
Journal of Systems Architecture 56 (2010) 77–87
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
A scalable organization for distributed directories

Alberto Ros *, Manuel E. Acacio, José M. García
Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, 30100 Murcia, Spain
a r t i c l e i n f o

Article history:
Received 11 March 2009
Received in revised form 15 July 2009
Accepted 16 November 2009
Available online 24 November 2009

Keywords:
Chip multiprocessors
Many-core CMPs
Cache coherence
Distributed directory
Scalability
Duplicate tags
Implicit replacements
1383-7621/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.sysarc.2009.11.006

* Corresponding author.
E-mail addresses: a.ros@ditec.um.es (A. Ros),

Acacio), jmgarcia@ditec.um.es (J.M. García).
a b s t r a c t

Although directory-based cache-coherence protocols are the best choice when designing chip multipro-
cessors with tens of cores on-chip, the memory overhead introduced by the directory structure may not
scale gracefully with the number of cores. Many approaches aimed at improving the scalability of
directories have been proposed. However, they do not bring perfect scalability and usually reduce the
directory memory overhead by compressing coherence information, which in turn results in extra unnec-
essary coherence messages and, therefore, wasted energy and some performance degradation. In this
work, we present a distributed directory organization based on duplicate tags for tiled CMP architectures
whose size is independent on the number of tiles of the system up to a certain number of tiles. We dem-
onstrate that this number of tiles corresponds to the number of sets in the private caches. Additionally,
we show that the area overhead of the proposed directory structure is 0.56% with respect to the on-chip
data caches. Moreover, the proposed directory structure keeps the same information than a non-scalable
full-map directory. Finally, we propose a mechanism that takes advantage of this directory organization
to remove the network traffic caused by replacements. This mechanism reduces total traffic by 15% for a
16-core configuration compared to a traditional directory-based protocol.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, the most efficient way of organizing the increasing
number of transistors per chip is to integrate multiple processor
cores in the same chip. Recent examples of these chip multiproces-
sors (CMP) are, among others, the 2-core IBM Power6 [14] and the
8-core Sun T2 [26]. These CMPs typically connect the cores through
an on-chip shared bus or crossbar. However, the area required by
these interconnects as the number of cores grows has to be in-
creased to the point of becoming impractical.

CMP architectures that integrate tens of processor cores (usu-
ally known as many-core CMPs) are expected for the near future,
after Intel unveiled recently the 80-core Polaris prototype [4].
Particularly, tiled CMP architectures [30,34], which are designed
as arrays of identical or close-to-identical building blocks (tiles)
connected over a point-to-point network, are a scalable alternative
to current small-scale CMP designs and will help in keeping
complexity manageable. In most current proposals, each tile con-
tains at least one level of cache memory that is private to the local
core (the L1 in this work), and the first level of shared cache (com-
monly, the L2 cache) is physically distributed between the tiles of
the system, as shown in Fig. 1. Private caches are kept coherent in
hardware by using a cache-coherence protocol.
ll rights reserved.

meacacio@ditec.um.es (M.E.
In CMP architectures, the cache-coherence protocol is a key
component since it can add requirements of area and power
consumption to the final design and, therefore, it could restrict
severely its scalability. When the CMP is comprised of a large
number of cores, the best way of keeping cache coherence is
by implementing a directory-based protocol, since protocols
based on broadcasting requests are not power-efficient due
to the tremendous number of messages that they would
generate.

Directory-based cache-coherence protocols reduce power con-
sumption compared to broadcast-based protocols because they
keep track of the sharers of each block in a directory structure. In
a traditional directory organization, each directory entry stores
the sharers for each memory block through a simple bit-vector
or full-map sharing code, i.e., one bit per private cache. Since the
area requirements of this structure grow linearly with the number
of cores in the CMP, many approaches aimed at improving its sca-
lability have been proposed [1,3,7,9,20]. However, they do not
bring perfect scalability and usually reduce the directory memory
overhead by compressing the coherence information, which in turn
results in extra unnecessary coherence messages, wasted energy,
and some performance degradation. Another alternative to the
full-map scheme that also keeps precise sharing information is to
have a directory structure that stores duplicate tags of the blocks
held in the private caches. This scheme has been recently used
both in cc-NUMA machines as Everest [21] and in CMPs as Piranha
[5] or Sun UltraSPARC T2 [29].

http://dx.doi.org/10.1016/j.sysarc.2009.11.006
mailto:a.ros@ditec.um.es
mailto:meacacio@ditec.um.es
mailto:jmgarcia@ditec.um.es
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Fig. 1. Organization of a tile and a 8� 8 tiled CMP.

78 A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87
In tiled CMPs, the directory structure is split into banks which
are distributed across the tiles. Each directory bank tracks a partic-
ular range of memory blocks. Up to now, most tiled CMP proposals
assume a straightforward implementation for the directory struc-
ture based on the use of a full-map sharing code. This directory
organization does not scale, since its size grows linearly with the
number of tiles of the system. Moreover, since the directory must
be stored on-chip to allow for short cache miss latencies and CMP
designs are constrained by area, the directory area should repre-
sent a small fraction of the total chip.

In this work, we show that a directory organization based on
duplicate tags, which are distributed among the tiles of a tiled
CMP by following a particular granularity of interleaving can scale
up to a certain number of cores, while still storing precise coher-
ence information. In particular, we show that the size of each
directory bank does not depend on the number of tiles. In the pro-
posed directory organization, each directory entry has associated a
unique entry of a private cache in the system. A directory entry
stores the tag of the block allocated in its corresponding entry of
the private cache, a valid bit and an ownership bit. If the ownership
bit is enabled the cache is known to be the owner of the block.

The size of each directory bank in the proposed organization is
c � ðlt þ 2Þ, where c is the number of entries of the last-level pri-
vate cache if the private caches are inclusive or the aggregate num-
ber of entries of all private caches if they are non-inclusive, and lt is
the size of the tag field. To ensure that each directory entry is
associated with just one entry of some private cache, and vice ver-
sa, the directory interleaving must be defined by taking some bits
of the memory address that fulfill the following condition:
bits home # bits private cache set, i.e., the bits that define the home
tile must be a subset of the bits used for indexing private caches.
We also have measured the area overhead of the proposed direc-
tory organization using the CACTI tool [31], obtaining an overhead
of just 0.56% when compared to the on-chip data caches consid-
ered in this work.

Designing large-scale CMPs is not straightforward, and tiled
CMPs are aimed at simplifying the development of these multipro-
cessors by duplicating identical or close-to-identical building
blocks. Additionally, this allows processor vendors to support fam-
ilies of products with varying computational power, and thus, cost.
The proposed scalable distributed directory organization will allow
vendors to use the same building block for designing tiled CMPs
with different number of tiles.

Additionally, this directory organization allows us to modify the
coherence protocol in order to remove extra messages caused by
replacements. Since each cache entry is associated to a directory
entry (the same way too in case of associative caches) the request-
ing tile does not have to inform the directory about replacements,
because the directory knows which block is being replaced when
the request for a new block arrives to it. We name this technique
as implicit replacements. We have found that this mechanism leads
to average reductions of 15% and 13% for 16 and 32-core configu-
rations respectively compared to a non-scalable traditional direc-
tory-based protocol that employs unlimited directory caches and
informs the directory about replacements only in case of evictions
of dirty blocks. Moreover, compared to a directory organization
based on duplicate tags that also needs to inform the directory
about evictions of clean blocks, the implicit replacement mecha-
nism saves 35% of coherence messages on average for a 16-core
configuration and 32% when 32 cores are simulated. These reduc-
tions in network traffic are expected to result in significant savings
in terms of power consumption. These results are slightly better for
a smaller number of cores because the working set accessed by
each core is greater in that case and, therefore, less replacements
take place.

A preliminary and partial version of this work was presented in
Ref. [25]. Here, we significantly extend that work with a more for-
mal description of the directory organization and the mapping
function, and an analysis of the scalability limits and how those
limits can be addressed. Moreover, we extend the evaluation pro-
cess, including multimedia applications in addition to the suite of
scientific benchmarks already considered, evaluating of 32-tile
CMP in addition to the 16-tile CMPs evaluated in the preliminary
work, implementing other cache-coherence protocols that use
compressing sharing codes, and including a detailed simulator
for modeling the interconnection network (SiCoSys [23]). Finally,
we also study the area required by the different directory struc-
tures by using the CACTI [31] tool.

The rest of the paper is organized as follows. A background on
directory organizations for both cc-NUMA and CMP systems is gi-
ven in Section 2. Section 3 describes the scalable distributed direc-
tory organization. The implicit replacements mechanism is
presented in Section 4. Section 5 introduces the methodology em-
ployed in the evaluation. Section 6 shows the area requirements of
the directory organization and the savings in network traffic ob-
tained with the implicit replacements mechanism. Section 7 stud-
ies the limitations of the presented directory organization and how
to avoid them. And finally, Section 8 concludes the paper.
2. Background on directory organizations

Directory-based cache-coherence protocols have been used for
long in shared-memory multiprocessors. Unfortunately, the size
of the directory structure does not scale with the number of nodes
of the system. It has a complexity order of OðnmÞwhen track of the
sharers of every memory block ðmÞ is kept through a full-map shar-
ing code (n bits, where n is the number of cores). In this work, we
study a directory organization for tiled CMPs that addresses this
problem. Firstly, we review some of the previous proposals to re-
duce directory storage for cc-NUMA architectures which can be
also used in CMPs, and then, we discuss the directory organizations
implemented in current CMP proposals and architectures.
2.1. cc-NUMA architectures

Some proposals reduce the width of directory entries by using
compressed sharing codes instead of full-map. For example, coarse
vector is based on using each bit of the sharing code for a group of K
processors (a bit is set if at least one of the processors in the group
holds the memory block). Another compressed sharing codes are
tristate [3] (also called superset scheme), Gray-tristate [20] or bin-
ary tree with subtrees [2]. Other authors propose to have a limited
number of pointers per entry, which are chosen for covering the
common case [7,28], and overflow situations are handled by broad-
casting invalidation messages or eliminating one of the existing
copies.

Other proposals try to reduce the directory height by combining
several entries into a single one (directory entry combining) [27]. An

A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87 79
alternative way is to organize the directory structure as a cache
(sparse directory) [22,9], or include this information in the tags of
private caches [24], thus reducing the height of the directory down
to the height of the private caches. All these proposals are based on
the observation that only a small fraction of the memory blocks
can be stored in the private caches at a particular moment of time.

Unfortunately, these techniques result in extra coherence mes-
sages being sent or in increased cache miss rates, reducing the
directory memory overhead at the expense of performance and/
or power (as a consequence of an increase in network traffic).

The idea of having duplicate tags has also been used for distrib-
uted shared-memory multiprocessors as, for example, by Nanda
et al. in Everest [21]. In Everest, the directory structure or complete
and concise remote (CCR) directory keeps the state information
(tag and state) of the memory blocks belonging to the local home
that are cached in the remote nodes. In this way, CCR directory
contains the same amount than memory as a sparse directory
and keeps the same information than a full-map directory. How-
ever, the number of entries in the CCR directory grows linearly
with the number of cores in the system.

On the other hand, other authors studied the directory inter-
leaving to reduce the size of a distributed directory that stores a
linked list of pointers to the sharers of each cache block [13]. An
interleaving consisting in taking the less significant bits of the
memory address allows each directory bank to have the same
number of entries than the number of entries of the last-level pri-
vate cache. Unfortunately, the access to the full list of pointers re-
quires extra latency, and the size of the pointers is not completely
scalable –Oðlog2nÞ–.

2.2. CMP architectures

Some current small-scale CMPs keep cache coherence by imple-
menting a snooping-based protocol, such as the IBM POWER6
architecture [14]. However, this architecture also employs direc-
tory states to filter some unnecessary coherence messages.

Other CMPs that implement a directory-based cache-coher-
ence protocol use duplicate (or shadow) tags to keep the coher-
ence information, such as the Piranha [5] or Sun UltraSPARC T2
[29] architectures. In this case, each directory entry has fixed size
and is comprised of a tag and a state field. The number of direc-
tory entries required to keep track of all blocks stored in the pri-
vate caches corresponds to the sum of the entries of all private
caches. In Piranha, this directory structure is centralized and,
therefore, it increases with the number of cores since each core
includes a private cache. Moreover, all cache misses must access
this centralized directory structure, which would mean a signifi-
cant bottleneck for many-core CMPs. The Sun UltraSPARC T2
architecture distributes the directory among the L2 cache banks
leading to an organization similar to the studied in this work,
but this architecture still uses a non-scalable crossbar as the
interconnection network.

On the contrary, large-scale tiled CMPs require a distributed
directory organization for scalability reasons. Essentially, each tile
includes at least one level of private cache and a slice of the total
directory. Each memory block is mapped to a home tile which is
responsible for keeping coherence information for that block. The
identity of the home tile of a block is commonly known from the
address bits (log2n bits, where n is the number of tiles). We con-
sider that a scalable directory organization for these systems is
achieved when the size of each directory slice does not vary with
the number of tiles. Obviously, the number of directory slices in-
creases proportionally with the number of tiles, but also the num-
ber of data caches. Therefore, under this assumption the overhead
introduced by the directory information does not increase with re-
spect to data as the number of tiles grows.
The two most popular ways of organizing a distributed direc-
tory in tiled CMPs are (1) the use of directory caches [19] or (2)
the inclusion of a bit-vector in the first level of shared caches
[10]. The first technique can result in a high directory miss rate
(up to 70%, as recently reported in several studies [19,12]). The sec-
ond technique avoids directory misses by using the same number
of entries as the shared cache. However, this scheme can only be
used when the inclusion property between private and shared ca-
ches is enforced, i.e., the shared cache must allocate an entry for
each block in a private cache. In the other case, a directory cache
is also needed for those blocks not allocated in the shared cache,
thus introducing scalability problems and the appearance of direc-
tory misses.

Unfortunately, the inclusion property between private and
shared caches could also restrict system scalability. When the
number of cores grows and, therefore, the number of private ca-
ches, more pressure could be put over a particular slice of the
shared cache, resulting in a larger amount of replacements. Addi-
tionally, the inclusion property forces all copies of a block to be
invalidated from the private caches when the block is replaced
from the shared cache, increasing the miss rate of private caches
and, consequently, degrading performance. On the other hand,
the size of the directory entries either does not scale with the num-
ber of cores (e.g., bit-vector) or does not keep precise sharing infor-
mation (e.g., coarse vector [9] or limited pointers [7]).

Recently, in Ref. [19] different directory organizations have
been studied for tiled CMPs which demonstrate that the organiza-
tion for the directory is a crucial aspect when designing large-scale
CMPs.
3. Scalable directory organization

In this section we show that a distributed directory organiza-
tion based on duplicate tags can scale up to a certain number of
cores depending on the system parameters. Moreover, the de-
scribed directory organization keeps precise information about
all blocks stored in private caches, i.e., directory misses only take
place when the block is not stored in any private cache and, there-
fore, no extra coherence actions are needed as consequence of
directory misses.

To guarantee the scalability of the directory it is necessary to
keep fixed both the size of each directory entry (directory width)
and the number of entries per slice (directory height). The use of
duplicate tags as directory entries makes scalable the directory
width, since each directory entry is comprised of a tag and a state
field. On the other hand, the total number of directory entries re-
quired to track all blocks stored in the private caches should be
the same as the number of entries of all private caches. This rule
is always fulfilled for centralized directories, but not when the
directory is distributed.

As previously discussed, tiled CMPs split the directory structure
into banks which are distributed across the tiles. Each directory
bank tracks a particular range of memory blocks. If all blocks stored
in the private caches map to the same bank, the directory of this
bank can overflow, thus requiring more entries to keep all the
directory information. In this case, the minimal number of entries
required to store all duplicate tags increases linearly with the num-
ber of tiles.

In the first subsection, we discuss how the granularity of the
directory interleaving can affect the maximum number of entries
required by each directory bank and, therefore, the scalability of
the directory. Then, we define the conditions that are necessary
for the directory structure to scale with the number of cores. We
also describe the structure of the directory and how precise sharing
information can be obtained from it. Finally, we comment on the

l bl sl t

offsetcache setcache tag

l n

0000

1111

 ...
0010

0001

1000...

0000...

 ...
1001...

0000...

Set Tag Data

0000

1111

 ...
0010

0001

0000...

1001...

 ...
0001...

0001...

Set Tag Data

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

Directory (Node 0)

 ...

 ...

Private Cache (Node 0) Private Cache (Node n−1)

Directory (Node n−1)

l bl sl t

offsetcache setcache tag

l n

0000

1111

 ...
0010

0001

1000...

0000...

 ...
1001...

0000...

Set Tag Data

0000

1111

 ...
0010

0001

0000...

1001...

 ...
0001...

0001...

Set Tag Data

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

0000

1111

 ...
0010

0001

Set Tag Dir. Inf.

Directory (Node 0)

 ...

Private Cache (Node 0) Private Cache (Node n−1)

Directory (Node n−1)

 ...

Node 1 Node 2

Fig. 2. Granularity of directory interleaving and its effect on directory size. (a) Coarse-grained interleaving. (b) Fine-grained interleaving.

80 A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87
requirements of a cache-coherence protocol that implements this
directory organization.

3.1. Granularity of directory interleaving

One important decision when designing the memory hierarchy
of a tiled CMP is the granularity of the directory interleaving. Each
memory block must map to a particular tile, which is the home tile
for that block. This tile is responsible for keeping cache coherence
for that block and, therefore, must store the directory information
necessary to perform that task. On the other hand, if the tiled CMP
includes an on-chip cache which is logically shared by all cores
(but obviously distributed among the tiles), it is also necessary to
define an interleaving for that cache. Cache and directory inter-
leavings may be different. However, this decision incurs in extra
coherence messages between the tile where the directory informa-
tion is stored and the tile where data can reside, thus making the
cache-coherence protocol less efficient and more complex. There-
fore, it is desirable that both the shared cache and directory have
the same interleaving.

The directory can be easily distributed among the tiles of the
CMP by taking log2nðlnÞ bits of the block address, where n is the
number of tiles of the system (physical address mapping). These
bits denote the tile where the directory information for each block
can be found. The position of these bits defines the granularity of
the interleaving, and as shown in Fig. 2, the number of entries re-
quired by each directory bank to be able to keep the sharing infor-
mation of all cached blocks belonging to it.

In Fig. 2, we can observe two alternative ways of distributing
the blocks among the tiles of the CMP and their consequences.
Looking at the address of a memory block we can distinguish three
main fields from the point of view of a private cache: the block off-
set ðlbÞ which depends on the size of blocks stored in cache, the
cache set ðlsÞ in which the block must be stored and the cache tag
ðltÞ used to identify a block stored in a cache.

If the ln bits chosen to define the home tile belong to the cache
tag field, huge continuous memory regions map to the same tile
(coarse-grained interleaving). Under this assumption, all the blocks
stored in the private caches could map to the same directory bank.
This situation is shown in Fig. 2a. Assuming that the number of sets
and the associativity of the private caches are s and a, respectively,
the number of entries required by each directory to keep the
information of the cached blocks mapped to it is n� s� a (or
n� c, where c is the number of entries of each last level private
cache). In particular, each directory must have s sets of n� a ways
each.

Otherwise, if the ln bits belong to the cache set field, memory
is split in a great amount of small regions that map to different
tiles in a round-robin fashion (fine-grained interleaving), as
shown in Fig. 2b. Under this assumption, each entry of each L1
cache maps to only one entry of the directory. Therefore, the
number of entries required by each directory bank will be s� a.
In particular, each directory bank must have s=n sets of n� a
ways each one. The size required by this structure is c, which
scales with the number of tiles of the system. The proposed direc-
tory organization uses an interleaving where the ln bits belong to
the cache set fields.

3.2. Conditions required for ensuring directory scalability

A distributed directory organization with the same number of
entries as the private caches needs a function that maps private
cache entries to directory entries so that (1) a particular memory
block always has its duplicate tag in the same directory bank
(the home one) regardless of the cache wherein the block is stored
and (2) the function is injective, i.e., one-to-one. The first rule guar-
anties that sharing information for a particular block can always be
found in its home bank. The second one ensures that the number of
directory entries corresponds to the number of cache entries, thus
achieving the scalability of the directory.

To describe the aforementioned function, let’s first consider sys-
tems with just one level of direct mapped private caches. Each
cache entry can be uniquely defined by a tuple of ðcore; setÞ and,
in the same way, each directory entry can be defined by the tuple
ðhome; setÞ. Due to the first rule, the bits used to select the home
cannot be taken from the bits used to identify the core since, in
that case, a block can map to any tile depending on the cache
where it is stored. Therefore, the bits used to select the home must
be a subset of the bits used to select the cache set, i.e.,
bits home # bits private cache set. This mapping rule guaranties a
scalable distributed directory organization. However it also has a
restriction. More specifically, it can only be used when the number

l bl sl t

l bl sl t

l n

l n
offset

offsetcache setcache tag

directory setdirectory tagDirectory (j)

Cache (i)

Fig. 3. Mapping between cache entries and directory entries.

A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87 81
of sets of the private cache is greater or equal than the number of
tiles of the system ðnum tiles 6 num private cache setsÞ. Later on,
this restriction will be discussed more thoroughly.

When we consider associative caches, each cache entry can be
defined by the tuple ðcore; set;wayÞ, and each directory entry by
the ðhome; set;wayÞ one, assuming that both structures have the
same associativity. Again, due to the first rule, the bits used to se-
lect the home cannot be taken neither from the bits identifying the
core nor from the bits identifying the way, so that the rule that
guaranties scalability is respected.

Finally, regarding private caches organized in several cache lev-
els, if the cache levels are inclusive the scalability is achieved in the
same way as with just the last (larger) cache level. However, when
the inclusion policy is not ensured, each home tile should have as
many directory banks as caches in the private hierarchy, each one
with the same number of entries as each cache. In this case, the
scalability can be achieved when the number of tiles is not greater
than the number of sets of the small cache in the hierarchy.

By using this mapping function we can see that the associativity
required for each directory bank is the same as the one used for the
private caches. Therefore, the associativity of the directory can be
reduced from n� a, as discussed in the previous section, to a by
taking the number of the tile in which the block is cached as part
of the set bits. In this way, the number of sets grows from s=n to
s. In conclusion, each directory bank requires the same number
of sets and associativity as a private cache.

Fig. 3 shows the mapping function for scalable distributed
directory organizations. Home tiles are chosen by taking ln bits of
the ones used to select the set in the private cache (e.g., the less
significant ones). Moreover, the set in a directory bank is obtained
from both the remaining bits of the cache set and the number of
the tile where the block is stored. Likewise, ln bits of the directory
set are used to identify the tile that holds the copy in its private
cache. Although in the scheme the ln bits are the less significant
ones of the set field, they can be any set of bits of that field.

When the number of tiles n is greater than the number of sets of
the L1 cache s, the number of entries required by the directory is
n� a, but this is not the common case. In any case, the number
of entries required by this directory organization is maxfs;ng � a,
that is to say, the number of entries completely scales for values
of s greater than n.

3.3. Directory structure

In the previous sections we have described how the number of
entries of the directory can scale with the number of tiles. How-
ever, the size of the entries commonly used to keep the directory
information does not scale with the number of tiles (e.g., n for a
full-map sharing code, or p� log2n when p pointers are used to lo-
cate the cached copies). One way to keep constant the size of the
directory entries is storing duplicate tags. Particularly, our proposal
for a scalable directory stores in each entry the tag of the block plus
two extra bits. The first bit is the valid or presence bit. If this bit is
set the block is known to be stored in the cache entry associated
with this directory entry. Remember that each directory entry is
associated with only one cache entry (injective function). This bit
is used to locate all the copies of the block on a write miss. The sec-
ond bit is the ownership bit and when it is set the cache entry is
known to have the ownership of the block. This bit is used to en-
able the implementation of a MOESI protocol, and it identifies
the cache that must provide the data block on a cache miss.

Since we only store the tag of the block and two more bits in
each directory entry, and the tag bits keep invariant with the num-
ber of tiles, the size of the directory keeps constant as the number
of cores of the CMP increases. The total size of each directory bank
is c � ðlt þ 2Þ.

Considering the mapping function presented in the previous
section, the coherence information for a particular block can be ob-
tained from the home directory bank as shown in Fig. 4. A block is
stored in a particular private cache whether there is a hit in the
directory bank for the corresponding set and the valid bit is en-
abled. The corresponding set is calculated by replacing the ln bits
that identify the home directory with the ln bits that identify the
tile which contains that cache. If the ownership bit is also enabled,
that cache is the owner of the block. Therefore, the identifier of the
set for a block depends on the cache where it is stored. By search-
ing this information in the corresponding n directory entries (one
per each private cache) the complete directory information is ob-
tained. This search can be performed in parallel to accelerate the
access to the directory information.

Updating the directory information only requires to modify few
bits. On a write miss, invalidation messages are sent to the sharers
and their corresponding presence bits are disabled. The directory
entry for the new owner of the block is with the tag of the block
and both the valid and the ownership bits are enabled. Adding a
new sharer only requires writing the tag of the block in the corre-
sponding directory entry and setting the valid bit.
3.4. Cache-coherence protocol

The cache-coherence protocol required by this directory organi-
zation is similar to the required by a directory-based protocol that
uses directory caches with a non-scalable full-map sharing code in
each entry. However, the use of a limited number of duplicate tags
requires some extra modifications.

As happens in Piranha [5] and Everest [21], replacements of
shared blocks must be notified to the home tile. These notifications
are necessary to deallocate an old directory entry, in order to allow
the new block to use that entry. Notifications of these evictions
make the cache-coherence protocol more complex. Moreover, to
avoid race conditions replacements are usually performed in three
phases, a fact that entails extra network traffic.

In systems with unordered networks, as tiled CMPs are, the re-
quest for a block can reach the home tile before the replacement
caused by that block. If the directory set for that block has valid
information in all the ways, the request must wait until the
replacement deallocates one of the entries. This can result in extra
cache miss latency. To avoid these issues and to remove the net-
work traffic generated by replacements, we propose the implicit
replacements mechanism described in the following section.
4. Implicit replacements

The proposed directory organization allows us to slightly mod-
ify the coherence protocol in order to remove the messages caused
by replacements. This is achieved by performing the replacements
in an implicit way along with the requests which cause them.

There are two main observations that allow our proposal for
scalable directory organization to support implicit replacements.

l bl sl t

offsetcache setcache tag

l n

Set

 ...

00...00

00...01

00...10

11...11

O PTagl
n

l
n

l
n

l
s

l
s

l
s

l
s

l
n

−
Home directory bank

...111

...000

...001N accesses

Id tile

Fig. 4. Finding coherence information (P = presence bit; O = ownership bit).

Fig. 5. Differences between the proposed coherence protocol and a traditional
coherence protocol. (a) Traditional replacements. (b) Implicit replacements.

82 A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87
Firstly, since we employ the bits used to select the set of private ca-
ches to associate cache entries to directory entries we ensure that
the evicted and the requested blocks map to the same home tile
and, therefore, to the same directory bank. Note that if a coarse-
grained interleaving was chosen, these blocks could map to differ-
ent directory banks (depending on the value of the tag). Secondly,
each cache entry is associated with only one directory entry (the
same way too), and vice versa. In this way, both the directory
and the requesting cache know the address of the evicted block
and it is not necessary to attach it to the request messages. There-
fore, the size of coherence messages does not change considerably.
It is only necessary the addition of a field informing about the way
within the set where the requested block is going to be stored (2
bits in our case), which is the same way where its duplicate tag
is stored in the directory.

In Fig. 5a, we can see how a replacement is usually performed.
When a block must be stored in cache and the corresponding set is
full, the less recently used block must be evicted (we assume a
pseudo LRU eviction policy). In current directory protocols evic-
tions of shared blocks are usually performed transparently without
informing the directory. However, as previously discussed, when
the directory is organized with duplicate tags, replacements must
be notified even for blocks in shared state. Moreover, evictions of
dirty blocks must writeback data to the next cache level. For sim-
plicity, these writebacks are performed in a three-phase transac-
tion as illustrated in Fig. 5a (replacement). First, the cache asks
the home tile permission to writeback the block (1 Put). Then the
home tile confirms the transaction ((2 Ack), and finally the block
is sent to the next cache level ((3 WrB). Fig. 5a (Request) shows
how a cache-to-cache transfer miss is solved. Requests are sent
to the home tile to get the directory information (1 Get), and then
are forwarded to the owner cache (2 Fwd) where the data is pro-
vided (3 Data), or the data is directly provided from the L2 cache
in the home tile. Finally, the requesting cache informs the home
tile that another cache miss for this memory block can be pro-
cessed (4 Unbl).

Fig. 5b shows how implicit replacements are performed along
with the requests that cause them. On each cache miss an MSHR
(Miss Status Hold Register) entry is allocated with the information
about the request. However, in our proposal we also need to store
the address of the evicted block (if any), so that our MSHR has two
address fields instead of one. If there is an evicted block we also
allocate a new entry for it in the MSHR indicating the state of that
block. Moreover, the way where the new block will be stored is
specified in the request message (1 Get/Put). When this message
reaches the home tile, another two MSHR entries must be allo-
cated, as usual. One of the entries stores both addresses. Note that
storing the address of the evicted block can be replaced with a
pointer to the MSHR entry where this address is stored, thus reduc-
ing its size. The acknowledge of the replacement is forwarded
along with the request (2 Fwd/Ack). When the data arrives to the
requesting cache (3 Data/Ack) both MSHRs are deallocated and
the writeback is performed along with the unblock message (4
Unbl/WrB), thus allowing the directory to process the subsequent
requests for both blocks. Another advantage of this protocol is that
it avoids the race conditions caused by replacements that were dis-
cussed earlier, because now the replacement is implicit into the re-
quest and, therefore, both messages reach the home tile at the
same time.

While the described mechanism is employed for evictions of
dirty blocks, evictions of shared blocks are avoided in an easier
way since we know the way within the cache set where the block
is going to be stored. When the request arrives to the home tile, the
directory information for the new block will be stored in the same
way as in the cache. Therefore, the tag of the new block replaces
the tag of the evicted block, performing the notification without
requiring extra coherence messages.
5. Simulation environment

We evaluate our proposals with full-system simulation using
Virtutech Simics [17] extended with Multifacet GEMS 1.3 [18].
GEMS provides a detailed memory system timing model which ac-
counts for all protocol messages and state transitions. Since the

2 4 8 16 32 64 128 256
Number of cores

0.2

2.0

20.0

200.0

M
em

or
y

O
ve

rh
ea

d
(%

) FullMap-Inclusive
FullMap
CoarseVector (K=4)
LimitedPointers (P=2)
DupTag

2 4 8 16 32 64 128 256
Number of cores

0.2

2.0

20.0

200.0

A
re

a
O

ve
rh

ea
d

(%
)

FullMap-Inclusive
FullMap
CoarseVector (K=4)
LimitedPointers (P=2)
DupTag

Fig. 6. Directory memory overhead as a function of the number of tiles. (a)
Overhead in terms of bits. (b) Overhead in terms of area ðmm2Þ.

A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87 83
network modeled by GEMS 1.3 is not very precise, we have ex-
tended it with SiCoSys [23], a detailed interconnection network
simulator that allows to take into account most of the VLSI imple-
mentation details with high precision.

We simulate tiled CMP systems with one level of private cache
and a shared cache distributed across the tiles. Since we consider
tiled CMP designs built from a relatively large number of cores,
each tile contains an in-order processor core, thus offering better
performance/Watt ratio than a small number of complex cores
would obtain. In particular, to show that our proposals scale with
the number of tiles we present simulation results for systems with
both 16 and 32 tiles.

Table 1 shows the values of the main parameters used for the
evaluation. Cache latencies have been calculated using the CACTI
5.3 tool [31] for 45 nm technology. We also have used CACTI to
estimate the area of the different directory structures. In this study,
we assume that the length of the physical address is 40 bits like, for
example, in the SUN T2 architecture [29]. Moreover, we have
implemented all the protocols evaluated in Section 6 by using
the language for implementing cache-coherence protocols (SLICC)
included in GEMS. These implementations have been exhaustively
checked using a tester program provided by GEMS that checks all
race conditions to raise any incoherence.

The ten applications used in our simulations cover a variety of
computation and communication patterns. Barnes (8192 bodies, 4
time steps), FFT (256K points), Ocean (130 � 130 ocean), Radix
(1M keys, 1024 radix), Raytrace (teapot), Volrend (head) and
Water-Nsq (512 molecules, 4 time steps) are scientific applications
from the SPLASH-2 benchmark suite [33]. Unstructured (Mesh.2K, 5
time steps) is a computational fluid dynamics application. MPGdec
(525_tens_040.m2v) and MPGenc (output of MPGdec), are multime-
dia applications from the APLBench suite [15]. We account for the
variability in multithreaded workloads by doing multiple simula-
tion runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.
The experimental results reported in this paper correspond to the
parallel phase of each program.
6. Evaluation results

This section analyzes the area requirements of the proposed
directory organization and the network traffic that can be saved
by the implicit replacements mechanism. Area requirements have
Table 1
System parameters.

Memory parameters (GEMS)
Processor frequency 4 GHz
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split L1 I & D caches 64KB, 4-way
L1 cache hit time 2 (tag) + 2 (data) cycles
Shared unified L2 cache 512KB/tile, 8-way
L2 cache hit time 2 (tag) + 4 (data) cycles
Directory cache hit time 2 Cycles
Memory access time 200 Cycles

Network parameters (SICOSYS)
Network frequency 2 GHz
Topology 2-Dimensional mesh
Switching technique Wormhole
Routing technique Deterministic X-Y
Data and control message size 4 Flits and 1 flit
Routing time 1 Cycle
Switch time 1 Cycle
Link latency (one hop) 2 Cycles
Link bandwidth 1 Flit/cycle
been calculated using the CACTI tool, whilst network traffic has
been measured using the GEMS simulator enhanced with SiCoSys.

6.1. Directory memory overhead

In this section, we study the directory memory overhead of our
proposed organization compared to some of the schemes described
in Section 2. Fig. 6 shows this overhead as a function of the number
of tiles in the system. The directory organizations shown in the
graphs are FullMap-Inclusive, FullMap, CoarseVector (K = 4), limited
pointers (P = 2), and finally the organization presented in this work
(DupTag). The characteristics of all these schemes are described be-
low. The overhead of the directory structure has been calculated
with respect to both the L1 and the L2 caches taking into account
the size of the tag field. Fig. 6a shows the directory memory over-
head in terms of number of bits added by the coherence informa-
tion (and the tags that the storage of the coherence information
entails). Fig. 6b shows the directory area overhead in terms of
mm2. For both graphs, we assume a tiled CMP with the parameters
described in the previous section.

FullMap-Inclusive is currently used in some proposed tiled CMPs
in which the L1 and the L2 are inclusive (the L2 contains all blocks
held in the private L1 caches). The directory is stored in the tags’
part of the L2 caches, thus removing the need of an extra directory
cache. As discussed in Section 2.2, enforcing the inclusion property
between private and shared caches may not be scalable. Moreover,
the use of a full-map sharing code and the fact that it is introduced
one sharing code field per L2 cache entry makes the overhead of
this scheme increase linearly with the number of cores.

Another approach aimed at reducing the directory storage is to
employ on-chip directory caches. For this evaluation, we assume
directory caches with the same number of entries (same number

Barnes
FFT

MPGdec
MPGenc

Ocean
Radix

Raytrace

Unstructured
Volrend

Water-N
sq

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 n
et

w
or

k
m

es
sa

ge
s

Requests&Replies
Invalidations&Acks
Replacements16 cores

1. Unlimited-FullMap
2. Unlimited-CV-4
3. Unlimited-LP-2

4. DupTag-Base
5. DupTag-ImplicitSh
6. DupTag-ImplicitAll

Barnes
FFT

MPGdec
MPGenc

Ocean
Radix

Raytrace

Unstructured
Volrend

Water-N
sq

Average
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 n
et

w
or

k
m

es
sa

ge
s

Requests&Replies
Invalidations&Acks
Replacements32 cores

1. Unlimited-FullMap
2. Unlimited-CV-4
3. Unlimited-LP-2

4. DupTag-Base
5. DupTag-ImplicitSh
6. DupTag-ImplicitAll

Fig. 7. Reductions in the number of coherence messages. (a) 16-tiled CMP. (b) 32-tiled CMP.

84 A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87
of sets and associativity) as a private L1 cache. Note that due to the
limited number of entries used in each directory cache, it could be
needed to re-use an existing entry to store directory information
for a new block. This implies invalidating all copies of a block when
its directory information is evicted from the directory cache. How-
ever, this option can increase the miss rate of private caches. An-
other option is keeping an off-chip directory with the evicted,
but this scheme results in extra storage, or broadcasting requests
to all cores when a directory entry for a particular block is not
found in the directory cache, but this approach results in extra net-
work usage. As discussed in Section 3.1, for a fine-grained inter-
leaving and an associativity of a� n, all necessary directory
information can be stored, but in this case the associativity of the
directory cache is also not scalable.

In any case, when these directory caches store a full-map shar-
ing code (FullMap case), the area overhead grows up to 20% for 256
tiles, which is prohibitive. Compressed sharing codes can reduce
this overhead by losing accuracy. In CoarseVector (K = 4) the shar-
ing code is compressed by using one bit per each group of four
tiles. The bit is set if at least one of the four tiles holds a copy of
the block. Although the area of the directory structure is reduced,
it still increases with the number of tiles. In limited pointers
(P = 2) only two pointers are used to identify the caches that share
each memory block. When the number of sharers is greater than
two, writes are performed by broadcasting invalidation messages
(a broadcast bit is also required per entry). The area required by
this organization is 2� log2n, which scales better than the former
sharing codes. However, differently from the proposed organiza-
tion, compressed sharing codes fall into extra coherence messages
since they do not store precise information about all the caches
that hold the blocks.

Finally, we can see that by combining a fine-grained interleav-
ing and duplicate tags (DupTag case) we can achieve a completely
scalable directory organization which keeps on-chip all the infor-
mation necessary to keep cache coherence and, therefore, neither
extra invalidation messages nor off-chip directory structures are
required. The area overhead of this directory organization is
0.56% when compared to the area taken by L1 and L2 caches.

6.2. Reductions in number of coherence messages

In this section, we evaluate the results in terms of number of
messages generated by the cache-coherence protocol. The reduc-
tion in number of messages translates into savings in power con-
sumption in the interconnection network, which has been
previously reported to constitute a significant fraction (approach-
ing 50% in some cases) of the overall chip power [16,32]. Regarding
performance (execution time), all the protocols achieve similar
results.

Fig. 7 shows the number of coherence messages generated by
several directory organizations. This number has been normalized
with respect to a directory-based protocol that uses unlimited on-
chip directory caches with a full-map sharing code (Unlimited-Full-
Map case). Unlimited-CV-4 and Unlimited-LP-2 represent configura-
tions with unlimited directory caches that store a coarse vector
with groups of four tiles and a limited pointer scheme with two
pointers, respectively. Note that by simulating unlimited directory
caches we do not account for the extra invalidation messages that
are necessary when a directory entry has to be evicted. Finally, we
show the directory organization based on duplicate tags (DupTag-
Base), and the optimizations entailed by the implicit replacement
mechanism. DupTag-ImplicitSh only removes evictions of shared
blocks. In DupTag-ImplicitAll, all evictions are performed along with
request messages.

First, we can observe that the number of invalidation messages
generated by the protocols with compressed sharing codes is

A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87 85
greater than the number of invalidation messages generated by a
protocol with a precise sharing code. Although the coarse vector
sharing code entails less messages than the limited pointer one
when 16 cores are considered, it is more traffic-efficient for a 32-
core configuration. The DupTag configurations slightly reduce the
number of invalidation messages compared to Unlimited-FullMap.
This is because replacements of shared blocks are not notified for
the Unlimited-FullMap scheme and, therefore, unnecessary invali-
dation messages, which find the block evicted from cache, are is-
sued for some misses.

On the other hand, the implicit replacements mechanism re-
moves the coherence messages caused by evictions. In the three
first configurations shown in Fig. 7, evictions of shared blocks are
performed without informing the directory structure. However,
as discussed in Section 3.4, an organization based on duplicate tags
requires informing the directory in case of these evictions, which
increases network traffic. DupTag-ImplicitSh performs evictions of
shared blocks in an implicit way, which reduces significantly the
traffic caused by replacements. DupTag-ImplicitAll is more aggres-
sive and removes all replacement messages by also merging evic-
tions of private or owned blocks with the request that causes the
eviction.

In general, the directory organization based on duplicate tags is
the one with lowest invalidation messages and the implicit
replacements mechanism is able to remove the coherence mes-
sages caused by L1 replacements. Average reductions of 15% are
obtained for a 16-core configuration compared to Unlimited-Full-
Map. Moreover, if we compare the implicit replacements mecha-
nism with the DupTag-Base configuration we can save 35% of
coherence messages on average. If we consider 32 cores, the sav-
ings are slightly lower (13% compared to Unlimited-FullMap and
32% compared to DupTag-Base) because the input size of the appli-
cations is the same as having 16 cores, but it is distributed among
more cores. Since each core has a smaller working set, the number
of L1 replacements is reduced.
7. Managing scalability limits and locality issues

The directory organization presented in this work has two main
limitations, which are discussed in this section. First, the scalability
is limited to configurations for which the number of private cache
sets is greater than the number of tiles. Second, we assume that
memory blocks are distributed among the tiles in a round-robin
fashion with a fine-grained interleaving. This distribution does
not consider the locality of the accesses to the shared cache, and
may result in longer latencies for L2 cache accesses.
7.1. Scalability limits

We will first focus on the scalability limitations. When the num-
ber of cores grows up to the point where there are more cores than
cache sets, the number of sets required by each directory bank to
allow it to store all duplicate tags must be equal to the number
of cores, instead of the number of cache sets. More specifically,
the number of entries required by each directory bank is
maxðc;n� aÞ, where c is the number of entries of a private cache,
n is the number of tiles in the system, and a is the associativity
of private caches.

Nowadays tiled CMPs could be designed with this scalable
directory. One example is the Tilera tile64 [6], which is a 64-tile
CMP with 8KB direct mapped L1 instruction and data caches and
64KB 2-way associative L2 caches per tile. Both caches store blocks
of 64 bytes. As we can see in Fig. 8a, cache coherence could be kept
by using this directory organization, while still being scalable for
up to 128 tiles if L2 caches are shared. If we consider private L2 ca-
ches (as Tilera tile64 does) the scalability limit is 512 tiles. Obvi-
ously, with private L2 caches, the directory structure requires
more area, since the amount of blocks that can be allocated on
private caches is higher. Considering the system that we have
simulated in this work (Fig. 8b), the directory organization can
scale up to 256 tiles (or 1024 in case of implementing private L2
caches). The PrivateL2-NI line in Fig. 8a represents the scalability
of the directory when L1 and L2 private caches do not enforce
inclusion.

Because it is expected that the number of tiles will increase
while the size of the L1 caches will keep more or less constant, this
directory organization could have only limited scalability. This may
be partly remedied for future systems if they include several levels
of inclusive private caches. Fortunately, it is expected that the next
generation of commodity multiprocessors include two or more lev-
els of inclusive private caches on-chip and a shared last-level on-
chip cache, as happens in the new Intel Nehalem [11] and AMD
Barcelona CMP architectures. In this way, the number of sets of
the last-level private cache can increase as the integration scale be-
comes higher. As we discussed in Section 3, under this scenario the
directory structure scales up to a number of tiles less or equal than
the number of sets of the last-level of private caches and, therefore,
it will be able to scale for a larger number of tiles.

7.2. Locality of the accesses to the shared cache

Regarding the locality problem, there are two main ways of
reducing the latency of the accesses to a shared L2 cache. One of
them is to map memory regions to the tile whose processor is more
frequently requesting them (e.g., a first-touch policy [8]). Another
approach is to use the local L2 cache bank as a victim cache, to
avoid accessing the home tile for some L1 misses (i.e., victim rep-
lication [34]).

A first-touch policy maps a memory page to a tile according to
the first reference to that page. On a page fault, the OS looks for a
free physical page address that maps to the tile whose processor is
requesting the block. Since address translation is performed at
page size granularity, the granularity of the interleaving must be
at least the size of a memory page. Under these assumptions, the
bits that identify the home tile cannot be the less significant ones,
i.e., they cannot be chosen from the page offset. As discussed in
Section 3.1 a coarser granularity for the interleaving restricts even
more the scalability of the directory.

A solution to this scalability problem is to change the private
cache indexing, i.e., the address bits used to define the cache set.
If these bits are chosen from the bits that identify the home tile,
the scalability will be the same as if block-grained interleaving
were used. Remember that the rule to achieve a scalable directory
is bits home # bits private cache set. Unfortunately, this private
cache indexing can increase the cache miss rate. This happens be-
cause the same bits used for identifying the home tile are used for
indexing the block in the private cache, and we are trying to assign
the same local home to the blocks requested by the local cache
(first-touch policy). Therefore, there may be some sets that are
almost unused in the private cache, thus impacting in cache hit
rate.

On the other hand, victim replication is an approach that im-
proves locality without changing the home directory, but instead,
replicating blocks in the local shared slice when they are evicted
from a private cache. This approach allows to use the described
scalable directory organization. However, since a block can be
either in any private cache or in any slice of the shared cache,
the number of entries of each directory slice must be the same as
the number of entries of the private and shared caches, as previ-
ously described for a non-inclusive private cache hierarchy (Priva-
teL2-NI label in Fig. 8).

2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of cores

0.2

2.0

20.0

A
re

a
O

ve
rh

ea
d

(%
) PrivateL2

PrivateL2-NI
SharedL2

2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of cores

0.2

2.0

20.0

A
re

a
O

ve
rh

ea
d

(%
)

PrivateL2
PrivateL2-NI
SharedL2

Fig. 8. Directory memory overhead for two different systems and several config-
urations. (a) Tilera Tile64: 8KB direct mapped L1 cache and 64KB 2-way associative
L2 cache. (b) Simulated tiled CMP: 64KB 4-way associative L1 cache and 512KB 8-
way associative L2 cache.

86 A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87
8. Conclusions and future work

In CMP architectures, the cache-coherence protocol is a key
component since it can add requirements of area or power con-
sumption to the final design and, therefore, could restrict severely
its scalability. Although directory-based cache-coherence protocols
are the best choice when designing many-core CMPs, the memory
overhead introduced by the directory structure may not scale
gracefully with the number of cores, specially when the coherence
information is kept by using a full-map sharing code.

In this work, we demonstrate that a directory organization
based on duplicate tags, which are distributed among the tiles of
a tiled CMP by following a particular granularity for the directory
interleaving, can scale up to a certain number of cores. The rule
to achieve this scalability is bits home # bits private cache set.
Therefore, a directory can scale meanwhile the number of
cores of the CMP is less than the number of sets of the private L1
cache.

We show that, under these conditions, the size of each directory
bank does not depend on the number of tiles in the system. The to-
tal size of each directory bank in the studied organization is
c � ðlt þ 2Þ, where c is the number of entries of the private L1 cache
and lt is the size of the tag field. We also have measured the area
overhead of the proposed directory organization obtaining an over-
head of 0.56% with respect to the area taken by the on-chip data
caches. Moreover, since the structure of each directory bank does
not change with the number of tiles, the same building block could
be used for systems with different number of tiles, thus making
easier the design of tiled CMPs with varying number of tiles.

We have also redesigned the cache-coherence protocol to take
full advantage of this directory organization. In particular, since
each directory entry is mapped to only one cache entry, we can
perform the replacements in an implicit way along with the re-
quests which cause them, thus saving the network traffic intro-
duced by replacements. This technique called implicit
replacements leads to average reductions of 15% and 13% for 16
and 32-core configurations compared to a traditional full-map
directory with unlimited caches. Moreover, compared to a direc-
tory organization based on duplicate tags that needs to inform
the directory about evictions of shared blocks, the implicit replace-
ments mechanism saves 35% of coherence messages on average for
a 16-core configuration and 32% when 32 cores are considered.
These reductions in network traffic finally results in significant
savings in power consumption.

Finally, we also study the constrains of the proposed scalable
directory organization and discuss how future chip multiproces-
sors can deal with them.

As part of our future work, we plan to design an approach with
the best characteristics of fine-grained interleaving, i.e., the scala-
bility of the directory, and coarse-grained interleaving, i.e., the
reductions in the latency of the accesses to the shared cache.
Although we have pointed out that the use of techniques like vic-
tim replication could achieve a good trade-off, it would be very
interesting to perform a deeper study on this area. On the other
hand, a detailed analysis of the particular amount of power that
is saved with the implicit replacements mechanism is also left as
future work.

Acknowledgements

This work has been jointly supported by Spanish Ministry of
Ciencia e Innovación under Grant ‘‘TIN2006-15516-C04-03” and
European Comission FEDER funds under Grant ‘‘Consolider Inge-
nio-2010 CSD2006-00046”. Alberto Ros is supported by a research
Grant from Spanish MEC under the FPU National Plan (AP2004-
3735).

References

[1] Manuel E. Acacio, José González, José M. Garcı́a, and José Duato, A new scalable
directory architecture for large-scale multiprocessors, in: 7th Int’l Symp. on
High-Performance Computer Architecture (HPCA), January 2001, pp. 97–106.

[2] Manuel E. Acacio, José González, José M. Garcı́a, José Duato, A two-level
directory architecture for highly scalable cc-NUMA multiprocessors, IEEE
Transactions on Parallel and Distributed Systems (TPDS) 16 (1) (2005) 67–79.

[3] Anant Agarwal, Richard Simoni, John L. Hennessy, Mark A. Horowitz, An
evaluation of directory schemes for cache coherence, in: 15th Int’l Symp. on
Computer Architecture (ISCA), May 1988, pp. 280–289.

[4] Mani Azimi, Naveen Cherukuri, Doddaballapur N. Jayasimha, et al., Integration
challenges and tradeoffs for tera-scale architectures, Intel Technology Journal
11 (3) (2007) 173–184.

[5] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNamara, et al., Piranha: a
scalable architecture based on single-chip multiprocessing, in: 27th Int’l Symp.
on Computer Architecture (ISCA), June 2000, pp. 12–14.

[6] Shane Bell, Bruce Edwards, John Amann, et al., TILE64™ processor: a 64-core
SoC with mesh interconnect, in: IEEE Int’l Solid-State Circuits Conference
(ISSCC), January 2008, pp. 88–598.

[7] David Chaiken, John Kubiatowicz, Anant Agarwal, LimitLESS directories: a
scalable cache coherence scheme, in: 4th Int’l Conference on Architectural
Support for Programming Language and Operating Systems (ASPLOS), April
1991, pp. 224–234.

[8] Sangyeun Cho, Lei Jin, Managing distributed, shared L2 caches through OS-
level page allocation, in: 39th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), December 2006, pp. 455–465.

[9] Anoop Gupta, Wolf-Dietrich Weber, Todd C. Mowry, Reducing memory traffic
requirements for scalable directory-based cache coherence schemes, in: Int’l
Conference on Parallel Processing (ICPP), August 1990, pp. 312–321.

[10] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, Stephen
W. Keckler, A NUCA substrate for flexible CMP cache sharing, in: 19th Int’l
Conference on Supercomputing (ICS), June 2005, pp. 31–40.

A. Ros et al. / Journal of Systems Architecture 56 (2010) 77–87 87
[11] Intel Corporation, White paper, First the Tick, Now the Tock: Next Generation
Intel Microarchitecture, Nehalem, April 2009.

[12] Natalie D. Enright Jerger, Li-Shiuan Peh, Mikko H. Lipasti, Virtual tree
coherence: leveraging regions and in-network multicast tree for scalable
cache coherence, in: 41th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
November 2008, pp. 35–46.

[13] Jinseok Kong, Pen-Chung Yew, Gyungho Lee, Minimizing the directory size for
large-scale shared-memory multiprocessors, IEICE Transactions on
Information and Systems E88-D (11) (2005) 2533–2543.

[14] Hung Q. Le, William J. Starke, J. Stephen Fields, Francis P. O’Connell, Dung Q.
Nguyen, Bruce J. Ronchetti, Wolfram M. Sauer, Eric M. Schwarz, Michael T.
Vaden, IBM POWER6 microarchitecture, IBM Journal of Research and
Development 51 (6) (2007) 639–662.

[15] Man-Lap Li, Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen, Eric Debes, The
ALPBench benchmark suite for complex multimedia applications, in: Int’l
Symp. on Workload Characterization, October 2005, pp. 34–45.

[16] Nir Magen, Avinoam Kolodny, Uri Weiser, Nachum Shamir, Interconnect-
power dissipation in a microprocessor, in: Int’l Workshop on System Level
Interconnect Prediction (SLIP’04), February 2004, pp. 7–13.

[17] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, et al., Simics: a full
system simulation platform, IEEE Computer 35 (2) (2002) 50–58.

[18] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, et al., Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset, Computer
Architecture News 33 (4) (2005) 92–99.

[19] Michael R. Marty, Mark D. Hill, Virtual hierarchies to support server
consolidation, in: 34th Int’l Symp. on Computer Architecture (ISCA), June
2007, pp. 46–56.

[20] Shubhendu S. Mukherjee, Mark D. Hill, An evaluation of directory protocols for
medium-scale shared-memory multiprocessors, in: 8th Int’l Conference on
Supercomputing (ICS), July 1994, pp. 64–74.

[21] Ashwini K. Nanda, Anthony-Trung Nguyen, Maged M. Michael, Douglas J.
Joseph, High-throughput coherence control and hardware messaging in
Everest, IBM Journal of Research and Development 45 (2) (2001) 229–244.

[22] Brian W. O’Krafka, A. Richard Newton, An empirical evaluation of two
memory-efficient directory methods, in: 17th Int’l Symp. on Computer
Architecture (ISCA) IEEE/ACM, June 1990, pp. 138–147.

[23] Valentı́n Puente, José A. Gregorio, Ramón Beivide, SICOSYS: an integrated
framework for studying interconnection network in multiprocessor systems,
in: 10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing, January 2002, pp. 15–22.

[24] Alberto Ros, Manuel E. Acacio, José M. Garcı́a, A novel lightweight directory
architecture for scalable shared-memory multiprocessors, in: 11th Int’l Euro-
Par Conference, August 2005, pp. 582–591.

[25] Alberto Ros, Manuel E. Acacio, José M. Garcı́a, Scalable directory organization
for tiled cmp architectures, in: Int’l Conference on Computer Design (CDES),
July 2008, pp. 112–118.

[26] Manish Shah, Jama Barreh, Jeff Brooks, et al., UltraSPARC T2: a highly-
threaded, power-efficient, SPARC SoC, in: IEEE Asian Solid-State Circuits
Conference, November 2007, pp. 22–25.

[27] Richard Simoni, Cache Coherence Directories for Scalable Multiprocessors,
Ph.D. Thesis, Stanford University, 1992.

[28] Richard Simoni, Mark A. Horowitz, Dynamic pointer allocation for scalable
cache coherence directories, in: Int’l Symp. on Shared Memory
Multiprocessing, April 2001, pp. 72–81.

[29] Sun Microsystems, Inc., Santa Clara, CA 95054, OpenSPARC™ T2 System-on-
Chip (SoC) Microarchitecture Specification, December 2007.

[30] Michael B. Taylor, Jason Kim, Jason Miller, et al., The raw microprocessor: a
computational fabric for software circuits and general purpose programs, IEEE
Micro 22 (2) (2002) 25–35.

[31] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, Norman P.
Jouppi, Cacti 5.1. Technical Report HPL-2008-20, HP Labs, April 2008.

[32] Hangsheng Wang, Li-Shiuan Peh, Sharad Malik, Power-driven design of router
microarchitectures in on-chip networks, in: 36th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), December 2003, pp. 105–111.

[33] Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder P. Singh, Anoop Gupta,
The SPLASH-2 programs: Characterization and methodological considerations,
in: 22nd Int’l Symp. on Computer Architecture (ISCA), June 1995, pp. 24–36.
[34] Michael Zhang, Krste Asanovic, Victim replication: maximizing capacity while
hiding wire delay in tiled chip multiprocessors, in: 32nd Int’l Symp. on
Computer Architecture (ISCA), June 2005, pp. 336–345.

Alberto Ros received the MS degree in Computer Sci-
ence from the Universidad de Murcia, Spain, in 2004. In
2005, he joined the Computer Engineering Department
at the same university as a Ph.D. student with a fel-
lowship from the Spanish government, receiving the
Ph.D. degree in Computer Science in 2009. He is working
on designing and evaluating scalable coherence proto-
cols for shared-memory multiprocessors. His research
interests include cache coherence protocols, memory
hierarchy designs, and scalable cc-NUMA and chip
multiprocessor architectures.
Manuel E. Acacio received the MS and Ph.D. degrees in

Computer Science from the Universidad de Murcia,
Spain, in 1998 and 2003, respectively. He joined the
Computer Engineering Department, Universidad de
Murcia, in 1998, where he is currently an Associate
Professor of computer architecture and technology. His
research interests include prediction and speculation in
multiprocessor memory systems, multiprocessor-on-a-
chip architectures, power-aware cache-coherence pro-
tocol design, fault tolerance, and hardware transactional
memory systems.
José M. García received a MS degree in Electrical Engi-

neering and a Ph.D. degree in Computer Engineering in
1987 and 1991, respectively, both from the Technical
University of Valencia (Spain). He is currently serving as
Dean of the School of Computer Science at the Univer-
sity of Murcia (Spain). From 1995 to 1997 he served as
Vice-Dean of the School of Computer Science, and also
as Director of the Computer Engineering Department
from 1998 to 2004. He is professor in the Department of
Computer Engineering, and also Head of the Research
Group on Parallel Computer Architecture.
He has developed several courses on Computer Struc-

ture, Peripheral Devices, Computer Architecture, Parallel Computer Architecture
and Multicomputer Design. He specializes in computer architecture, parallel pro-
cessing and interconnection networks. His current research interests lie in high-

performance coherence protocols and fault tolerance for Chip Multiprocessors
(CMPs), and parallel applications for GPUs. He has published more than 110 ref-
ereed papers in different journals and conferences in these fields.
He is member of HiPEAC, the European Network of Excellence on High Performance
and Embedded Architecture and Compilation. He is also member of several inter-
national associations such as the IEEE and ACM, and also member of some European
associations (Euromicro and ATI).

	A scalable organization for distributed directories
	Introduction
	Background on directory organizations
	cc-NUMA architectures
	CMP architectures

	Scalable directory organization
	Granularity of directory interleaving
	Conditions required for ensuring directory scalability
	Directory structure
	Cache-coherence protocol

	Implicit replacements
	Simulation environment
	Evaluation results
	Directory memory overhead
	Reductions in number of coherence messages

	Managing scalability limits and locality issues
	Scalability limits
	Locality of the accesses to the shared cache

	Conclusions and future work
	Acknowledgements
	References

