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Abstract Current trends point towards future many-core processors being
implemented using the hardware-managed, implicitly-addressed, coherent caches
memory model. With this memory model, all on-chip storage is used for pri-
vate and shared caches that are kept coherent by hardware. Communication
between cores is performed by writing to and reading from shared memory,
and a scalable point-to-point interconnection network is in charge of trans-
mitting messages. Cache coherence in this context is guaranteed by means of
a directory-based protocol. Unfortunately, it has been previously shown that
the directory structure required to keep track of sharers can restrict the scal-
ability of these designs due its excessive area or energy requirements, or for
a compressed directory, the increased coherence traffic that in some cases it
could cause.

On the other hand, in many-core architectures, memory blocks are com-
monly assigned to the banks of a NUCA shared cache by following a physical
mapping. This mapping assigns blocks to cache banks in a round-robin fash-
ion, thus neglecting the distance between the cores that more frequently access
every block and the corresponding NUCA bank for the block. This issue im-
pacts both cache access latency and the amount of on-chip network traffic
generated, and causes that some area- and energy-efficient compressed direc-
tories significantly increase the number of messages per coherence event, which
finally translates into degraded performance.

In this work we propose an efficient and low-overhead coherence directory
which is built around two main ingredients: the first is the use of the distance-
aware round-robin mapping policy, an OS-managed policy which tries to map
the pages accessed by a core to its closest (local) bank, at the same time it
introduces an upper bound on the deviation of the distribution of memory
pages among cache banks, which lessens the number of off-chip accesses. The
second is the utilization of a very compressed directory structure which takes
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advantage of this mapping policy to represent sharers in a very compact way
without increasing coherence network traffic.

Simulation results for a 32-core architecture demonstrate that compared to
a full-map directory using the typical round-robin physical mapping policy, our
proposal drastically reduces the size of the directory structure (and thus, its
area and energy requirements) at the same time it does not increase coherence
network traffic and 6% average savings in execution time are achieved.

Keywords Many-core CMPs · Dynamic home assignment · Compressed
sharing codes · Energy consumption · Execution time · Area overhead ·
Network traffic

1 Introduction

Ever-increasing power consumption and the diminishing returns in perfor-
mance of single-core architectures led to the advent of general-purpose multi-
core chips (or chip-multiprocessors or CMPs) during the last decade [1]. Since
then, most processor manufacturers have joined this multi-core wave, develop-
ing products with an ever-increasing number of cores. With a growing number
of transistors available at each new technology generation, coupled with a re-
duction in design complexity enabled by its modular design, multi-core chips
look set to stay.

Multi-core architectures that integrate several tens of processor cores (usu-
ally known as many-core architectures) are already a reality in the commercial
arena –an example is the 60-core Intel Xeon Phi processor [2]– and the num-
ber of cores is expected to keep growing, which may lead to hundreds and
even thousands of cores integrated on a single chip [3]. In order to organize
such a big number of cores, tiled multi-core architectures have been advocated
as the most feasible organization. Tiled chip-multiprocessors are designed as
arrays of identical or close-to-identical building blocks (tiles). In these ar-
chitectures, each tile is comprised by a core, one or several levels of caches,
and a network interface that connects all tiles through a scalable point-to-
point interconnection network. Regarding the communication model, current
trends point towards future many-core processors being implemented using
the hardware-managed, implicitly-addressed, coherent caches memory model.
With this memory model, all on-chip storage is used for private and shared
caches that are kept coherent by hardware. Communication between cores is
performed by writing to and reading from shared memory, and a directory-
based cache coherence protocol implemented in hardware is in charge of en-
suring the consistency of data stored in private caches. Figure 1 shows the
organization of a 16-core tiled CMP with per core private L1 caches for in-
structions (L1I$) and data (L1D$) and a physically distributed but logically
shared L2 cache (L2$). Without loss of generality, this is the cache hierarchy
assumed in this work. This way, from now on we will use the terms last-level
cache (LLC) and L2 cache interchangeably.
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Fig. 1: Architecture of a tiled CMP

The cache coherence protocol in a many-core architecture becomes a key
design issue since it adds requirements of area and energy consumption to
the final design, and therefore, could restrict severely its scalability. The direc-
tory structure is distributed between the last-level shared cache banks, usually
within the tags’ portion [4]. In this way, each tile keeps the sharing information
of the blocks mapped to the L2 cache bank that it contains. This sharing in-
formation comprises two main components (apart from other implementation-
dependent bits): the state bits used to codify one of the three possible states
the directory can assign to the block (Uncached, Shared and Private), and the
sharing code, that holds the list of current sharers. Most of the bits of each
directory entry are devoted to codifying the sharing code. Since the directory
is commonly stored as part of the on-chip L2 cache, it is desirable that its size
be kept as low as possible. Moreover, a hard to scale directory organization
could require to re-design the L2 cache to adapt the tile to the range of cores
that is expected for the CMP.

In a traditional directory organization, each directory entry keeps track
of the sharers of the corresponding memory block through a simple full-map
sharing code (one bit per private cache). Unfortunately, this sharing code is
only feasible for a handful of cores due to the excessive area requirements that
it introduces when the number of cores is large. On the other hand, compressed
sharing codes, whose size does not grow linearly with the number of cores,
drastically reduce area overhead at expense of increasing coherence traffic,
and therefore, degrading performance and harming energy consumption.

Besides the organization of the coherence directory, another important de-
sign issue in a many-core chip is the distribution of the memory blocks among
the different tiles. This aspect directly affects L2 cache access latency, since
it depends on the bank wherein the block is allocated, i.e., the home bank or
tile.

The most straightforward way of distributing blocks among the different
tiles is by using a physical mapping policy in which a set of bits in the block
address defines the home bank for every block. Most commercial CMPs [5,6]
choose the less significant bits of the block address for selecting the home bank.
In this way, blocks are assigned to banks in a round-robin fashion with block-
size granularity. This distribution of blocks does not take into account the
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distance between the requesting core and the home bank on a L1 cache miss.
Moreover, the average distance between two tiles significantly increases with
the size of the CMP, which can become a performance problem for many-core
CMPs.

On the other hand, page-size granularity seems to be a better choice than
block-size granularity for future tiled CMPs because (1) it is more appropriate
for new technologies aimed to reduce off-chip latencies, like 3D stacking mem-
ory architectures [7], and (2) it provides flexibility to the OS for implementing
more efficient mapping policies [8,9], such as first-touch, which has been widely
used in NUMA architectures to achieve more locality in the memory accesses.
The behavior of a first-touch policy is similar to a private cache organization
but without replication. One nice aspect of this policy is that it is dynamic
in the sense that pages are mapped to cache banks depending on the particu-
lar memory access pattern. However, this policy can increase off-chip accesses
when the working set of the application is not well-balanced among cores.

Additionally, many-core architectures are very suitable for throughput com-
puting [10] and, therefore, they constitute a highly attractive choice for com-
mercial servers in which several programs are running at the same time using
different subsets of the cores available on chip. The use of these architectures
as commercial servers emphasize the need of efficient mapping policies because
(1) data is shared by cores that are placed in a small region of the chip, but
with a round-robin policy they could map to any bank in the chip, and (2)
more working set imbalance can occur in these systems since the applications
running on them could have very different memory requirements.

In this work, we propose DASC-DIR, an efficient and low-overhead coher-
ence directory which is built around two main ingredients. The first is the
use of the distance-aware round-robin mapping policy [11], an OS-managed
policy which without any extra hardware structures tries to map the pages
accessed by a core to its closest (local) bank, at the same time it introduces
an upper bound on the deviation of the distribution of memory pages among
cache banks, which lessens the number of off-chip accesses.

The second ingredient is the utilization of a very compressed directory
structure which takes advantage of this mapping policy to represent sharers
in a very compact way without increasing coherence network traffic, and that
we call distance-aware sharing code or DASC.

This way, this paper extends our previous work [11] by removing the scal-
ability limit imposed by the full-map sharing code assumed in [11] through
the use of several compressed sharing codes. Additionally, this paper presents
and evaluates for the first time our distance-aware sharing code, which is espe-
cially designed to be used in conjunction with the distance-aware round-robin
mapping policy.

Simulation results for a 32-core architecture demonstrate that compared to
a full-map directory using the typical round-robin physical mapping policy, our
proposal drastically reduces the size of the directory structure (and thus, its
area and energy requirements) at the same time it does not increase coherence
network traffic and 6% average savings in execution time is achieved.
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Fig. 2: Granularity of L2 cache interleaving and its impact on average home
distance

The rest of the paper is organized as follows. A background on mapping
policies for NUCA caches is given in Section 2. In this section we also describe
two compressed sharing codes already appeared in the literature. Section 3
describes the distance-aware round-robin mapping policy and the impact of
distance-aware mapping policies on private cache miss rate. The distance-
aware sharing code is discussed in Section 4. Section 5 introduces the method-
ology employed in the evaluation. Section 6 shows the performance results.
Section 7 presents a review of the related work and, finally, Section 8 con-
cludes the paper.

2 Background

2.1 Mapping policies in NUCA caches

Non-uniform cache access (NUCA) caches [12] are a set of cache banks dis-
tributed across the chip and connected through a point-to-point network.
Although cache banks are physically distributed, they constitute a logically
shared cache (the L2 cache level in this work). Therefore, the mapping of
memory blocks to cache entries is not only defined by the cache set, but also
by the cache bank. The cache bank where a particular block maps is called
the home bank for that block.

Most CMP architectures that implement NUCA caches map memory blocks
to cache banks by taking some fixed bits of the physical address of the block
[5,6]. This physical mapping uniformly spreads blocks among cache banks, re-
sulting in optimal utilization of the cache storage. Commonly, the bits taken
to select the cache bank for a particular block are the less significant ones,
leading to a block-grained interleaving (Block diagram in Figure 2(a)). One of
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the advantages of this interleaving is that it offers less contention at the home
tile by distributing contiguous memory blocks across different cache banks.

Another option is to use an interleaving with a granularity of at least the
size of a page (e.g., Page or L2 bank diagram in Figure 2(a)). As shown in
Figure 2(b), when a physical mapping, or round-robin, policy is considered
the granularity of the interleaving does not significantly affect the average
distance to the home bank. However, this interleaving becomes an important
decision when either 3D stacked memory or OS-managed mapping techniques
are considered.

A 3D stacked memory design can offer latency reductions for off-chip ac-
cesses when a coarse-grained interleaving (at least of page size) is employed.
In tiled CMPs with 3D stacking memory, each tile includes a memory con-
troller for the memory bank that it handles [7]. Low-latency, high-bandwidth
and very dense vertical links [13] interconnect the on-chip controller with the
off-chip memory. These vertical links provide fast access to main memory. On
a L2 cache miss, it is necessary to reach the memory controller of the memory
bank where the block is stored. If the memory controller is placed in a different
tile than the home L2 bank, a horizontal on-chip communication is entailed.
Since blocks in memory are handled at page-size granularity, it is not possi-
ble to assign the same mapping for the L2 cache if a block-size granularity
is considered. Differently, with a granularity of at least the size of a page the
same mapping can be assigned to both memories, thus avoiding the horizontal
latency.

The other advantage of a coarse-grained interleaving is that it allows the OS
to manage the cache mapping without requiring extra hardware support [8].
The OS maps a page to a particular bank the first time the page is referenced,
i.e, a memory miss. At that moment, the OS assigns a physical address to the
virtual address of the page. Therefore, some bits in the address of the page
are going to change (Virtual to Physical field in figure 2(a)). Then, the OS
can control the cache mapping by assigning to this page a physical address
that maps to the desired bank. For example, a first-touch policy can be easily
implemented by assigning an address that physically maps to the tile wherein
the core that is accessing the page resides. The OS only needs to keep in
software a list of available physical addresses for each memory bank. With
a first-touch mapping policy, finer granularity offers shorter average distance
between the missing L1 cache and the home L2 bank, as shown in Figure 2(b).
Therefore, it is preferable to use a grain size as fine as possible. Since block
granularity is not suitable for OS-managed mapping, the finest granularity
possible is achieved by taking the less significant bits of the Virtual to Physical
field, i.e., a page-grained interleaving.

The drawback of a first-touch policy is that applications with a working
set not balanced among cores do not make optimal use of the total L2 ca-
pacity. This happens more frequently in commercial servers where different
applications with different memory requirements run on the same system, or
when some applications are running in a set of cores while the other cores
remain idle. To avoid this situation, policies like cache pressure [8] can be im-
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plemented. Cache pressure uses bloom filters to collect cache accesses in order
to determine the pressure of the different data mapping to cache banks. In
this way, newly accessed pages are not mapped to the most pressured caches.
However, this approach has several drawbacks. First, it requires extra hard-
ware, (e.g., bloom filters that have to be reset after a timeout period). Second,
an efficient function to detect the pressured cache banks can be difficult to
implement. Third, this mechanism only considers neighbouring banks, i.e.,
banks at 1-hop distance. Finally, as far as we know, neither parallel nor multi-
programmed workloads have been evaluated using this technique.

2.2 BT and BT-SN Compressed Sharing Codes

One approach for reducing area requirements in the context the directory-
based cache coherence protocols typically employed in tiled CMPs is the use
of compressed sharing codes. Compressed sharing codes store the directory
information in a compressed way to use fewer number of bits, introducing a loss
of precision compared to exact ones (e.g., full-map). This means that when this
information is reconstructed, some of the cores codified in the sharing code are
real sharers and must receive the coherence messages, whereas some other cores
are not sharers actually and unnecessary coherence messages will be sent to
them. Unnecessary coherence messages lead to increased miss latencies, since
more messages are required to resolve caches misses. Moreover, unnecessary
coherence messages also entail extra traffic in the interconnection network and
useless cache accesses, which will increase energy consumption. Conversely, a
full-map directory does not generate unnecessary coherence messages and thus
shows the best results in terms of both performance and energy consumption.

Among the compressed sharing codes previously proposed in the litera-
ture, we consider in this work two organizations (BT and BT-SN) previously
proposed in [14]. Both compressed sharing codes are based on the multi-layer
clustering approach.

Multi-layer clustering assumes that nodes are recursively grouped into clus-
ters of equal size until all nodes are grouped into a single cluster. Compression
is achieved by specifying the smallest cluster containing all the sharers (in-
stead of indicating all the sharers). Compression can be increased even more
by indicating only the level of the cluster in the hierarchy. In this case, it is
assumed that the cluster is the one containing the home node for the memory
block. This approach is valid for any network topology.

Although clusters can be formed by grouping any integer number of clusters
in the immediately lower layer of the hierarchy, we analyze the case of using a
value equal to two. That is to say, each cluster contains two clusters from the
immediately lower level. By doing so, we simplify binary representation and
obtain better granularity to specify the set of sharers. This recursive grouping
into layer clusters leads to a logical binary tree with the nodes located at the
leaves.
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Fig. 3: Multi-layer clustering approach: logical view

As an application of this approach, two compressed sharing codes were
previously proposed in [14]. The sharing codes can be shown graphically by
considering the distinction between the logical and the physical organizations.
For example, we have the 16-tile CMP with a mesh as the interconnection
network previously shown in Figure 1, and we can imagine the same system as
a binary tree (multi-layer system) with the tiles (nodes) located at the leaves of
this tree, as shown in Figure 3. Note that this tree only represents the grouping
of nodes, not the interconnection between them. In this representation, each
subtree is a cluster. It can be observed that the binary tree is composed of 5
layers or levels (log2 N +1, where N is a power of 2). From this, the following
two compressed sharing codes were derived in [14]: Binary tree (BT) and
Binary tree with symmetric nodes (BT-SN).

2.2.1 Binary Tree (BT)

Since nodes are located at the leaves of a tree, the set of nodes (sharers) hold-
ing a copy of a particular memory block can be expressed as the minimal
subtree that includes the home node and all the sharers. This minimal sub-
tree is codified using the level of its root (which can be expressed using just
⌈log2 (log2 N + 1)⌉ bits). Intuitively, the set of sharers is obtained from the
home node identifier by changing the value of some of its least significant bits
to don’t care. The number of modified bits is equal to the level of the above
mentioned subtree. It constitutes a very compact sharing code (observe that,
for a 128-node system, only 3 bits per directory entry are needed). For exam-
ple, consider a 16-node system such as the one shown in Figure 1, and assume
that nodes 1, 4 and 5 hold a copy of a certain memory block whose home node
is 0. In this case, node 0 would store 3 as the tree level value, which is the
one covering all sharers (see Figure 3). Unfortunately, this would include as
well nodes 0, 2, 3, 6 and 7 that do not have a copy of such memory block and
thus would receive unnecessary coherence messages on a subsequent coherence
event.
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2.2.2 Binary Tree with Symmetric Nodes (BT-SN)

This sharing code introduces the concept of symmetric nodes of a particu-
lar home node. Assuming that 3 additional symmetric nodes are assigned to
each home node, they are codified by different combinations of the two most-
significant bits of the home node identifier (note that one of these combinations
represents the home node itself). In other words, symmetric nodes only differ
from the corresponding home node in the two most significant bits. For in-
stance, if 0 were the home node, its corresponding symmetric nodes would be
4, 8 and 12. Now, the process of choosing the minimal subtree that includes all
the sharers is repeated for the symmetric nodes. Then, the minimum of these
subtrees is chosen to represent the sharers. The intuitive idea is the same as
before but, in this case, the two most significant bits of the home identifier are
changed to the symmetric node used. Therefore, the size of the sharing code
of a directory entry is the same as before plus the number of bits needed to
codify the symmetric nodes (for 3 sym-nodes, 2 bits). In the previous example,
nodes 4, 8 and 12 are the symmetric nodes of node 0. The tree level could now
be computed from node 0 or from any of its symmetric nodes. In this way, the
one which encodes the smallest number of nodes and includes nodes 1, 4 and
5 is selected. In this particular example, the tree level 3 must be used to cover
all sharers, computed from node 0 or node 4.

As it has been shown, in both BT and BT-SN, the set of sharers is calcu-
lated from the home of each memory block. This makes these sharing codes
especially attractive for use in conjunction with the OS-managed cache map-
ping strategy proposed in this work.

3 DARR: Distance-Aware Round-Robin Mapping

Distance-aware round-robin mapping (DARR) [11] is a simple OS-managed
mapping policy for many-core CMPs that assigns memory pages to NUCA
cache banks. This policy minimizes the total number of off-chip accesses as
happens with a round-robin mapping, and reduces the access latency to a
NUCA cache (the L2 cache level in this work) as a first-touch policy does.
Moreover, this policy addresses this trade-off without requiring any extra hard-
ware support.

The OS starts assigning physical addresses to the requested pages according
to a first-touch policy, i.e, the physical address chosen by the OS maps to the
tile of the core that is requesting the page. The OS stores a counter for each
cache bank which is increased whenever a new physical page is assigned to
this bank. In this way, banks with more physical pages assigned to them will
have higher value for the counter.

To minimize the amount of off-chip accesses we define an upper bound
on the deviation of the distribution of pages among cache banks. This upper
bound can be controlled by the OS through a threshold value. In this way, in
case that the counter of the bank where a page should map following a first-
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Fig. 4: Example of the distance-aware round-robin mapping policy

touch policy has reached the threshold value, the page is assigned to another
bank. The algorithm starts checking the counters of the banks at one hop
from the initial placement. The bank with smaller value is chosen. Otherwise,
if all banks at one hop have reached the threshold value, then the banks at a
distance of two hops are checked. This algorithm iterates until a bank whose
value is under the threshold is found. The policy ensures that at least one of
the banks has always a value smaller than the threshold value by decreasing
by one unit all counters when all of them have values different than zero.

Figure 4 shows, from left to right, the behavior of this mapping policy for
a 2×2 tiled CMP with a threshold value of two. First, processor P0 accesses
a block within page 0x00 which faults in memory (1). Therefore, a physical
address that maps to the bank 0 is chosen for the address translation of the
page, and the value for the bank 0 is increased. Then, processor P1 perform
the same operation for page 0x01 (2). When processor P1 accesses page 0x00
no action is required for our policy because there is a hit in the page table
(3). The next access of processor P0 is for a new page, which is also stored in
bank 0, which reaches the threshold value (4). Then, if processor P0 accesses
a new page again, this page must be allocated in another bank (5). The closer
bank with a smaller value is bank 2. Finally, when processor P3 accesses a new
page, the page is assigned to its local bank and all counters are decreased (6),
allowing bank 0 to map a new page again (7).

The threshold defines the behavior of our policy. A threshold value of
zero denotes a round-robin policy in which a uniform distribution of pages is
guaranteed, while an unlimited threshold implies a first-touch policy. There-
fore, with a small threshold value, our policy reduces the number of off-chip
accesses. Otherwise, if the threshold value is high, our policy reduces the aver-
age latency of the accesses to the NUCA cache. Note that the threshold value
serves as a proxy approximation for the cache pressure since the actual pres-
sure does not directly depend on the uniform distribution of pages, but on the
utilization of blocks within pages. However, pages are distributed among all
cache banks, thus performing an efficient use of the shared cache. Although,
the OS could choose different thresholds depending on the workload, we have
found that values between 64 and 256 work well for the workloads considered
in this work.
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Fig. 5: Distance from tile 0 to the rest of tiles

4 DASC: Distance-Aware Sharing Code

In this section we propose DASC, a new sharing code especially suited for the
DARRmapping policy previously described. DASC shares some characteristics
with the previously described BT and BT-SN sharing codes. First, DASC is
a compressed sharing code with a very extreme compression ratio, thus ideal
for scalable systems. In a compressed sharing code more cores than necessary
may be codified, i.e., false positives can appear. Due to these false positives
unnecessary coherence messages may arise. Second, as in BT and BT-SN, the
representation of the set of sharers in DASC is computed from the home node
of each memory block.

DASC is especially suited for the DARR mapping policy (and in general
for first-touch mapping policies) because it takes advantage of the fact that
the DARR mapping policy tends to locate memory blocks closer to the tiles
that use them. Note that both BT, BT-SN and DASC compute the sharers
from the home tile. If the home tile is one of the frequent sharers, important
reductions in extra invalidation messages can be achieved.

The idea behind DASC is to codify the set of sharers as the distance (num-
ber of network links) between the home tile and the farthest sharer. Then, all
nodes within this distance are considered potential sharers. To implement this,
we use a saturating counter with a fixed number of bits (very small) and re-
serve the greater binary value to denote the situation in which all nodes must
be included, i.e., when the counter is saturated.

As an example, Figure 5 shows the distance (in number of links) between
home tile 0 and the rest of tiles for a 16-core CMP with a two-dimensional
mesh topology. Table 1 depicts the tiles that would be included for the possible
different combinations of both a 2-bit and a 3-bit DASC. For example, the fact
that nodes 1, 4, and 5 hold a copy of a certain memory block whose home node
is 0 would be codified in DASC using value 2. This would include as well nodes
0, 2, and 8 that do not have a copy of such memory block and thus would
receive unnecessary coherence messages on a subsequent coherence event.
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Table 1: Codification examples using DASC in a 16-tile CMP with a two-
dimensional mesh, from the point of view of the home tile 0

2 bits 3 bits
Value Covered tiles Value Covered tiles
0 {0} 0 {0}
1 {0,1,4} 1 {0,1,4}
2 {0,1,2,4,5,8} 2 {0,1,2,4,5,8}
3 All nodes 3 {0,1,2,3,4,5,6,8,9,12}

4 {0,1,2,3,4,5,6,7,8,9,10,12,13}
5 {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}
6–7 All nodes

DASC brings three important advantages compared with BT and BT-SN.
The first one is that the computation of the value of DASC that includes all
the sharers for a particular memory block does not require complex hardware:
along its way to the home tile, every request message calculates the DASC
value. To do so, every time a link is traversed a saturating counter of the
same number of bits than the DASC implementation increases (for example,
at the same time the routing logic determines the output port for the message).
This information is stored into the request message. Then, when the request
reaches the home tile, the computed value will be the new DASC value if it is
greater than the one already stored in the directory. On the contrary, BT and
BT-SN requires more complex extra hardware at each directory controller to
compute the tree level every time a new request for each block is received. This,
obviously, increases energy consumption (besides area requirements) and can
impact also directory occupancy (which could increase cache miss latencies,
and therefore, degrade performance).

The second advantage is that DASC can work for any network topology and
it does not requires hard-coded information of the topology, i.e., it is topology
agnostic. Differently, BT and BT-SN are more suitable for tree topologies,
and for other topologies they may require previous information to reduce the
number of false positives.

The third advantage is that multicast coherence messages could be sent in
a more efficient way with DASC. In particular, on every coherence event, only
one coherence message have to be created in the home tile with DASC, which
keeps up propagating through all the ports of every router until the remaining
links to be traversed becomes zero. This requires the addition of a field to every
multicast coherence message initialized by the directory with DASC value. If
the greater binary value is inserted, every router copies the messages along
all its output ports (i.e., a broadcast is required and the message must reach
all the tiles). A value 0 in this field means that the router has to deliver the
message just to the local L1 cache controller. For the rest of values, every
router would decrement the value of the field and would spawn and propagate
the multicast coherence message through the rest of its output ports (including
the one that connects with the local L1 cache controller). Contrarily, in BT
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and BT-SN several unicast messages must be created by the directory on
every coherence event. Extra logic is needed at each directory controller for
computing the destinations of every coherence message, which is sent as several
unicast messages through the network. Again, this can result into increased
directory occupancy and energy consumption, and also, more network traffic
in the interconnect.

5 Simulation Environment

We have evaluated our proposals using the Simics full-system multiproces-
sor simulator [15] extended with both GEMS [16] and SiCoSys [17]. GEMS
provides a detailed cache coherent memory system timing model. SiCoSys sim-
ulates a detailed interconnection network that allows one to take into account
most of the VLSI implementation details with high precision but with much
lower computational effort than hardware-level simulators.

We have modified the GEMS simulator in order to evaluate the three
mapping policies evaluated in this work. The first mapping policy, named
as RoundRobin or RR, is an OS-managed policy that assigns physical pages in
a round-robin fashion to guarantee the uniform distribution of pages among
cache banks. This policy gets similar results as the hardware round-robin pol-
icy implemented in GEMS, as shown in [11]. The round-robin policy do not
take into consideration the distance from the cores to the home bank. The
second mapping policy that we have implemented, named as FirstTouch or
FT, maps memory pages to the local cache bank of the first processor that
requested the page. Although this mapping policy is distance-aware, it is not
concerned about the pressure on some cache banks. Finally, we also imple-
ment the policy proposed in [11], named as DARR. We simulate DARR with
a threshold value of 128, as suggested in [11].

On the other hand, we have also implemented in GEMS the different shar-
ing codes evaluated in this work: BT, BT-SN, and DASC (evaluated both for
a saturating counter of 2 and 3 bits). We also run the traditional full-map
(FM) sharing code, which keeps one bit per core in the system.

The simulated system is a 32-core tiled CMP connected by a 8×4 2-D mesh.
Each tile contains an in-order processing core since a large number of simple
cores can offer better performance/Watt ratio than a small number of complex
cores. Moreover, a memory controller connected to a 3D-stacked memory bank
is placed in each tile. Table 2 shows the values for the main parameters of the
system evaluated in this work. Memory blocks stored in the private L1 caches
are kept coherent by means of a directory-based cache coherence protocol that
uses MESI states. We account for the variability in multithreaded workloads
[18] by doing multiple simulation runs for each benchmark in each configura-
tion and injecting random perturbations in memory systems timing for each
run.
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Table 2: System parameters

Memory Parameters: GEMS (3GHz)
Cache block size 64 bytes
Split L1 I & D caches 32KB, 4-way
L1 cache hit time 2 cycles
Shared unified L2 cache 256KB/tile, 8-way
L2 cache hit time 10 cycles
Memory access time 300 cycles
Page size 4KB

Network Parameters: SICOSYS (1.5GHz)
Topology 8×4 2-dimensional mesh
Switching technique Wormhole
Routing technique Deterministic X-Y
Data and control message size 4 flits and 1 flit
Routing time 1 cycle
Switch time 1 cycle
Link latency (one hop) 2 cycles
Link bandwidth 1 flit/cycle

5.1 Benchmarking and characterization

We have evaluated our proposal with both parallel and multi-programmed
workloads. Multi-programmed workloads consist of several program instances
running at the same time in the system. We classify workloads as either ho-
mogeneous, heterogeneous, or in-between. Homogeneous workloads uniformly
distribute memory pages among cache banks when a first-touch policy is em-
ployed. In contrast, in heterogeneous workloads a few banks allocate more
pages than the others when the first-touch policy is considered. In-between
workloads are neither extremely heterogeneous nor extremely homogeneous.

Our application set includes ten parallel scientific benchmarks that are rep-
resentative of both homogeneous and heterogeneous scenarios. Barnes, Cholesky,
FFT, FMM, LU, Ocean, Tomcatv and Water-NSQ, represent the homoge-
neous workloads. Unstructured, Raytrace, Radix, and Volrend constitute the
heterogeneous workloads. Barnes, FFT, Ocean, Radix, Raytrace, Volrend, and
Water-NSQ belong to the SPLASH-2 benchmark suite [19] whereas Tomcatv
and Unstructured are irregular scientific applications. The input size of each
application is shown in Table 3.

We also consider multi-programmed workloads. We run the configurations
shown in Figure 6, two homogeneous and two heterogeneous workloads. Radix4
consists of four instances of the Radix application, with eight threads each
one. Ocean8 consists of eight instances of the Ocean application, with four
threads each one. They represent the homogeneous workloads. Mix4 and Mix8
run Ocean, Raytrace, Water-NSQ and Unstructured. In Mix4 each application
has eight threads. In Mix8 two instances of each application are run with
four threads each. These two workloads represent the heterogeneous and more
common multi-programmed scenario. A summary of the multi-programmed
applications is also shown in Table 3.
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Table 3: Benchmarks, input sizes, and characterization

SPLASH 2 (10 benchmarks)
Benchmarks Input size Average Deviation Page footprint
Barnes 16K particles, 4 time steps 30.9688 13.6157 In-between
Cholesky tk15.O 187.344 272.578 Heterogeneous
FFT 64K complex doubles 30.8125 5.39713 Homogeneous
FMM 16K particles 59.25 119.349 Heterogeneous
LU 512×512 matrix 18.9062 3.83952 Homogeneous
Ocean 258×258 ocean 128.938 18.2651 Homogeneous
Radix 1M integers, 1024 radix 80.25 51.2388 In-between
Raytrace Teapot 27.2188 23.581 In-between
Volrend Head 6.78125 10.1409 Heterogeneous
Water-NSQ 512 molecules, 4 time steps 21.5938 11.7885 In-between

Scientific (2 benchmarks)
Benchmarks Input size Average Deviation Homogeneous
Tomcatv 256 points, 5 time steps 29.0625 6.60401 Homogeneous
Unstructured Mesh.2K, 5 time steps 29.0938 48.3545 Heterogeneous

Multi-programmed (4 combinations)
Benchmarks Input size Average Deviation Homogeneous
Radix4 Radix×4 530.344 32.3639 Homogeneous
Ocean8 Ocean×8 934.781 29.7549 Homogeneous
Mix4 Ocean,Ray,Water,Unstr. 166.281 198.582 Heterogeneous
Mix8 (Ocean,Ray,Water,Unstr.)×2 313.406 382.611 Heterogeneous

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Radix4

Radix Radix

Radix Radix

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Ocean8

Ocean Ocean Ocean Ocean

Ocean Ocean Ocean Ocean

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Mix4

Ocean Raytrace

Water-NSQ Unstructured

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Mix8

O
ce
an

R
ay
tr
ac
e

O
ce
an

R
ay
tr
ac
e

W
at
er
-N
SQ

U
ns
tr
uc
tu
re
d

W
at
er
-N
SQ

U
ns
tr
uc
tu
re
d

Fig. 6: Multi-programmed workloads evaluated in this work

In order to perform the characterization of the applications evaluated in
this work, we first identify the number of pages mapped to each bank for a
first-touch policy. Figure 7 shows this number for each of the 32 banks of the
simulated NUCA cache. The darker the color of the box is, the more pages are
mapped to that bank. We can see that there are applications like FFT, LU,
Ocean, Tomcatv, Radix4, and Ocean8 that are clearly homogeneous. We can
also observe that Cholesky, FMM, Unstructured, Volrend, Mix4, and Mix8 are
heterogeneous.

In order to give a numeric value to the degree of heterogeneity we employ
the coefficient of variation of the pages mapped to NUCA banks in a first-touch
policy. The coefficient of variation is calculated as the ratio of the standard
deviation to the mean. Table 3 shows these values for every of the applications
considered in this work.
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Fig. 7: Number of pages mapped to each cache bank in a first-touch policy for
the workloads evaluated in this work

We consider that an application is homogeneous if its coefficient of varia-
tion is smaller than 0.4. On the other hand, if the coefficient of an application
is greater than 1.0, we consider it as heterogeneous. Applications with a co-
efficient in between these values are in-between, i.e., neither homogeneous
nor heterogeneous. Figure 8 plots graphically this characterization. The y-axis
represents the coefficient of variation while the x-axis indicates the average
number of pages mapped to each tile. An application like Volrend, that is het-
erogeneous but has a small working set (footprint size) can work well when



DASC-DIR: A Low-Overhead Coherence Directory for Many-Core Processors 17

0 20 40 60 80 100 120 140 160 180 200

Average number of pages per core (footprint size)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
o
e
ff
ic

ie
n
t 
o
f 
v
a
ri
a
ti
o
n
 (

h
e
te

ro
g
e
n
e
it
y
)

Barnes

Cholesky

FFT

FMM

LU
Ocean

Radix

Raytrace

Tomcatv

Unstructured

Volrend

Water-NSQ

(a) Parallel workloads

0 100 200 300 400 500 600 700 800 900 1000

Average number of pages per core (footprint size)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
o

e
ff

ic
ie

n
t 

o
f 

v
a

ri
a

ti
o

n
 (

h
e

te
ro

g
e

n
e

it
y
)

Radix4 Ocean8

Mix4 Mix8

(b) Multi-programmed workloads

Fig. 8: Characterization of the applications evaluated

the first touch policy is employed, but applications like Mix8 will incur in a
lot of evictions from the NUCA cache, and the consequent off-chip accesses.

In the next section, evaluation results are shown splitting considered ap-
plications in these three categories: Homogeneous, Heterogeneous, and In-
between.

6 Evaluation Results

The main focus of this work is to study the advantages of implementing very
compressed sharing codes, like BT, BT-SN, and especially DASC, in sys-
tems that employ a distance-aware NUCA mapping policy, like first-touch
and DARR. For a detailed evaluation of the DARR mapping policy we refer
the interested reader to [11].

In order to understand the effects that the DARR mapping policy can have
on the election of the sharing code, we first study the average distance of the
sharers to the corresponding home cache bank. Then, we show how shorter
distances reduce the number of coherence messages (invalidations and cache-
to-cache transfer commands) when compressed sharing codes are used. This
leads to reductions in execution time and power consumption when they are
used in conjunction with distance-aware mapping techniques, as will be shown
later. Finally, we analize the scalability of the DASC sharing code proposed
in this work.

6.1 Average distance of sharers to the home banks

The sharing code proposed in this work is very sensitive to the distance from
the sharers of a memory block to the corresponding home bank. The shorter
the distance is, the better the sharing code works. Fortunately, both the first-
touch and the DARR mapping policies reduce the average distance from the
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Fig. 9: Average distance of sharers to their home

sharers to the home banks, and this is why DASC reveals as a good option for
systems implementing distance-aware mapping policies.

Figure 9 plots the average distance in terms of network hops between the
sharers of a memory block and its home bank. Average distances shown in this
graph are computed assuming a 8×4-mesh 32-core system and for the three
mapping policies considered in this work: round-robin (RR), first-touch (FT),
and DARR. We can see that the average distance from sharers to the home
banks in RR is around four network links. This is because this policy does not
care about the distance from the requesting cores (i.e., the cores that can share
the block) to the home node. When the mapping process is performed taking
into account distance to the home nodes, average distance can be considerably
reduced, especially for scenarios when different applications are running in the
same system (e.g., Mix4, Mix8, Radix4, and Ocean8 ). Although the average
distance obtained with FT is lower than the observed for DARR (2.3 vs. 2.5),
FT causes unbalanced distribution of the load of the cache banks (number of
pages assigned to each bank) in heterogeneous applications, which results in
extra L2 misses. DARR distributes better the pages among the cache banks
in order to reduce off-chip accesses caused by L2 misses, thus increasing the
distance from requesters to home banks. However, as it can be seen, this
distance is not increased considerably, and consequently, DASC sharing code
can work efficiently.

6.2 Number of messages per coherence event

By obtaining a short distance between sharers and home banks, compressed
sharing codes based on the distance can reduce the number of false positives
and work in a more efficient way. Figure 10 plots the number of coherence
messages sent on average for any coherence event such as L1 cache misses or
directory evictions. Particularly, this figure shows 15 bars, one per each of the
configurations considered in this work. They are grouped in sets of 3 bars.
From left to right, the first 3 bars are for the full-map sharing code (FM)
when it is used in combination with the round-robin (RR), first-touch (FT)
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and distance-aware round-robin (DARR) policies, respectively. The next bars
are for the BT-SN and BT sharing codes (3+3). The final 6 bars are for the
two implementations of DASC: the one using three bits (bars 10, 11 and 12)
and the other one using 2 (last 3 bars). This is also applicable to Figures 11
and 12 that will be discussed later on.

The numbers shown in Figure 10 are for the simulated 32-core system, so
in a broadcast-based protocol, i.e., a protocol without a directory, this number
would be 32 for write misses and read misses that do not find the data in L2.
Differently, we have very compressed sharing codes that require a few bits per
entry (from 4 to 2) and require much less coherence messages. We also show
the number of messages required by a precise full-map (FM) sharing code.
We split the graphs in the three categories mentioned in the characterization:
Homogeneous, Heterogeneous, and In-between.

Figure 10(a), shows the results obtained for the homogeneous workloads.
In this case, distance-aware mapping policies can reduce distance of sharers
to a greater extent, and therefore, we can observe a significant reduction in
terms of number of coherence messages when FT or DARR are employed. The
lower is the number of bits used for the sharing code, the more false positives
and coherence messages are required. However, this is more acute for the RR
mapping. Note also that the 3-bit DASC entails less coherence messages than
the 3-bit BT sharing code, so it will perform better. This is because two
nodes can be very close in the system but far away in the binary tree. For
example, in the 16-core example in Figure 5 node 4 and node 8 are separated
by only one link, but in the tree structure in Figure 3 their common level is
the root of the tree. On the other hand, although the 2-bit DASC sharing code
noticeably increases the coherence messages over the 3-bit DASC for RR, when
FT or DARR are employed this increase is more acceptable. In particular, the
number of messages per coherence event required by DASC-2bits for both FT
and DARR is around 2.3, which is a very small number taking into account
the size of the sharing code (just 2 bits).

In Figures 10(b) and 10(c), we show workloads where wider distribution of
the pages among cache banks is required for DARR. This is why FT requires
less coherence messages than DARR (especially for the heterogeneous appli-
cations). However, it is important to remember that this comes at the cost of
extra off-chip accesses (as shown in [11]), which will increase final execution
times as will be discussed in the next section. Overall, the reduction in the
number of coherence messages in DASC when moving from RR to DARR is
considerable, which confirms the synergy between DASC and DARR (what
we call DASC-DIR in this work).

6.3 Execution time

The reductions in execution time that the DARR mapping policy brings along
with the low overhead of the DASC sharing code result in improvements in ex-
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Fig. 10: Coherence messages per coherence event

ecution time with respect to a non-scalable full-map directory with the typical
RR mapping policy.

Figure 11 shows the execution time for the configurations evaluated in this
work. We can observe that for the Homogeneous workloads (Figure 11(a)), a
2-bit DASC sharing code performs very well when used in combination with
DARR mapping (what we call DASC-DIR), and the increase in execution
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time with respect to a non-scalable full-map is only 5.7%. The improvements
of this 2-bit sharing code with respect to a traditional full-map employing the
typical round-robin policy are 8.4% on average. The 2-bit DASC sharing code
performs similarly to the other compressed sharing codes.

Regarding the In-between workloads (Figure 11(b)), a similar pattern can
be observed. DASC-DIR performs similarly to our base configuration when
the 2-bit DASC sharing code is employed. For the 3-bit version of DASC im-
provements of 3.7% are obtained. Additionally, it can be also observed that
the 3-bit version of DASC performs better than the 3-bit BT sharing code,
even when we do not take advantage of the opportunities that the simpler im-
plementation provided by DASC brings (and that were explained in Section 3)
1. Finally, first-touch and DARR obtain similar results for these workloads.

Finally, for the Heterogeneous workloads (Figure 11(c)), first-touch shows
performance degradation with respect to DARR. DARR obtains the lowest
execution times out of the three mapping policies. Additionally, the DASC
sharing code is efficient enough to not increase execution times, being able
to achieve reductions in execution time of 4.9% and 3.1% with respect to the
non-scalable base configuration for its 3-bit and 2-bit versions, respectively.

6.4 Network traffic

An increase in the number of coherence messages issued due to false positives
when a compressed sharing code is employed, can considerably affect network
traffic, and consequently, increase energy consumption. Figure 12, shows the
traffic split in the number of control and data flits issued by each switch in the
network. In general, we can see that the increase in network traffic due to false
positives is lower when distance-aware mapping policies are employed. Also,
the traffic generated by the 3-bit version of DASC is lower than the traffic
generated by the 3-bit BT sharing code.

For the Homogeneous workloads (Figure 12(a)), the traffic required by a
DASC-2bits DARR is 17.4% lower than the base configuration (FM-32bits RR).
This is due to two reasons. First, the low distance obtained by the DARR pol-
icy that reduces the number of network hops per message issued. Second,
the efficiency of the DASC sharing code that do not generate excessive extra
coherence messages.

For the In-between workloads (Figure 12(b)), the traffic required by a
DASC-2bits DARR increases by 39.3% with respect to the base configuration,
since the distance from sharers to home banks increases for these workloads.
A 3-bit DASC sharing code reduces this degradation up to 23.4%. For the
Heterogeneous workloads (Figure 12(c)), the traffic is increased by 36.6% and
63.4%, on average, for the 3-bit and the 2-bit versions of DASC, respectively.

1 To have a clearer understanding of the impact that the used compressed sharing code
has on the results, we concentrate solely on the number of unnecessary coherence messages,
leaving implementation-dependant details out of the comparison
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Fig. 11: Normalized execution time

However, for the multi-programmed workloads (Mix4 and Mix8 ) the traffic
keeps low, since the distance among sharers and the home banks keeps low.

6.5 Memory requirements and scalability

The proposed directory scheme (DASC-DIR) is highly scalable because the size
of the sharing code (DASC) it uses does not depend directly on the number of
cores in the system. Obviously in larger systems it can be advisable to increase
the size of the sharing code to reduce broadcasts, but if system uses a distance-
aware mapping policy a few bits are enough to obtain good performance.
Figure 13 shows the memory overhead of the sharing code with respect to the
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Fig. 12: Normalized network traffic

memory required by the caches (L1 and L2). This overhead is shown for the
different sharing codes: a full-map sharing code, a coarse vector that employs
clusters of 4 cores [20], a limited pointer scheme that stores two pointers and
when more than two cores share the block employs broadcast [21,22], a binary
tree sharing code both with one symmetric node and without symmetric nodes,
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Fig. 13: Memory overhead of several sharing codes schemes

and our DASC sharing code both employing 3 bits (maximum distance 7) and
2 bits (maximum distance 2).

We can observe that only binary tree and DASC are highly scalable, be-
ing able to not incur in more than 1% overhead for systems with 1024 cores.
Since the size of DASC does not depend on the number of cores, this sharing
code is the one offering lowest overheads for large-scale systems. Addition-
ally, as discussed in the previous sections, the combination of DASC with the
DARR mapping policy obtains better results than when the binary tree-based
counterparts are used.

7 Related Work

7.1 Proposals to reduce latency in NUCA architectures

There are several ways of reducing cache access latency in NUCA caches.
The most relevant ways are data migration, data replication or to perform
an intelligent data mapping to cache banks. Next, we comment on the most
important works for these approaches.

Kim et al.[12] presented non-uniform cache architecture (NUCA) caches.
They studied both a static mapping of blocks to caches and a dynamic map-
ping based on spread sets. In such dynamic mapping, a block can only be
allocated in a particular bank set, but this bank set can be comprised of sev-
eral cache banks that act as ways of the bank set. In this way, a memory
block can migrate from a bank far from the processor to another bank closer
if the block is expected to be accessed frequently. Chishti et al. [23] achieved
more flexibility than the original dynamic NUCA approach by decoupling tag
and data arrays, and by adding some pointers from tags to data, and vice
versa. The tag array is centralized and accessed before the data array, which is
logically organized as distance-groups. Again, memory blocks can reside in dif-
ferent banks within the same bank set. Differently from the last two proposals,
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Beckmann and Wood [24], considered block migration in multiprocessor sys-
tems. They proposed a new distribution of the components in the die, where
the processing cores are placed around the perimeter of a NUCA L2 cache.
Migration is also performed among cache banks belonging to the same bank
set. The block search is performed in two phases, both requiring broadcasting
the requests. Unfortunately, these proposals have two main drawbacks. First,
there are data placement restrictions because data can only be allocated in a
particular bank set and, second, data access requires checking multiple cache
banks, which increases network traffic and power consumption.

Zhang and Asanovic [4] proposed victim replication, a technique that allows
some blocks evicted from an L1 cache to be stored in the local L2 bank. In
this way, the next cache miss for this block will find it at the local tile, thus
reducing miss latency. Therefore, all L1 cache misses must look for the block at
the local L2 bank before the request is sent to the home bank. This scheme also
has two main drawbacks. First, replication reduces the total L2 cache capacity.
Second, forwarding and invalidation requests must also check the L2 tags in
addition to the L1 tags. Later on, in [25], they proposed victim migration as
an optimization that removes some blocks from the L2 home bank when they
are frequently requested by a remote core. Now, the drawback is that an extra
structure is required to keep the tags of migrated blocks. Moreover, in both
proposals, write misses are not accelerated because they have to access the
home tile since coherence information does not migrate along with the data
blocks.

Differently from all the previous approaches, and closer to ours, Cho and
Jin [8] proposed using a page-size granularity (instead of block-size). In this
way, the OS can manage the mapping policy, e.g., a first-touch mapping pol-
icy can be implemented. In order to deal with the unbalanced utilization of
the cache banks, they propose using bloom filters that collect cache access
statistics. If a cache bank is pressured, the neighbouring banks can be used
to allocate new pages. As discussed in Section 2, this proposal has several
implementation issues (e.g., it is difficult to find an accurate metric to de-
cide whether a cache is pressured or not) and they do not evaluate the cache
pressure mechanism with neither parallel nor multi-programmed workloads.
In addition, they only distribute pages among neighbouring banks, i.e., at
one-hop distance. In contrast, in our proposal pages are distributed among all
banks, if necessary, in an easy way and without requiring any extra hardware.
On the other hand, they do not care about the issue of the private cache index-
ing since they use 16KB 4-way L1 caches, in which the number of bits used to
index them is smaller than the number of bits of the offset of the 8KB pages
considered in that work, and they can use virtually indexed L1 caches. Lin
et al. [26] applied Cho and Jin’s proposal to a real system. They studied the
dynamic migration of pages and the high overheads that it causes. Recently,
Awasthi et al. [27] and Chaudhuri [28] proposed several mechanisms for page
migration that reduce the overhead of migration at the cost of requiring extra
hardware structures. Unfortunately, since migration of pages entails an inher-
ent cost (e.g., flushing caches or TLBs), this mechanism cannot be performed
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frequently. Although migration can be used along with our proposal, this work
focuses on the initial mapping of pages to cache banks. Finally, Awasthi et al.
[27] do not consider the private cache indexing issue because they use small
caches that can be virtually indexed, and Chaudhuri [28] do not take care
about the indexing bits despite one bit matches with the home offset bits.

Another direction is to employ a private-shared classification of the ac-
cessed data to reduce the NUCA access latency, as described in the Reactive
NUCA proposal [9]. Private blocks are placed into the local NUCA bank of
the requesting core, enabling low-latency accesses for such blocks, while shared
blocks are placed across all tiles at the corresponding address-interleaved lo-
cations. Further optimizations in the address-interleaved locations for shared
blocks were lately studied by Garćıa et al. [29]. Although in Reactive NUCA
the classification is done at page-level by the operating system, compile-time
classifications have also been proposed to this end [30,31]. In [30], a data
ownership analysis of memory regions is performed at compilation time. This
information is transferred to the page table by modifying the behavior of the
memory allocator by means of hooks. This proposal is further improved in
[31] by considering a new class of data, named as practically-private, which
is mapped to the NUCA cache according to a first-touch policy. Differently,
our approach do not rely on page classification, it includes pressure metrics to
avoid extra off-chip misses, and it achieves low latency even for accesses that
would be classified by the other approaches as shared and interleaved across
NUCA banks.

7.2 Proposals to reduce the size of the directory

Several proposals aimed at reducing the size of the coherence directory have
been proposed recently [32–36]. Differently from these proposals, DASC-DIR
is based on the use of a very compressed sharing code, DASC. As already ex-
plained, DASC can be easily implemented, and do not require complex hard-
ware at the directory controllers. Other compressed sharing codes, as BT,
BT-SN or BT-SuT [14], have more cost as they need extra hardware to com-
press/decompress directory information. Apart from the compressed sharing
codes evaluated in this work, others were proposed in the past with a va-
riety of sizes. Some of the most used compressed sharing codes are coarse
vector [20], which was employed in the SGI Origin 2000 multiprocessor, lim-
ited pointers [21,22], employed in FLASH [37] and Alewife [38], tristate [39]
and gray-tristate [40].

8 Conclusions

In this work we propose an efficient and low-overhead coherence directory
(DASC-DIR) which is built around two main ingredients. The first is the use
of the DARR (Distance-Aware Round-Robin) mapping policy, an OS-managed
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policy which tries to map the pages accessed by a core to its closest (local)
bank, at the same time it introduces an upper bound on the deviation of the
distribution of memory pages among cache banks, which lessens the number of
off-chip accesses. The second is the utilization of a very compressed directory
structure which takes advantage of this mapping policy to represent sharers
in a very compact way without increasing coherence network traffic. Particu-
larly, the new compressed sharing code introduced in this work, called DASC
(Distance-Aware Sharing Code), stores the distance between the home node
and the farther sharer. Thanks to the use of DARR, this distance keeps usu-
ally low, which allows DASC to outperform other compressed sharing codes
previously proposed which are unaware of the mapping policy employed in the
system. Additionally, contrary to previous proposals, DASC does not require
the introduction of extra hardware at the directory controllers for compress-
ing/decompressing sharing information. This way, this work illustrates for the
first time the important synergy between the sharing code used for the coher-
ence directory and the mapping policy of the system, two design aspects that
should be analyzed together for good system efficiency and scalability.

Results show that the 2-bit version of DASC along with the DARR map-
ping policy can outperform in terms of execution time and memory require-
ments (i.e., area and energy required for the directory) a traditional non-
scalable full-map directory with the typically used round-robin mapping pol-
icy. All of this is achieved without increasing coherence network traffic. Finally,
DASC-DIR scales gracefully to larger core counts.
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