
outperforms it in some cases (e.g., Fft and Radix). The latter is
due to the increased effective associativity provided by the z-cache
used in SCD, that eliminates some conflict misses appearing in BV.
Finally, WC1 average overhead with respect to BV is just 2%, thus
being the configuration that closest approaches the performance of

Way-Combining Directory: An Adaptive and Scalable Low-Cost Coherence Directory ICS '17, June 14-16, 2017, Chicago, IL, USA

2.007 [[0 Control @ Data |
1.757 [BV LP1 SCD SCD75 WCH |
1.507
0 1.257
i 1.007 FTTTT
0.757
0.50-
0.257
0.00 T T T T T T T d‘
S S X 3\ it) 0 x e s d a\ e
ba‘gfac\«so\'\o\e Ho0reC canne? yglest geduP ey o ooean&f,’cea“/ncp radi% e a\\lg? o Ui:ea\er spa@ erad sge%\eg
Figure 10: Normalized total network traffic.
_ 0357 87 [OBVILP1 0 SCD @ SCD75E WG |
3 0.307 i
S 0.257
o 0.207
£ 015
c
S 0.107
Bl . i — A Bl
g 0.
di 0.007 HH +it=[L= RS
-0.05 T T T T
ba“"(‘)\esksc\'\o\es ooyt ca““ea\\ \esW ¢ed\‘° g \u/" can o P ean.! R a\,“ace :;35 squa‘e“, spa\\a\ Me‘agess\e?\:é’
wal

Figure 11: Increase in the normalized execution time with respect to BV.

the non-scalable BV. If we look only at those benchmarks with many
L2 replacements, both SCD and WC1 obtain a higher performance
degradation (8% and 4%). SCD is affected more than WC1 because
some of those benchmarks have a high directory occupancy with a
high sharing degree (e.g., Canneal and Raytrace), and in these cases
SCD needs to use more than one entry for many addresses which
increases the number of directory replacements.

Varying private cache size and core count. Scaling private data
cache size (L2 in our case) has direct impact on the number of entries
that are active in the directory cache. Assuming that 100% coverage
is maintained in all cases, we observe that at small private data cache
sizes, single-sharer entries dominate. In this case, L2 cache replace-
ments are frequent, which avoids exposing sharing patterns on-chip,
and most addresses would be true or temporally private [36]. In such
scenarios, shared addresses are rare and WC1 would approach very
closely the behavior of BV. As the L2 cache size increases, so it does
sharing (i.e. temporary private addresses turn into shared ones [36]),
and therefore, opportunities for combining entries also grow because
fewer directory entries are needed to track all the addresses stored
at the L2 caches (i.e., in the case of a shared address, one directory
entry tracks several entries in the L2 caches, leaving other directory
entries unused due to the 100% coverage). Moreover, as most shared
addresses require only a few pointers to cover all active sharers, WC1
can track them precisely by combining a few entries. For widely
shared addresses (which are very few and whose number does not
increase with private cache size scaling [36]) WC1 would use the
coarse vector representation with one or several ways (depending
on set occupation). Note that loss of precision is not so critical for
widely shared lines.

Core count scaling has also impact on the number of directory
entries that are active in a particular moment. In this case, however,

the impact is more limited as increasing core count tends to augment
sharers only for widely shared addresses [36]. When the core count
is large, WCI tracks widely shared addresses using the coarse vector
representation because the associativity is never going to be large
enough to have one pointer for each sharer. This way, going through
larger core counts would entail minimal additional precision losses.
On the other hand, for configurations with a small number of cores,
the impact that precision loss has on performance is significantly
lower, and therefore, the advantage of WC1 with respect to LP1 also
becomes smaller.

S RELATED WORK

The most common way of encoding the set of sharers of a memory
block is a bit vector where each bit represents a core’s local cache [8].
Unfortunately, the memory requirements of this exact and simple
design grows linearly with the number of cores and thus is not
scalable. The width of a directory can be reduced by codifying
the sharers in an inexact way by excess, which will still guarantee
correct operation of the coherence protocol. The downside of these
compression techniques is that they trade off entry size for coherence
traffic. Maybe the best-known example of a compression scheme is
Coarse Vector [16].

An alternative way to reduce the width of the directory is by lim-
iting the number of sharers that can be stored exactly in an entry. In
the Limited Pointer scheme [2] each entry can hold a small number
of pointers to sharers, which is enough for most addresses. When
a memory block requires more sharers than the limit, there are two
options: evicting one of the previous sharers (creating directory-
induced invalidations)-Dir;N B—or switching to an inexact represen-
tation (creating additional traffic) like using a bit to indicate that
broadcast should be used to invalidate that memory block (Dir;B)

ICS '17, June 14-16, 2017, Chicago, IL, USA

or a coarse vector that fits in place of the pointers (Dir;CV) [16].
The number of bits required by these techniques is i x (1 + [logan]),
being i the number of stored pointers. One extra bit is required in
the case of using the broadcast approach.

Simoni and Horowitz [28] enhance the limited pointers scheme
by having a pool of pointers to allocate the sharers. Each entry in
the pool consists of a valid bit, the identifier of node ([logon] bits),
and a pointer to the next entry in the pool (log;p bits, where p is
the number of entries in the pool). Every memory block keeps a
dirty bit, an empty bit, and pointer to the first sharer in the pool (2 +
logo p bits in total). Pointers are allocated in the pool on demand and,
when the pool is full, evictions are performed causing invalidations.
A main disadvantage of this approach is that getting the sharing
information requires s sequential accesses to the pool, being s the
number of sharers.

The segment directory [9] is a hybrid of the bit vector and limited
pointers schemes. Each entry consist in a segment vector and a
segment pointer. The segment vector is a K-bit segment of a full bit
vector whereas the segment pointer is the [logy %1 -bit field keeping
the position of the segment vector within the full bit vector. The
problem of this representation is that it does not adapt to the variable
sharing degrees of memory blocks. Shukla and Chaudhuri employ
this representation in a pool directory [27]. Also, in [13] the authors
propose to design each set of a 8-way sparse directory to have six
pointer ways (used to track private data) and two bit-vector ways
(for keeping track of blocks with more than 1 sharer). Ways in each
set are assigned to every memory block depending on its current
number of sharers. All ways in WC are the same, and adaptation
to varying sharing degrees is achieved by combining entries in the
same set. Moreover, conversely to these proposals, WC does not
rely on non-scalable bit-vectors.

In SCD [25] entries store only a limited number of pointers but
they can be combined to provide more space for storing a larger
number of sharers using bit vectors (hierarchically). However, to be
able to do this SCD increases the size of the tags, requires the use of
a Z-cache [24] and needs several directory accesses to retrieve the
set of sharers. Additionally, for overflowed entries indexes to other
entries must be stored, leading to reduced effective capacity of the
directory. Despite these downsides, we think that SCD represents
the most scalable directory coherence design to date and we have
chosen it as the reference against which WC-dir is compared.

Hierarchical directories have also been proposed to reduce the en-
try size [15] or to navigate more efficiently the cache hierarchy [26].
However, hierarchical organizations impose additional network hops
and lookups on the critical path [15] or require important modifica-
tions to the cache coherence protocol [26].

The Tagless Coherence Directory [32] uses multiple-hash bloom
filter to store directory information, working similarly to an inex-
act duplicate-tag directory. Ideally, Tagless has constant per-core
overhead, but in practice the bloom filter size needs to grow with the
number of cores to avoid excessive aliasing.

Two-level directory architectures have also been proposed as a
scalable way of organizing the coherence directory [1]. In a two-
level directory, the first level stores the exact sharers set as a vector
of bits, while the second level uses a compressed code. However,
when using compression, area is saved at the expense of using
an inexact representation of the sharer vector in some cases, thus

R. Titos-Gil, A. Flores, R. Fernandez-Pascual, A. Ros, M.E. Acacio

yielding performance losses. In Stash [12] the second level directory
information is stored along with the shared data cache and it keeps
only a single bit to encode whether any core has the block. This way,
entries in the first level directory are saved for private blocks.

Coherence Deactivation stores information in the directory only
for shared blocks that are not read-only [10]. The rest of blocks are
tracked by the page table, which acts as a second level directory at
page granularity. Since most of the blocks usually tracked by the
directory are private, its size can be considerably reduced. However,
this proposal relies on the operating system to keep updated the
non-tracked information.

Some other proposals try to exploit the fact that applications
typically exhibit a limited number of sharing patterns, by storing
a limited number of patterns with full bit-vectors or bloom filters
in a sharing pattern table and an address-indexed sparse directory
holds pointers to the pattern table [34] [35]. Although these schemes
increase the range of sharers that can be tracked efficiently, they are
still not scalable and require additional bandwidth.

Spatiotemporal Coherence Tracking [4] saves directory space by
tracking temporarily private data in a coarse-grain fashion. Multi-
grain directories [31] also uses different entry formats of the same
length and tracks coherence at multiple different granularities in
order to achieve scalability. However, these proposals are limited to
arange of directory interleavings (those higher or equal to the size
of a memory region) in order to achieve maximum benefits.

6 CONCLUSIONS

This work proposes WC-dir, a novel sparse directory architecture
designed putting the focus on the common case, where just one
pointer per entry provides enough space for tracking sharers. This
way, WC-dir fits perfectly to the necessities of sequential workloads.
For parallel workloads, where one pointer is not enough, our pro-
posal takes advantage of the until now unexploited observation that
several entries remain free in most sets of the sparse directory in
these cases, and applies the new way combining concept to provide
more space for sharing information to the few addresses in the set
that need it. Thus, the way combining concept allows to see each
set of the sparse directory as a pool of entries which are allocated
dynamically as needed among the addresses mapping to that set,
minimizing the storage overheads without losing the flexibility to
adapt to several sharing degrees.

WC-dir can be derived with minimal changes from a sparse di-
rectory that uses the well-known Dir;CV sharing code [16]. Like
other contemporary proposals such as SCD, it can track the list of
sharers through multiple formats, going from the limited pointers
representation to the coarse vector one when there are no free entries
left in a particular set and a new sharer needs to be added to any of
the addresses in that set. However, and contrarily to SCD, WC-dir
achieves this flexibility without the extra complexity of a z-cache
that SCD uses, avoiding also the iterative re-insertions that keep
the directory controller busy for longer times. Moreover, the fact
that WC-dir remains very similar to a traditional sparse directory
allows using simple replacement algorithms and simplifies directory
operations.

Through detailed simulations of a 128-core architecture using
a set of benchmarks exhibiting varying sharing patterns, we have

Way-Combining Directory: An Adaptive and Scalable Low-Cost Coherence Directory ICS '17, June 14-16, 2017, Chicago, IL, USA

shown that WC-dir reduces average execution times when compared
with SCD and can practically meet the performance obtained by
a non-scalable bit-vector sparse directory (just 2% overhead on
average is observed). Moreover, concerning the area overhead, we
have shown that for WC-dir, overhead with respect to the private
caches is lower than SCD’s for 128 cores, and moreover it remains
constant as we increase the number of cores, whereas SCD grows
albeit slowly. The only downside that we have observed for WC-dir
is some more extra network traffic. Particularly, WC-dir increases
traffic 6% on average when compared with a similarly sized SCD
(SCD75 configuration) and 10% compared with a SCD configuration
with the same number of entries, which requires 25% more area.
Observe, however, that the WC1 design evaluated in this work puts
the emphasis on minimizing area overhead while maintaining the
execution time. The area requirements can be increased in exchange
of reduced traffic by, for example, duplicating the number of bits
per entry (and thus the number of initial pointers and the size of the
coarse vectors) in WC-dir would cut down the traffic penalty whilst
still preserving advantages over SCD (lower execution time, less
area —although to a lesser extent— and simpler implementation).

ACKNOWLEDGMENTS

This work has been supported by the Spanish MINECO, as well
as European Commission FEDER funds, under grant “TIN2015-
66972-C5-3-R” and by the Fundacién Séneca-Agencia de Ciencia y
Tecnologia de la Regién de Murcia under grant “19295/P1/14”.

REFERENCES

[1] Manuel E. Acacio, José Gonzalez, José M. Garcia, and José Duato. 2001. A
New Scalable Directory Architecture for Large-Scale Multiprocessors. In 7th Int’l
Symp. on High-Performance Computer Architecture (HPCA). 97-106.

[2] Anant Agarwal, Richard Simoni, John L. Hennessy, and Mark A. Horowitz. 1988.
An Evaluation of Directory Schemes for Cache Coherence. In 15th Int’l Symp. on
Computer Architecture (ISCA). 280-289.

[3] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. 2009. GARNET:
A Detailed On-Chip Network Model inside a Full-System Simulator. In JEEE
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS). 33—42.

[4] Mohammad Alisafaee. 2012. Spatiotemporal Coherence Tracking. In 45th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO). 341-350.

[5] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk,

Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. 2000.

Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing. In 27th

Int’l Symp. on Computer Architecture (ISCA). 12-14.

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Disserta-

tion. Princeton University.

Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu,

Anh Tran, Emmanuel Adeagbo, and Bevan Baas. 2016. A 5.8 pJ/Op 115 Billion

Ops/sec, to 1.78 Trillion Ops/sec 32nm 1000-Processor Array. In 2016 Symposium

on VLSI Technology and Circuits. 1-2.

Lucien M. Censier and Paul Feautrier. 1978. A New Solution to Coherence

Problems in Multicache Systems. /IEEE Transactions on Computers (TC) 27, 12

(Dec. 1978), 1112-1118.

Jong H. Choi and Kyu H. Park. 1999. Segment Directory Enhancing the Limited

Directory Cache Coherence Schemes. In 13th Int’l Parallel and Distributed

Processing Symp. (IPDPS). 258-267.

[10] Blas Cuesta, Alberto Ros, Maria E. Gomez, Antonio Robles, and José Duato. 2011.
Increasing the Effectiveness of Directory Caches by Deactivating Coherence for
Private Memory Blocks. In 38th Int’l Symp. on Computer Architecture (ISCA).
93-103.

[11] David E. Culler, Jaswinder P. Singh, and Anoop Gupta. 1999. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers,
Inc.

[12] Socrates Demetriades and Sangyeun Cho. 2014. Stash Directory: A Scalable
Directory for Many-Core Coherence. In 20th Int’l Symp. on High-Performance
Computer Architecture (HPCA). 177-188.

[13] Lei Fang, Peng Liu, Qi Hu, Michael C. Huang, and Guofan Jiang. 2013. Building
Expressive, Area-efficient Coherence Directories. In 22nd Int’l Conf. on Parallel

[6

[7

[8

[9

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]

[33]

[34]

[35]

[36]

Architectures and Compilation Techniques (PACT). 299-308.

Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and Babak Falsafi. 2011.
Cuckoo directory: A Scalable Directory for Many-Core Systems. In 17th Int’l
Symp. on High-Performance Computer Architecture (HPCA). 169-180.
Song-Liu Guo, Hai-Xia Wang, Yi-Bo Xue, Chong-Min Li, and Dong-Sheng Wang.
2010. Hierarchical Cache Directory for CMP. Journal of Computer Science and
Technology 25, 2 (March 2010), 246-256.

Anoop Gupta, Wolf-Dietrich Weber, and Todd C. Mowry. 1990. Reducing Mem-
ory Traffic Requirements for Scalable Directory-Based Cache Coherence Schemes.
In 19th Int’l Conf. on Parallel Processing (ICPP). 312-321.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
oft Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005.
Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. In 2005 ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI). 190-200.

Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
2005. Multifacet’s General Execution-Driven Multiprocessor Simulator (GEMS)
Toolset. Computer Architecture News 33, 4 (Sept. 2005), 92-99.

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. 2012. Why on-chip cache
coherence is here to stay. Commun. ACM 55,7 (July 2012), 78-89.

Matteo Monchiero, Jung Ho Ahn, Ayose Falcén, Daniel Ortega, and Paolo Fara-
boschi. 2009. How to Simulate 1000 Cores. Computer Architecture News 37,2
(July 2009), 10-19.

Thomas Moscibroda and Onur Mutlu. 2009. A Case for Bufferless Routing
in On-Chip Networks. In 36th Int’l Symp. on Computer Architecture (ISCA).
196-207.

Shubhendu S. Mukherjee and Mark D. Hill. 1994. An Evaluation of Directory
Protocols for Medium-Scale Shared-Memory Multiprocessors. In 8th Int’l Conf.
on Supercomputing (ICS). 64-74.

Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A Properly Synchronized Benchmark Suite for Contemporary Research.
In IEEE Int’l Symp. on Performance Analysis of Systems and Software (ISPASS).
101-111.

Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decoupling Ways
and Associativity. In 43rd IEEE/ACM Int’l Symp. on Microarchitecture (MICRO).
187-198.

Daniel Sanchez and Christos Kozyrakis. 2012. SCD: A Scalable Coherence Direc-
tory with Flexible Sharer Set Encoding. In /8th Int’l Symp. on High-Performance
Computer Architecture (HPCA). 129-140.

Andreas Sembrant, Erik Hagersten, and David Black-Schaffer. 2017. A Split
Cache Hierarchy for Enabling Data-oriented Optimizations. In 23th Int’l Symp.
on High-Performance Computer Architecture (HPCA).

Sudhanshu Shukla and Mainak Chaudhuri. 2015. Pool Directory: Efficient
Coherence Tracking with Dynamic Direcory Allocation in Many-core Systems.
In 33rd Int’l Conf. on Computer Design (ICCD). 557-564.

Richard Simoni and Mark A. Horowitz. 1991. Dynamic Pointer Allocation
for Scalable Cache Coherence Directories. In Int’l Symp. on Shared Memory
Multiprocessing. 72-81.

Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. 2016.
Knights Landing: Second-Generation Intel Xeon Phi Product. /EEE Micro 36, 2
(March 2016), 34-46.

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers.

Jason Zebchuk, Babak Falsafi, and Andreas Moshovos. 2013. Multi-grain coher-
ence directories. In 46th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO).
359-370.

Jason Zebchuk, Vijayalakshmi Srinivasan, Moinuddin K. Qureshi, and Andreas
Moshovos. 2009. A Tagless Coherence Directory. In 42nd IEEE/ACM Int’l Symp.
on Microarchitecture (MICRO). 423-434.

Lunkai Zhang, Dmitri B. Strukov, Hebatallah Saadeldeen, Dongrui Fan, Mingzhe
Zhang, and Diana Franklin. 2014. SpongeDirectory: Flexible Sparse Directories
Utilizing Multi-Level Memristors. In 23rd Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT). 61-74.

Hongzhou Zhao, Arrvindh Shriraman, and Sandhya Dwarkadas. 2010. SPACE:
Sharing Pattern-Based Directory Coherence for Multicore Scalability. In 79th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT). 135-146.
Hongzhou Zhao, Arrvindh Shriraman, Sandhya Dwarkadas, and Vijayalakshmi
Srinivasan. 2011. SPATL: Honey, I Shrunk the Coherence Directory. In 20th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT). 148-157.
Minshu Zhao and Donald Yeung. 2015. Studying the Impact of Multicore Proces-
sor Scaling on Directory Techniques via Reuse Distance Analysis. In 27th Int’l
Symp. on High-Performance Computer Architecture (HPCA). 590-602.

