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In glueless shared-memory multiprocessors where cache coherence is usually maintained using a
directory-based protocol, the fast access to the on-chip components (caches and network router, among
others) contrasts with the much slower main memory. Unfortunately, directory-based protocols need
to obtain the sharing status of every memory block before coherence actions can be performed. This
information has traditionally been stored in main memory, and therefore these cache coherence protocols
are far from being optimal. In this work, we propose two alternative designs for the last-level private
cache of glueless shared-memory multiprocessors: the lightweight directory and the SGluM cache. Our
proposals completely remove directory information from main memory and store it in the home node’s L2
cache, thus reducing both the number of accesses to main memory and the directory memory overhead.
The main characteristics of the lightweight directory are its simplicity and the significant improvement
in the execution time for most applications. Its drawback, however, is that the performance of some
particular applications could be degraded. On the other hand, the SGluM cache offers more modest
improvements in execution time for all the applications by adding some extra structures that cope with

the cases in which the lightweight directory fails.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Workload and technology trends point toward highly inte-
grated “glueless” designs [19] that integrate the processor’s core,
caches, network interface and coherence hardware onto a single
die (e.g., Alpha 21364 [10] and AMD’s Opteron [4]). This allows to
directly connect these highly integrated nodes in a scalable way
by using a high-bandwidth, low-latency point-to-point network,
and leads to what is known as glueless shared-memory multiproces-
sors. Moreover, in these machines main memory is physically dis-
tributed to ensure that memory bandwidth scales with the number
of processors.

Since totally-ordered interconnects are difficult to implement
in glueless designs, directory-based cache coherence protocols
have traditionally been used in this kind of architectures.
Directory-based protocols keep coherence through a distributed
directory stored in the portion of main memory included in every
system node [32]. In this way, the directory structure ensures the
order in the accesses to main memory. Whenever a cache miss
takes place, it is necessary to access the directory structure placed
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in the home node to recover the sharing status of the block, and
subsequently, perform the actions required to ensure coherence
and consistency. Hence, this kind of cache coherence protocols
achieve scalability at the cost of putting the access to main memory
in the critical path of the lower-level private cache misses.!

Unfortunately, a well-known industry trend is that micropro-
cessor speed is increasing much faster than memory speed [11].
Both speed-growth curves are exponential, but they diverge. In this
way, the increased distance to memory (the memory wall prob-
lem [33]) that will be suffered in future scalable glueless shared-
memory multiprocessors raises the necessity of low-latency cache
coherence protocols.

One of the solutions that have been proposed for avoiding the
ever increasing memory gap is the addition of directory caches
to each one of the nodes of the multiprocessor. These extra
cache structures are aimed at keeping directory information for
the most recently referenced memory blocks [26,9]. In this way,
cache misses that only need to access main memory for obtaining
the directory information (i.e. cache-to-cache transfer misses) are
accelerated in most cases. However, these architectures do not
avoid the memory wall problem because they must provide the
block from main memory when it is in shared state. The way to

1 By lower-level private cache we mean the cache level where coherence is
maintained (the L2 caches in this paper).
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Fig. 1. The effect of memory wall in directory-based protocols.

cope with the memory wall problem is by exploiting cache-to-
cache transfers for blocks in shared state.

Fig. 1 presents the average execution time of the benchmarks
used in this work (see Section 5 for details) that is obtained for
three directory-based protocols as main memory latency increases
from 80 cycles to 1000 cycles. The bar labelled as Traditional is
the case where directory information is stored in main memory.
DC adds an unlimited directory cache with the same latency than
the tag’s part of the L2 data cache. Finally, DC & $-to-$ includes
an unlimited directory cache and exploits cache-to-cache transfers
for shared blocks. The results are for a 32-node architecture,
and in all the cases large L2 caches are simulated (512 kB
for SPLASH-2 applications). As it can be observed, as memory
latency grows applications’ execution time becomes significantly
larger for a traditional directory-based protocol. The impact of
increased memory latencies is lower when directory caches are
used. However, the only way to cope with the memory gap is
by designing a coherence protocol that avoids accessing main
memory when some cache can provide the block quicker.

On the other hand, the need of a distributed structure
in directory-based protocols introduces the directory memory
overhead problem, which can range from 3% of extra memory (as is
the case of the SGI Altix 3000) to 12% depending on the number of
nodes of the system. Clearly, it would be also desirable to reduce
this overhead to the minimum.

In this work we re-consider the design of the L2 caches that are
to be used in future glueless shared-memory multiprocessors, and
propose two new cache designs that store directory information
(besides data), favour cache-to-cache transfers and remove
completely the directory structure from main memory. In this
way, these proposals reduce in great extent the directory
memory overhead, thus favouring the scalability of shared-
memory multiprocessors.

Fig. 2 shows the design of the scalable glueless shared-memory
multiprocessor that is the base for our two proposals. This design
takes advantage of on-chip integration including the L2 cache,
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the memory and directory controller (MC/DC), the coherence
hardware and the network interface (NI) and router inside the
processor chip of each node. In addition, each node has associated
a portion of the total main memory in the system. The nodes
are connected using a scalable point-to-point interconnection
network. The key advantage of our proposals is that all directory
information needed to keep cache coherence is stored in the
L2 cache on chip, thus reducing the latency of cache misses
and completely removing the directory information from main
memory. The addition of the directory information to the tag's
portion of the home node’s cache is motivated by the high
temporal locality in the references to memory exhibited by the
applications, even from different processors [28]. In most cases,
when a request for a memory block from a remote node arrives at
the corresponding home node either the home node has recently
accessed the block, or the home node will request the block in a
near future.

Moreover, compared with the inclusion of a directory cache
into the processor die, having the directory information within the
tag’s portion of the L2 cache reduces the memory storage even
more by avoiding the requirement of new tags. On the other hand,
the elimination of the directory information from main memory
implies that some modifications must be performed to the cache
coherence protocol to ensure that for all the memory blocks held
in one or more caches directory information is always present in
the cache of the home node. Moreover, before a memory block can
be evicted from the home cache, all the copies of the block must be
invalidated (premature invalidations).?

The first proposal, called lightweight directory, adds to each
entry of the L2 cache two new fields that keep the directory
information (sharing code and state) for the blocks allocated on
it. On the first reference to a memory block (local or remote),
the home node books an entry in its local cache which is used to
store the directory information. This cache entry is also used to
keep a copy of the block when it is in shared state. In this way,
this scheme always solves the misses for blocks in shared state by
providing the block from the home node’s cache, and thus, these
misses are finalized in just two hops. Additionally, this proposal
requires minimal amount of extra storage. Its main drawback is,
however, that extra blocks (not requested by the local processors)
are potentially brought to the L2 caches, which can cause that the
number of replacements increase, and which finally could translate
into performance degradation for some applications.

The second approach, called SGIuM cache (from Scalable
Glueless Multipro-cessors), extends the latter design with a small
structure that stores directory information for local memory blocks

2 These invalidations do not introduce additional deadlock problems, as they are
already considered in the original coherence protocol. The interconnection network
uses two virtual networks (one for requests and another one for replies), and this is
enough to cope with the new deadlock issues that appear in our new protocol.
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Fig. 2. A suitable architecture for scalable glueless shared-memory multiprocessors.
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requested by just remote processors. In this way, the number of
cache replacements do not increase with respect to a traditional
architecture since only those memory blocks requested by the local
processor (along with directory information) are brought into the
cache structure. Additionally, this structure is also used as a victim
cache for the directory entries replaced from cache, thus avoiding
in some cases the appearance of premature invalidations. The main
disadvantage of this scheme is that the misses for blocks in shared
state are directly solved by the home node only if it has the block in
cache. In other case, the block must be provided through a cache-
to-cache transfer from the owner node (three hops in the critical
path).

Both the lightweight directory architecture and the SGluM
cache were previously presented in two recent papers [28,27]. In
this work, we extend the evaluation carried out there and analyze
the benefits of these two proposals (in terms of both performance
and storage overhead) in a common framework. In particular,
the lightweight directory architecture significantly reduces the
on-chip storage (31.2%) compared to the base configurations. In
contrast, the SGluM cache architecture requires an on-chip storage
similar to the base configurations. In addition, our proposals do
not require the presence of a main directory out of the chip
(for example, in main memory), which is assumed by the base
configurations used in the evaluation. Regarding performance,
our proposals obtain improvements in total execution time of
13% (lightweight directory) and 11% (SGIuM cache) on average
compared to a system with directory caches, and of 8% (lightweight
directory) and 6% (SGIuM cache) on average when a system with
directory caches that exploits cache-to-cache transfers for shared
blocks is considered. Finally, we conclude that the advantage of
the lightweight directory architecture is its simplicity (it does
not need any extra hardware), whilst the SGIuM cache achieves
performance improvements for all the applications by using extra
structures.

The rest of this article is organized as follows. A review of the
related work is presented in Section 2. Subsequently, Section 3
describes the lightweight directory architecture and its coherence
protocol. Section 4 shows the design of the SGIuM cache, as well
as the coherence protocol required by it. Section 5 introduces the
methodology employed in the evaluation process. In Section 6
we introduce a detailed performance evaluation of our proposals.
Finally, Section 7 concludes the paper and points out some future
ways.

2. Related work

In this work, we propose two cache designs that cope with the
directory memory overhead, and the long cache miss latencies.
Next, we review the previous proposals in these fields.

2.1. Reducing directory memory overhead

The directory memory overhead is introduced in cc-NUMA
multiprocessors by the need of keeping the sharing status of a
memory block (directory structure). Directory memory overhead
in memory-based directory schemes is usually managed from two
orthogonal points of view: reducing directory width and reducing
directory height. The width of the directory structure depends on
the number of bits used by the sharing code, while the height varies
with the number of entries of the directory structure.

A way to reduce the width of directory entries is to use com-
pressed sharing codes instead of full-map. Coarse vector [9] is one
of the most popular compressed sharing codes, which is currently
employed in the SGI Origin 2000/3000 multiprocessor [16]. An-
other compressed sharing codes are tristate [3] (also called su-
perset scheme) and Gray-tristate [22]. Additionally, a codification

based on the multi-layer clustering concept is proposed in [2], and
its most elaborated proposal is the binary tree with subtrees.

To reduce the width of directory entries, other authors propose
to have a limited number of pointers per entry in hardware,
which are chosen for covering the common case [5,30]. Finally, the
segment directory [6] is proposed as an alternative to the limited
pointer schemes.

On the other hand, other schemes try to reduce directory
height, that is to say, the total number of directory entries that
are available. A way to achieve this reduction is by organizing
the directory structure as a cache (sparse directory or directory
cache) [26,9]. An alternative way is to combine several entries
into a single one (directory entry combining) [29]. Finally, two-
level directories combine a small directory cache (first level) with
a compressed second level [2].

In the proposals introduced in this paper we obtain significant
savings in the memory devoted to the directory structure by
reducing the directory height, since the number of entries of
the directory structure grows proportionally with the number of
entries of the L2 cache. Particularly, the SGluM cache also reduces
the width of the directory structure by storing in some entries only
a pointer to the owner of the block.

2.2. Reducing cache miss latencies

Directory caches can be also used for reducing the latency of
cache misses by obtaining directory information from a much
faster structure than main memory. For example, in [24] the
integration of directory caches inside the coherence controllers
was proposed to minimize directory access time. The Everest
architecture proposed in [25] uses directory caches to reduce
directory access time. In addition, remote data caches (RDCs) have
also been used in several designs (as [17,18]) to accelerate the
access to remote data.

In [14], the access latency to remote memories is reduced by
placing caches in the crossbar switches of the interconnection
network. These caches are aimed at capturing and storing
shared data as they flow from the memory module to the
requesting processor. Subsequently, in [15] the same idea is
applied to reduce the latency of cache-to-cache transfer misses.
Finally, in [1] a three-level directory organization was proposed,
including an on-chip directory cache and a compressed directory
structure in main memory. In contrast to these proposals, we
present two novel designs for the L2 caches of glueless shared-
memory multiprocessors that take into account coherence from
the beginning and that are independent on the interconnection
network.

Other proposals to reduce the latencies of cache misses in
cc-NUMAs have focused on using snooping protocols with un-
ordered networks. In [20], Martin. et al. propose a technique that
allows SMPs to utilize unordered networks (with some modifi-
cations to support snooping). Bandwidth Adaptive Snooping Hy-
brid (BASH) [21] is an hybrid coherence protocol that dynamically
decides whether to act like snooping protocols (broadcast) or di-
rectory protocols (unicast) depending on the available bandwidth.
Token coherence [19] is a novel approach to design cache coher-
ence protocols for distributed shared-memory machines which has
been recently proposed. Token coherence can avoid both the need
of a totally ordered network and the indirection that the access to
the directory structure implies. Efficient implementations of token
coherence often require a network with broadcast support.

3. Lightweight directory architecture

The lightweight directory architecture constitutes a simple
cache design that only adds two fields to the tags’ portion of
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Fig. 3. Cache design for the lightweight directory architecture. The grey zone
represents the overhead in cache memory introduced by the directory.

the L2 cache for storing directory information. In this way, this
design does not need extra hardware structures (in contrast with
the inclusion of directory caches) to avoid the accesses to main
memory when only directory information is needed. On the other
hand, this design also ensures that an up-to-date copy of data will
always be in the cache of the home node for those blocks in shared
state, avoiding thus the long access to main memory to get the
block in these cases. Its main drawback is, however, that the total
number of replacements could increase for applications without
temporal locality in the accesses to memory that several nodes are
performing, but fortunately this is not the common case.

3.1. Cache design

Fig. 3 shows the cache design assumed in the lightweight
directory architecture. The cache is split into tags and data
structures, as is commonly found in current designs. The access to
both structures is performed in parallel. Each cache block contains
four main fields in the tags’ portion: the tag itself, used to identify
the block, the cache state, the directory state, and the sharing
code. The latter two fields are added by the lightweight directory
structure proposed here. The cache state field can take one of the
four values (2 bits) used by the MESI protocol. The invalid state
means that the node does not keep an up-to-data copy of the cache
block. In addition, this state also means that the entry has valid
directory information if any of the presence bits in the sharing code
is set. The directory state field can take two values (one bit):

e S(Shared): The memory block is shared in several caches, each
one of them with an up-to-date copy. When needed, the cache
of the home node will provide the block to the requesters, since
this cache has always a valid copy even when the local processor
has not referenced the block.

e P (Private): The memory block is in just one cache and could
have been modified. The single valid copy of the block is held
in the cache of the home node when its cache state is modified
or exclusive, or alternatively, in one of the caches of the remote
nodes. In the latter case, the cache state for the memory block in
the home node is invalid, and the identity of the owner is stored
in the sharing code field.

Note that an additional directory state is implicit. The U state
(Uncached) takes place when the memory block is not held by any
cache and its only copy resides in main memory. This is the case of
those memory blocks that have not been accessed by any node yet,
or those that were evicted from all the caches.

3.2. Coherence protocol

The proposed architecture requires a MESI cache coherence
protocol [8] with some minor modifications that we detail next.

As usually, all the cache misses must reach the home node,
where the directory controller checks the tags’ portion of the
local L2 cache to get the directory information. If the directory
information for the requested block is not found in the home cache,
the memory block is not cached by any node (this is the implicit
uncached state mentioned before). Hence, the memory controller
brings the block from main memory and stores an entry for it in the
L2 cache of the home node (replacing another block if necessary)
and set the block state to invalid in case of a remote miss (just to
hold directory information), or to exclusive in case of a local miss.
Moreover, the directory state is set to private because only one
node will hold the copy of the block (identically to MESI on the
first reference to a memory block). Finally, the home node sends
the block to the requester.

When a cache miss finds the directory information in the home
cache, there is no need to access main memory. This case occurs
for all the blocks that are held by any cache. Moreover, when
the directory controller finds that the directory state is shared
or the owner of the block is the own home node, the L2 cache
in the home node keeps a valid copy of the block, which can be
provided immediately for a read request (for write requests all the
sharers must be invalidated before the block is sent, as in the MESI
protocol).

The main problem of the lightweight directory is the cost of
the replacements. When an entry for a block is evicted from
the L2 cache of its home node, all the copies of the block must
be invalidated to transition the block to the implicit uncached
state. This is due to the absence of directory information in main
memory. In particular, when a directory entry is evicted and
invalidation messages must be sent, a MSHR (Miss Status Holding
Register) is allocated. Note that it can be used the MSHR already
allocated for the cache miss that caused the replacement and
that would be otherwise released. In this way w can ensure that
a free MSHR will be always found in the case of replacements.
This resource is used for storing directory information along with
other important information for managing the replacement. In this
way, the incoming directory entry can be immediately stored in
the cache. Note that requests to the block will find the pending
replacement and will wait until its completion. After this, the
directory controller sends multiple invalidation requests to the
sharers (or to the owner if the block is only present in one
cache). Finally, the replacement finishes (and the MSHR is released)
once the home node has received all the acknowledgements to
the invalidations. If the copy of the block is dirty, the directory
controller updates main memory and finishes the replacement.

The rest of cases are handled as in a conventional directory
coherence protocol. Table 1 summarizes the advantages of our
proposal. The lightweight directory avoids accessing main memory
when the directory state is shared, since the home node can
provide the block. Moreover, directory accesses for cache-to-cache
transfers are faster than in conventional architectures since the
corresponding directory entry is stored in the cache of the home
node. Finally, directory information is not needed for uncached
blocks, thus reducing the amount of extra memory that is required.

4. The SGluM cache architecture

SGIuM is a cache design that includes an extra hardware
structure and adds some fields to the cache tags to handle
efficiently the directory information, avoiding in this way the
increase in the number of cache replacements that the lightweight
directory could introduce in some cases. In most cases, this design
avoids accessing main memory to get the block by obtaining it from
another cache that already holds it (the home cache or another
remote cache). In this way, this design obtains performance
improvements for all the applications with little directory memory
overhead.
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Table 1
Where directory information and data are found when an L2 miss takes place in both the conventional and the lightweight directory protocols
Directory states
Uncached Shared Private
Conventional Dir. Inf. Memory Memory (or DirCache) Memory (or DirCache)
Data Memory Memory Owner cache
Lightweight Dir. Inf. - Home cache Home cache
Data Memory Home cache Owner cache
TN oo e EEEDe e ety coherence protocol to take into consideration the particularities of
,,,,,,,, ODIStuctore the SGLuM cache. In this section we present how L2 cache misses
Owned ; DDI Structure and replacements are managed.
Tag | V[Owner Tag | V[St| Sharing Code | Data
Tag | V|Owner Tag | V[$1] Sharing Code | Data
| . 4.2.1. How L2 cache misses are satisfied
L R — | Each time a cache miss for a block reaches the directory
§ ] D | Data controller of the home node, the directory information for the block
%\ M ol o N — L N Sharing Code is looked for in parallel in each one of the three structures that
i - T Logic / :
i Lot ) jﬂ‘ ‘ - 3 compose the cache.
o Staced ’ ; i ) : If directory information is not found (uncached state), the
| | _Tag | V| Sharing Code| Owner] | ; I, State 2S00 | State A . .
T Ouner| | i : block is obtained from main memory. Subsequently, a new entry

i | Tag | V] Sharing Code] Owner ][|
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Fig. 4. The SGluM Cache architecture. As in Fig. 3, the grey zone represents the
overhead in cache memory introduced by the directory.

4.1. Cache structure

The SGIuM cache architecture is comprised of two main
structures:

(1) The Data and Directory Information (DDI) structure that
maintains both data and directory information for blocks
requested by the local processor. This structure is organized as
a traditional data cache with two extra fields used for keeping
track of the sharers (sharing code) and the state of the block.

(2) The Only Directory Information (ODI) structure that stores just
directory information (not data) for local blocks requested
by remote nodes and that are not being used by the local
processor. This structure (like an on-chip directory cache)
has three main fields: the tag of the block, the valid bit and
the directory information. In turn, the ODI structure is split
into two separate small structures: the private and the shared
portions. The first one stores directory information for blocks
that are in private state and it only needs one pointer per
entry. The second one stores directory information for blocks in
shared state and uses both a precise sharing code for locating
all the copies of every block, and a pointer that identifies the
node that has to provide the block when needed (the owner
node). We explicitly keep the identity of the owner to allow for
silent evictions of blocks in shared state. The directory state is
implicit in both structures.

Fig. 4 shows the design of the cache structure. The directory
state for a block is uncached if there is no valid entry for it in any
structure. In other case, the state is derived from the structure in
which the entry is stored (tag match in ODI) or by the state field (tag
match in DDI). Note also that these three structures are exclusive
in the sense that when directory information for a memory block
is found in one of them, it cannot be in other at the same time.

4.2. Cache coherence protocol

Similarly to the lightweight directory architecture, some
minor modifications have to be performed to a traditional cache

must be allocated in the cache of the home node for keeping the
directory information of that block. For local misses, the directory
information is allocated along with data in the DDI structure. In
other case, the new entry is allocated in the private part of the ODI
structure. In this way, the blocks requested by remote nodes do not
overload potentially the DDI structure.

If the entry is found in the DDI structure, the miss is solved by
obtaining the block from this structure. In this case, the miss is
solved in only two hops when invalidations are not needed (as in
the lightweight directory). As commented before, we have found
that this situation appears frequently in parallel applications.
Additionally, write misses from remote nodes cause that directory
information is moved to the private part of the ODI structure.

If the entry is found in the private part of the ODI structure, the
miss is solved with a cache-to-cache transfer from the owner node.
For local misses, the directory information is moved to the DDI
structure, where it is kept along with data. Remote misses cause
that the entry is moved to the shared part of the ODI structure (read
misses), or it is maintained in its private portion (write misses).

Finally, if the entry is found in the shared part of the ODI
structure, the pointer field gives the identity of the node that must
provide the block. This is the first node that requested the block
or the last one that wrote it. When the pointer does not contain
valid information (the block was evicted from the owner’s cache),
the block is obtained from main memory and the requesting node
becomes the new owner. Again, after processing a local miss, the
entry is moved to the DDI structure. For remote misses, however,
the entry is either maintained in the shared portion of the ODI (for
read misses), or moved to its private part (for write misses).

As shown above, main memory is accessed in our proposal
firstly when no node has valid copy of it, and few times
(approximately 3% of the mem misses) when a request finds
directory information in the shared part of the ODI structure and
the pointer of the entry is not valid. Table 2 summarizes how
cache misses are solved in our coherence protocol. In particular,
it shows the actions performed for Local/Remote misses, caused
by Read/Write instructions for which directory information is not
found in cache, is found in the DDI structure, in the private part of
the ODI structure, or in the shared part of the ODI structure.

4.2.2. How replacements are managed

Since directory information has been completely removed from
main memory, if a directory entry is evicted from the cache of the
home node, cache coherence for that block cannot be maintained.
To cope with this problem, it is necessary to invalidate first all
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Table 2

Summary of the actions performed by the directory controller

A. Ros et al. /. Parallel Distrib. Comput. 68 (2008) 1413-1424

Miss type Directory Information found in
Not in cache DDI Private part of ODI (O-ODI) Shared part of ODI (S-ODI)
Local Read Allocate an entry in DDI (dir. inf ~ Hit Move entry to DDI and store data Move entry to DDI and store
+ data) in it datain it
Write Allocate an entry in DDI (dir. inf ~ If (block state = owned) Hit. Move entry to DDI and store data Move entry to DDI and store

Remote  Read
Write

+ data)

Allocate an entry in O-ODI
Allocate an entry in O-ODI

If (block state = shared) Invalidate
remote copies and update entry

Update entry
Move entry to O-ODI and

in it

Move entry to S-ODI
Update entry

invalidate the copies

datain it

Update entry
Move entry to O-ODI and
invalidate the copies

the copies of the block and update main memory when needed.
Although these invalidations are not in the critical path of the cache
miss that caused the replacement, it is important to keep these
kinds of replacements low, since they can result into an increase
in the miss rate with respect to conventional architectures due to
premature invalidations.

When a block is evicted from the DDI structure, the ODI
structure is used as a victim cache for the directory information
of this block, thus avoiding sending invalidations. Obviously, if
the home node is the only sharer of the replaced block, directory
information for the block is no longer needed (so that an entry in
the ODI structure is not allocated in this case) and main memory
can be updated (if needed) without additional coherence action.

If a directory entry is evicted from the ODI structure (either
from the private or the shared portions) the remote copies of the
corresponding block must also be invalidated. Replacements are
managed in the same way as it was described for the lightweight
directory architecture (see Section 3.2). Once all the invalidations
have been performed, main memory is updated and the state of the
block becomes uncached.

On the other hand, the replacements that take place in the
remote nodes only cause coherence actions when the block is in
owned state. In this case, the replacement is sent to the home node
and the pointer to the owner is disabled. The next miss for this
block will be obtained from main memory.

5. Simulation environment

We have modified a detailed execution-driven simulator
(RSIM [13]) to model the four cc-NUMA multiprocessor architec-
tures evaluated in this work. The first one, labeled as MESI + DC,
is a multiprocessor that includes a directory cache in the processor
chip of every node and does not exploit cache-to-cache transfers
for shared blocks.? The second one, labeled as MOESI + DC, also in-
cludes a directory cache, but in this case the “O” state ensures that
cache-to-cache transfers are employed for serving shared blocks.
The third one is the lightweight directory architecture described in
Section 3, and finally, the fourth one is a multiprocessor that uses
the SGluM cache architecture described in Section 4. All the imple-
mentations have been checked throughout numerous simulations
with different benchmarks and parameters.

We have simulated systems with 32 uniprocessor nodes. Table 3
shows the system parameters used for all the configurations. The
network latencies are shown in Table 4. When the block is provided
by the home node’s cache, only two hops are needed. In other case,
the miss is solved in three hops. Simulations have been carried out
using an optimized version of the sequential consistency model
with speculative load execution following the guidelines given by
Hill [12].

3 This architecture resembles the one implemented in the SGI Altix 3000.

Table 3
Common system parameters

32-node system

ILP processor parameters

Max. fetch/retire rate
Instruction window
Branch predictor

4
128
2 bit agree, 2048 count

Cache parameters

Cache block size

L1 cache:
Size, associativity
Hit time
Request ports

L2 cache:
Size, associativity
Hit time
Request ports

64 bytes

write-through

16 kB, direct mapped

2 cycles

2

write-back

64 kB, 4-way

6 (tag) + 9 (data) cycles
1

Directory parameters

Directory controller cycle
On-chip directory access time
Off-chip directory access time
Message creation time

1 cycle (on-chip)

6 cycles (as cache tag)
300 cycles (as memory)
4 cycles first, 2 next

Memory parameters

Memory access time 300 cycles
Memory interleaving 4-way
Internal bus parameters

Bus width 8 bytes
Bus cycles 1 cycle

Network parameters

Topology

Flit size

Non-data message size
Flit delay

Arbitration delay

2-dimensional mesh (4 x 8)
8 bytes

2 flits

4 cycles

2 cycles

Table 4

Read miss latencies for the evaluated protocols

Block provided by: Latency
2-hop cache-to-cache transfer (nearest node) 115 cycles
2-hop cache-to-cache transfer (farthest node) 223 cycles
3-hop cache-to-cache transfer (farthest nodes) 235 cycles
Local memory 314 cycles
Remote nearest memory 379 cycles
Remote farther memory 487 cycles

The L2 cache used in our simulations has 1K entries (64 kB),

and therefore, the lightweight directory has 1K entries to store
the directory information. The directory cache used in both the
MESI + DC and the MOESI + DC architectures has 1K entries. For
the SGIuM cache configuration the DDI structure has 1K entries to
keep the directory information, the P-ODI structure has 512 entries
and the S-ODI structure has 256 entries. In Section 6.5 we show that
the on-chip storage required by this configuration of the SGluM



A. Ros et al. /. Parallel Distrib. Comput. 68 (2008) 1413-1424 1419

cache is similar to that entailed by the MOESI + DC configuration.
In contrast, the lightweight directory saves 31.2% of the on-chip
storage required by the MOESI + DC configuration.

In all the configurations, full-map is used as the sharing code
for the directory information. Although our two architectures are
compatible with any sharing code, the use of full-map instead of,
for example, a compressed sharing code allows us to concentrate
on the impact that both proposals have on performance, avoiding
any interference caused by unnecessary coherence messages. In
our proposals, we model the contention on the tags’ and data’s
portions of the L2 cache for local and remote requests. In this
way, those remote requests that try to access the tags while
another request (local or remote) is in progress will be delayed.
However, our results demonstrate that the average number
of extra cycles that a request must wait when the directory
information is included in the L2 cache is insignificant (less than
0.004 cycles/request in the worst case).

The benchmarks used in our simulations cover a variety of
computation and communication patterns. Barnes (4096 bodies,
4 time steps), Cholesky (tk16.0), FFT (256K complex doubles),
Ocean (258 x 258 ocean), Radix (1M keys, 1024 radix), Water-
NSQ (512 molecules, 4 time steps), and Water-SP (512 molecules,
4 time steps) are from the SPLASH-2 benchmark suite [31].
Unstructured (Mesh.2K, 5 time steps) is a computational fluid
dynamics application [23]. Finally, EM3D (38400 nodes, 15%
remotes, 25 time steps) is a shared-memory implementation of
the Split-C benchmark [7]. All experimental results reported in
this work correspond to the parallel phase of these benchmarks.
Input sizes have been chosen commensurate to the total number of
processors that are used in this paper (32), and L2 cache sizes have
been chosen so that the working set of the applications is greater
than their capacity.

6. Evaluation results

In this section, we present and analyze the simulation results
obtained for the two cache architectures presented in this paper.
Both proposals are compared to two base systems that employ
directory caches with 1K entries in each system node as described
in Section 5. In addition, we show the effect of varying the
number of entries in the L2 cache for the lightweight directory
architecture and the number of entries in the ODI structures for the
SGIuM cache. Finally, we compare the on-chip memory overhead
introduced by our proposals and the two base systems.

6.1. Impact on the latency of cache misses

This subsection analyzes how our two proposals can reduce the
latency of cache misses. The MOESI+DC architecture obtains re-
ductions in the latencies of cache misses compared to MESI4-DC ar-
chitecture by allowing cache-to-cache transfers for shared blocks.
With respect to the MOESI+-DC architecture, the lightweight direc-
tory architecture reduces L2 cache miss latency by always obtain-
ing the shared blocks from the home node (only two hops). Finally,
the reductions obtained by the SGluM cache are mainly due to the
avoidance of memory accesses.

In order to better understand how miss latencies are affected,
we differentiate between read misses, write misses and rmw misses
(atomic read-modify-and-write). Although in the cache coherence
protocol rmw misses are treated like write misses, we think that
it is important to differentiate between these miss types since the
rmw misses, which are caused by locks, have critical effect in the
performance of parallel applications. Fig. 5 shows the distribution
of each miss type in the applications used in this paper. We can see
that in Barnes, Cholesky, Em3d and Water-SP read misses account
for more than 80% of the misses. In contrast, Radix is dominated
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Fig. 5. Percentage of L2 cache misses found in the applications used in this paper.

by write misses (66.7%). FFT, Ocean, Unstructured and Water-
NSQ also suffer many write misses (more than 30%). Moreover,
Unstructured is the application with larger proportion of rmw
misses (25.8%). The applications Em3d, FFT and Radix do not use
locks, and synchronization is performed through barriers.

Fig. 6 illustrates the average latency for each miss type for the
base architectures and for the two L2 cache designs presented in
this paper. These figures do not consider the overlapping of the
misses, and the average latencies are calculated considering each
miss individually.

Fig. 6(a) presents the average latencies for read misses. We can
observe that in general our two proposals reduce the latency of
this type of misses. Moreover, the lightweight directory obtains
shorter latencies than the SGluM cache mainly due to its ability
of solving all the cache-to-cache transfers for shared blocks in just
two hops. Additionally, the latencies compared to the MESI4+DC
architecture are also reduced and speed-ups range from 1.03 for
Radix to 2.26 for Water-SP -1.39 on average - for the lightweight
directory configuration. For the SGluM cache configuration, speed-
ups ranging from 1.02 for Unstructured to 1.77 for Water-SP -
1.24 on average - are found. The important latency reduction
obtained in Water-SP for read misses is due to 93% of the read
misses must access main memory in the base case, and almost all
of them are solved by means of a cache-to-cache transfers with our
proposals. The latter also explains the fact that for this application
the MOESI+DC architecture also obtains great reductions (600
cycles on average).

For write misses, reductions in average latency compared to
the MESI+DC architecture are also observed for our proposals,
as Fig. 6(b) plots. In this case, speed-ups ranging from 0.99 for
Radix to 2.06 for Water-SP - 1.39 on average - are obtained for
the lightweight directory architecture. Radix experiences a small
increase in the latency of write misses due to the increase in the
number of accesses to main memory (0.1%). For the SGluM cache
configuration, speed-ups ranging from 1.02 for Water-NSQ to 1.82
for Water-SP - 1.20 on average - are found.

Fig. 6(c) shows the average latencies for rmw misses. Latency
reductions in this case come as a consequence of two factors.
First, the reduction of the number of times that main memory
is accessed. Second, the rmw misses are accompanied by a lot of
read misses from other nodes trying to acquire the lock too. The
reductions in the latency of read misses allow the rmw misses
to reduce their waiting times at the directory controllers, and
therefore, they are solved in less time. In this way, important
reductions are obtained for those applications that exhibit high
waiting times such as Barnes (speed-ups of 2.47 and 1.64 for
the lightweight directory and for the SGluM cache configuration
respectively), Ocean (speed-ups of 3.05 and 2.24), Water-NSQ
(speed-ups of 3.03 and 1.70) and Water-SP (speed-ups of 4.52
and 3.28). Note that EM3D, FFT and Radix applications do not use
locks. On average, the speed-up that is obtained is 2.21 for the
lightweight directory configuration and 1.55 for the SGluM cache
configuration compared to the MESI+DC architecture.
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Fig. 6. Average L2 miss latency for each miss type.

Finally, Fig. 6(d) presents how the average miss latencies are
accelerated. The SGIluM cache reduces the latency for all the
applications. It achieves speed-ups that range from 1.01 for Radix
to 1.88 for Water-SP - 1.27 on average - with respect to the
MESI+DC architecture (1.10 on average when the MOESI+DC
architecture is considered). The lightweight directory reduces the
average latency in all the applications except in Radix. Radix
obtains a degradation in latency due to both the replacements
that take place in the home node and the few number of memory
accesses that can be converted into cache-to-cache transfers.

6.2. Impact on execution time

The improvements shown in Section 6.1 finally translate into
reductions in applications’ execution time. The extent of these
reductions depends on the speed-ups previously shown on average
miss latency for the different types of cache misses, the percentage
of cache misses belonging to each category, and the weight that
cache misses have on execution time. In addition, the execution
time for the lightweight directory architecture depends on the
increase in the number of replacements which translate into more
cache misses. This is studied in the following section.

For the applications used in this paper, Fig. 7 plots the execution
times that are obtained for the two cache designs presented in
this paper normalized with respect to the MESI+DC architecture.
The bars corresponding to the MOESI+DC architecture show that
performance improvements of 6% on average can be obtained by
allowing cache-to-cache transfers for shared blocks.

In general, both the lightweight directory architecture and the
SGIuM cache have been shown to be able to reduce the cache
miss latencies. As a consequence, reductions in terms of execution
time are obtained for our two proposals (on average), with a
design that removes the need of maintaining directory information
in main memory. The lightweight directory architecture obtains
reductions in execution time of 13% on average (6% compared
to the MOESI+DC architecture). However, the increased number
of cache replacements implied by this proposal translates into

significant performance degradation for applications such as Radix
(14%). For the other applications improvements ranging from
34% in Ocean to 4% in Unstructured are obtained. The important
improvements in Ocean are due to the reductions in the latency of
some read and rmw misses caused for acquiring locks.

For the second proposal, the SGIuM cache, reductions in
execution time that range from 22% in Ocean to 2% in Radix
are obtained for all the applications (11% on average). With
respect to the MOESI4DC architecture reductions range from
16% in Em3d to 2% in Radix, Unstructured and Water-SP. On
average the SGIuM cache obtains improvements of 6% over
the MOESI4-DC architecture. The efficient handling of directory
information in this proposal avoids interferences between the
memory blocks requested by the local processor and those
referenced by remote processors. However, the requirement of
getting the block from a remote owner instead of the home node
causes that these improvements are smaller in several applications
than the reported for the lightweight directory architecture.

6.3. The lightweight directory and the size of the L2 cache

As previously discussed, the main drawback of the lightweight
directory architecture is that it could increase the cache miss
rate for applications with low temporal locality in the accesses to
memory that several nodes perform. In this section we evaluate
this effect. Fig. 8(a) shows the miss rates for several sizes of the
L2 cache for the MESI+DC architecture. In this figure, we can
see that the cache size used in this paper (64 kB) is smaller than
the working set of most applications. We reduce the cache size
to a point where there are a significant number of replacements
(16 kB) to evaluate the lightweight directory architecture in such
an extreme situation. Fig. 8(b) shows the difference between the
L2 cache miss rates for the lightweight directory architecture and
the obtained for the MESI+DC architecture. We can see that only
for Barnes and Radix the L2 cache miss rate is increased when the
L2 cache size becomes smaller. In any case, this increase does not
exceed 3%.
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Finally, Fig. 9 shows the speed-ups for the lightweight directory
architecture with respect to the MESI+DC architecture. When
the cache size is reduced from 512 kB to 16 kB, only for
three applications (Barnes, Radix and Ocean) the speed-up drops
significantly. The performance loss in Barnes and Radix is due to
the increase in the L2 cache miss rate. In contrast, for 512 kB the L2
cache miss rate for the lightweight directory architecture in Ocean
is smaller than for the MESI+DC architecture (0.4%) due to the
effect of premature invalidations. When the cache size becomes
smaller the cache miss rate approaches the MESI4+DC ones. On
the other hand, Em3d has reductions in speed-up as the L2 cache
size becomes larger than 64 kB. This situation happens because
with very small L2 caches the increased number of replacements
makes that a large fraction of the L2 cache misses must reach
main memory for the MESI+DC architecture. In contrast, for the
lightweight directory architecture a significant fraction of these
misses are solved by providing the block from the L2 cache of the
home node.

6.4. The SGIuM cache and the ODI cache size

Additionally, we have performed a sensitivity analysis to
evaluate how the size of the two portions of the ODI structure
(private and shared) of the SGluM cache affects execution time. For
the applications used in this work, we have varied the sizes of the
private and shared parts of the ODI structure individually. Fig. 10
shows that, in the worst case, a degradation of 7.2% in execution
time is found when the size of the private part of the ODI structure
is 128 entries. In any case, this degradation keeps constant until 16
entries. On the other hand, going to 16 entries for the shared part
of the ODI structure results in a degradation of less than 3% in the
worst case.

6.5. Impact on memory overhead

One of the key advantages of our proposals is that they reduce
to a great extent the size of the storage needed to keep caches
coherent by removing the directory structure from main memory.
Additionally, this reduction in storage implies a reduction in power
consumption.

In this section, we study the on-chip storage and power
requirements for our proposals comparing them to the base
configurations. Regarding the on-chip storage, each entry of a
directory cache has to store the tag of the block, the state, and the
bit-vector sharing code (MESI+DC). In the case of the MOESI+DC
configuration, it is also needed a pointer to the owner node. In
contrast, our proposals remove the need of additional tags for the
directory information by including it within the tags’ portion of the
L2 caches. In this way, tags that are already present for labeling data
are also used for directory information. Moreover, the lightweight
directory does not need to store any additional pointer to favour



1422

A. Ros et al. /. Parallel Distrib. Comput. 68 (2008) 1413-1424

S5-0DI Structure
1.0100

1.0050

1.0000 -#—

1.9950

G Barnes

0.9900

* Cholesky

0.9850 7

0.9800

¥ EM3D
A FFT

0.9750

* Ocean

Performance degradation (%)

< Radix

0.9700

0.9650

M Unstruct
% waler-NSQ

P-ODI Structure

1.0300

1.0200
_ 10100
= - -
T 1.0000 g——¥ C— -
£ 5 = 5
% 0.9900 = 5 s = 7 Barnes
e .
2 0.9800 Cholesky
3 0.9700 el
@
- R & FFT
g 09600 =7 * Ocean
£ 09500 « < Radix
o 0.9400 = - o M Unstruct

% Water-NSQ
0.9300 + + ¥
® Water-SP
0.9200 T T T T T T
16 32 64 128 256 512 1024 2048
Size (entries)

(a) Unlimited S-ODI structure and limited P-ODI structure.

® Water-SP
0.9600 T T T T 1
16 32 64 128 256 512

Size (entries)

(b) Unlimited P-ODI structure and limited S-ODI structure.

Fig. 10. How the size of the two portions of the ODI structure impacts performance.

Directory & Tag Overhead
17.50% -

[ rag
. 15.00% L] |
[ =
8 — I:‘ Directory
g 12.50%
3 i 7.08%
d 7.81%
= 10.00% - 7.81%
2
2
2 4.10%
£ 7.50% -
s
B 5.00% - -
£ - 8.54%
e 23%
6.25% 6.25%
©  250% —— —
0.00%
MESI + MOES! + Light- SGIUM
DC DC weight Cache

Fig. 11. On-chip storage requirements for the schemes evaluated in this work.

cache-to-cache transfers for shared blocks because it guarantees
that the home node always provides the block when it is shared.
Finally, the SGIuM cache does not need the additional pointer for
the DDI structure, but needs two extra structures for exclusive and
shared blocks. The structure for the exclusive blocks, which has
more entries than the employed for shared blocks, only needs to
store one pointer to keep the identity of the current owner of the
block. The structure for the shared blocks needs to store the bit-
vector sharing code and a pointer to the owner.

For the configurations evaluated in this paper, Fig. 11 shows
the on-chip memory overhead introduced by the directory
information and the tags assuming 64 kB L2 caches and the
parameters shown in Section 5. As it can be observed, the
lightweight directory architecture saves 31.2% of the storage
needed by the MOESI+DC configuration, and 26.4% when the
MESI+DC configuration is considered. Moreover, the lightweight
directory architecture does not need extra hardware and control
logic. On the other hand, the SGluM cache requires a storage similar
to the MOESI+DC configuration (3.9% more).

Finally, and differently to MESI4-DC and MOESI+DC, neither the
lightweight directory architecture nor the SGluM cache require the
presence of a main memory directory out of the chip (for example,
in main memory).

Regarding power consumption, the lightweight directory
architecture reduces the on-chip memory storage, and therefore
the static power consumption. In addition, it only needs one
structure to keep data and directory information. Since the impact
of the lightweight directory on the number of replacements is very
low for most applications (as demonstrated in Section 6.3) the
number of accesses to the L2 caches in the lightweight directory

is very close to the number of accesses to the L2 caches plus
the directory caches in our base configurations. In this way, we
do not expect significant differences in terms of dynamic power
consumption between these schemes. On the other hand, the
static power consumption is similar for the SGluM cache and
the MOESI+DC configuration, because they have similar storage
requirements. However, the SGluM cache needs three different
structures to keep data and directory information. These structures
must be accessed on each L2 cache miss, thus increasing the
dynamic power consumption with respect to a system with
directory caches, which only uses one (larger) structure. In any
case, it could be employed some existing techniques to reduce
the number of useless accesses to the structures of the SGluM
cache (for example, by predicting the structure where the directory
information is allocated) to reduce dynamic power consumption.
In this way, we conclude that our proposals should not incur in
significant differences in terms of power consumption with respect
to current organizations for the directory.

6.6. Scalability issues

Our proposals are more scalable than the base systems
(MESI+DC and MOESI+DC) mainly because all directory informa-
tion is removed from main memory, and therefore, directory mem-
ory overhead grows mush slower with system size.

On the other hand, the benefits of our proposals should persist
as we increase the number of system nodes. In particular, although
a higher number of nodes could increase the number of blocks
stored in caches which match to the same home node, in practice,
this situation does not appear due to the high temporal locality
shown by most applications in the accesses to memory performed
by several nodes.

Finally, it is clear that machine sizes of several hundreds or
thousands of nodes could require adjustments to the original
schemes (for example, as the distance between nodes increases it
is not worth obtaining memory blocks from some remote nodes
instead of main memory) and even in certain parts of the own
machine (for example, the use of lower-diameter topologies than
the mesh-2D assumed in this work).

7. Conclusion and future work

In this paper, we take advantage of current technology
trends and propose two different designs for the L2 cache
(lower-level caches in general) aimed at being used in future
glueless shared-memory multiprocessors. Both proposals avoid
unnecessary accesses to main memory by storing all the directory
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information inside the L2 cache. Additionally, they do not need to
store directory information in main memory, saving from 3% to 12%
of storage in current designs [32].

The main characteristic of the first proposal, the lightweight
directory architecture, is its simplicity. It achieves performance
improvements of 13% on average (8% compared to the MOESI+DC
architecture) without adding any extra hardware. This proposal
stores directory information and data in the L2 caches. In this way,
accesses to main memory are avoided by providing the directory
information and sometimes a copy of the block from the L2 cache
of the home node. Its main drawback is, however, that extra blocks
(not requested by the local processors) are potentially brought
to the L2 caches, which causes that the number of replacements
increase, and which finally could translates into performance
degradation for some applications. In spite of this, this proposal
achieves significant improvements in performance compared to a
system with directory caches, as well as it saves extra memory and
hardware.

On the other hand, the SGIuM cache architecture achieves
important performance improvements for all the applications
evaluated in this paper (10% on average compared to the MESI+DC
architecture and 6% compared to the MOESI+DC architecture) at
the cost of using a small directory cache on chip. In this proposal,
the L2 cache is split into two structures: the data and directory
information (or DDI), and the only directory information (or ODI)
structures. The first one stores data and directory information
for the blocks requested by the local processor. The second one
stores directory information for local blocks that other nodes have
requested and the processor is not currently using. In this way, the
negative effects that the lightweight directory architecture has in
some applications are avoided.

Moreover, we have described the small changes that must
be applied to the cache coherence protocol in each case. The
architectures presented in this work have been implemented and
evaluated using the RSIM simulator, in order to demonstrate the
benefits derived from our proposals in terms of execution time.
We have also studied the miss latencies for each kind of L2 cache
misses (read, write and rmw) to better understand the reasons
of the performance improvements. In addition, we perform a
study of the extra on-chip storage needed by our proposals
compared to the base configurations, reporting reductions of 31.2%
for the lightweight directory architecture and similar on-chip
requirements for the SGIluM cache. We also estimate their impact
on power consumption, concluding that significant differences are
not expected. Finally, we think that the improvements obtained for
our designs and the fact that differently to current designs they
do not require the presence of a main directory out of the chip
(for example, in main memory), make them competitive for future
small and medium-scale shared-memory multiprocessors.

As part of our future work, we plan to combine these two
proposals to derive an architecture for the L2 caches with the
benefits of both schemes. Additionally, we plan to design a
prediction-based cache coherence protocol using the L2 cache
designs proposed in this work. Finally, all these proposals will be
evaluated in the context of a CMP architecture.
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