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ABSTRACT

The design of cache memories is a crucial part of the design cycle
of a modern processor. Unfortunately, caches with low degrees of
associativity suffer a large amount of conflict misses, while high-
associative caches consume more power per access. We propose
ASCIB, a simple technique able to dynamically adjust the bits used
for cache indexing so as to minimize conflict misses. By selecting
at run time the bits that disperse the working set more evenly across
the available sets, ASCIB removes 73% of the conflict misses on
average. This results in an improvement in energy efficiency by
17% on average.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles — Cache memories

Keywords

Cache memories, adaptive indexing, conflict misses, power

1. INTRODUCTION
With the scaling of transistors following Moore’s law, the signif-

icance of the memory hierarchy to the overall system performance
continues growing. The design of the first level cache is an impor-
tant parameter for achieving high performance systems since it is
accessed in the critical path of the processor, which determines the
clock frequency of the system. Therefore, first level caches should
be as fast as possible, should consume as less power as possible,
and should minimize the number of misses.

Cache memories commonly use the least significant bits (LSB)
of the block address to form the cache index. For applications that
exhibit high spatial locality, i.e., memory requests are mostly con-
secutive, this indexing function works fairly well because it uni-
formly distributes requested blocks across the available cache sets.
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However, for applications that do not exhibit spatial locality, low-
associativity caches can suffer lots of conflict misses due to a non-
uniform distribution of blocks into cache sets. Although by in-
creasing cache associativity this type of misses can be completely
removed, this comes at a high cost in terms of access latency, area
required, and power consumption.

Prior work in the field has pointed out that at any given time,
10% of the sets of a first level cache account for 90% of the conflict
misses using a typical LSB indexing function [7, 10]. This sug-
gests that a LSB indexing function does not distribute the blocks
evenly among the cache sets. As a consequence, several authors
have proposed to change the cache indexing function in order to
distribute blocks more evenly across cache sets, thus reducing the
number of conflict misses [5, 7, 12].These indexing functions are
independent of the application that is accessing the cache. How-
ever, a careful inspection of the sequence of requested addresses
for a particular application can lead to remove a lot of conflicting
accesses, for example, by picking the address bits that guarantee a
better distribution of blocks among sets to form the index [4].

Finally, it is important to consider that the sets that have the con-
flicting accesses change not only per application but also within the
same application for different program phases [13]. This implies
that static indexing policies, such as [4, 5, 7, 12], will not be able
to achieve an optimal distribution of blocks. Therefore, we claim
that an adaptive cache indexing policy is necessary to minimize the
number of conflicting accesses.

In this paper, we propose ASCIB (Adaptive Selection of Cache
Indexing Bits), a cache indexing policy that tries to find the address
bits that maximize the dispersion of the working set to the available
cache sets. This way, most conflict misses can be avoided. Since
the working set varies both per application and per phase within the
same application, the set of bits that will result in a better dispersion
also changes. Therefore, our indexing policy must be able to adapt
to such changes at run time.

Experimental results for the SPEC CPU2006 benchmark suite
[15] using cycle accurate, full system simulation suggest that our
proposal is able to remove 73% of conflict misses and 47% of the
total misses for a direct-mapped cache. This is reflected in IPC im-
provements of 8.5% on average when compared to a conventional
LSB indexing policy. Having less accesses to the L2 cache, the pro-
posed scheme also consumes 17% less energy on average. These
significant benefits come with less than 2% area overhead.

2. RELATED WORK
There are two main approaches for reducing conflict misses in

low-associativity caches. The first approach relies on rehashing
conflicting blocks to alternative cache sets [1, 10, 11, 13]. The sec-
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ond approach aims at distributing referenced blocks more evenly
across the sets by changing the indexing function [4, 5, 7, 12].
Since the mechanism presented in this paper follows the later ap-
proach, we start this section by analyzing the later works.

XOR-based mapping policies (e.g., bitwise [5] and polynomial
[12]) are used to obtain a pseudo-randomly placement of blocks.
These mapping functions require a previous computation of the
block address to obtain the cache index, being in both cases fairly
simple to implement. However, XOR-based mapping policies are
not aware of the particular access patterns of each application and
do not perform run-time adaptation.

Kharbutli et al. [7] propose two indexing functions based on
operations with prime numbers (prime modulo and prime displace-
ment). Requiring complex logic to calculate the cache index, makes
these techniques prohibitive for first level caches, where timing is
highly critical. Moreover, similar to the XOR-based mapping, they
do not perform run-time adaptation.

The skewed-associative cache [14] is a 2-way cache that uses one
hashing function per way. This function is derived by XORing two
bit fields from the block address. The most significant limitation for
skewed-caches is that they cannot easily use a pseudo LRU (or true
LRU) replacement policy, since there is no notion of a cache set.
Since we maintain the same indexing function per set, the proposed
scheme does not have this issue.

In [4] it was also noticed that the use of some bits for the cache
indexing could reduce the miss rate. For detecting which bits to
use, they employ offline profiling. This approach assumes that the
workloads are known prior to execution, which is generally not the
case (for embedded devices this may be a valid assumption).

The B-Cache [17] tries to reduce conflict misses by balancing
the accesses to the sets of direct-mapped caches. In order to do
this they increase the decoder length and incorporate programmable
decoders and a replacement policy to the design. Our proposal is
similar in that we also extend the number of bits considered for the
cache index. However, the proposed scheme can choose a larger
number of bits for the indexing function which is very beneficial.
Additionally, the proposed indexing logic is simpler since it only
has to select the bits that comprise the cache index.

The column-associative cache [1] uses a direct-mapped cache
and an extra bit for dynamically selecting alternate hashing func-
tions. Although this form of semi-associativity is able to remove
a large amount of misses it does so at the cost of a large number
of second accesses. Column-associative caches can be extended to
include multiple alternative locations [3, 18].

The V-Way cache [11] tries to remove many of the conflict misses
by allowing more tags than physical sets and using pointers to asso-
ciate the tags in use with the actual sets. This scheme tries to emu-
late a global replacement policy for set-associative caches, thus re-
moving conflict misses that are due to poor replacement of blocks.

3. THE ASCIB INDEXING POLICY

3.1 Detecting the Best Address Bits
An appropriate choice of the address bits that comprise the in-

dexing function is essential for achieving a good distribution of
blocks among cache sets, and therefore, for avoiding conflict misses.
Since the problem of obtaining these bits from all the available ones
has been demonstrated to be NP-complete [4], we opt for a simpler
heuristic that iteratively improves the indexing function by only
swapping one bit upon every indexing function change. After sev-
eral iterations we will reach a sub-optimal solution for which any
bit change will lead to a worse distribution of blocks. Of course,

Set Offset

B

b

Tag

Figure 1: Memory address and bits used to index the cache.

this solution can change dynamically depending on the variations
in the working set.

In particular, each iteration of the algorithm is split into three
phases: the bit-victimization phase, the bit-selection phase, and the
idle phase. During the bit-victimization phase, our algorithm se-
lects the bit that will be replaced from the current indexing func-
tion. Ideally, this bit should be the one that does not help in dis-
persing the accessed blocks evenly among the cache sets. When
such a bit is found the bit-selection phase starts. During this phase,
the bit that replaces the victimized one is selected. This bit should
be the one that, along with the remaining bits (i.e., all bits forming
the index apart from the victimized one), would result in spreading
memory references to cache sets as much as possible. Since the bit-
selection algorithm also considers the victimized bit, it may finally
choose as the new bit the one we had before. This is a nice property
of the algorithm, since if the current indexing function can not be
improved, it is not changed. Finally, an idle phase, where no ac-
tions are performed by the algorithm, is introduced in order to save
power consumption. Since no measurements are performed, during
this phase no extra power is consumed. The underlying assumption
is that once the bit-selection phase ends the indexing function will
perform properly for some time.

An important decision for designing the proposed scheme is the
number of address bits that should be considered as candidates for
being part of the indexing function. As expected the more bits are
analyzed, the more conflict misses are avoided. However, at the
same time if a very large number of bits is examined, our proposal
may have a negative impact in both latency, area, and power con-
sumption. Throughout this paper, we will call the number of bits
needed to form the cache index as b and the number of address bits
considered for selection as B (see Figure 1).

Next subsections describe these three phases in more detail. It is
important to point out that the operations performed in each phase
are not in the critical path of the cache access. As such the required
hardware does not have any impact on the cache access latency.

3.1.1 Bit-Victimization Phase

The goal of this phase is to find which bit should be removed
from the current indexing function. We have found that bits that do
not help in distributing accesses across the cache have one of the
following two characteristics:

• Low entropy: Entropy is a metric that measures variability. A
bit position that hardly changes its value for a certain set of
memory references has low entropy. If a bit position with low
entropy is used to form the cache index, most accessed blocks
map to half of the sets in the cache, while the other half would
remain almost unused. Figure 2a shows an example where bit
b0 presents no entropy at all, so referenced blocks can only map
to the shaded sets.

• High correlation: Two bit positions that most times have the
same value or most times have a different value show high cor-
relation. If the cache index is form from two bits that have high
correlation, again, half of the sets in the cache is highly utilized
while the remaining half just maps a few blocks. Figure 2b
shows an example where bits b1 and b2 are totally correlated.
Again, referenced blocks can only map to the shaded sets.
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(a) Low entropy example.
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(b) High correlation example.
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(c) Counters required and example.

Figure 2: Examples and counters for the bit-victimization phase.

During this phase we are going to discard either the bit with low
entropy or one of the two bits presenting higher correlation. Both
metrics are calculated considering only the memory addresses of
the blocks that suffer a cache miss. We need b counters to calculate
the entropy of each bit and

b (b−1)
2

counters for the correlation of

any pair of bits. This results in a total of
b (b+1)

2
counters. A deep

analysis about area requirements can be found in Section 5.3.
The algorithm works as follows. At the beginning every counter

is reset. Entropy counters are updated by adding each bit value
to the corresponding counter, i.e., entropy_counteri(ECi) is in-
creased when biti is 1. Correlation counters are updated by XOR-
ing every pair of bits and by adding the result to the corresponding
counter, i.e., correlation_counteri,j(CCi,j) is increased when
biti ⊕ bitj is 1. A final counter is used to store the total number of
addresses processed. The victimization phase ends either when any
of the counters saturates (each counter is comprised of 14 bits, i.e,
it can count up to 16K misses) or after a certain number of cycles
(through experimentation we have found that 100000 cycles works
properly). At the end of the phase, the selected bit will be the one
with lower entropy or higher correlation. In order to compare both
metrics we define the usefulness metric (U ) for a single bit and a
pair of bits, which is calculated as follows:

Ui = MIN(ECi, total_addresses− ECi) (1)

Ui,j = MIN(CCi,j , total_addresses− CCi,j) (2)

The bit with lower U is chosen for being evicted from the in-
dexing function. In case the lower U corresponds to a pair of bits
(correlation), the one with lower entropy will be evicted. Figure 2c
gives an example of the bit-victimization process for a 32-set cache
(b = 5). The lower U corresponds to CC1,3, and from these to bits,
the one with lower entropy is bit b3, so b3 will be the discarded bit.

3.1.2 Bit-Selection Phase

This phase selects the bit that will be the best replacement for the
victimized one. This choice is based on a metric that we name as
mean relative period (MRP). In order to understand this metric, we
will first explain the concept of mean period (MP) for an address
bit position. By focusing on just one bit position of the address for
a certain number of memory accesses, the period of the bit posi-
tion can be defined as the number of consecutive 0’s or 1’s. When
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Bit 1 sequence for Bit 0 = 0: 1111
Bit 1 sequence for Bit 0 = 1: 0000
Bit 1 MRP = (4 / 1 + 4 / 1) / 2 = 4

Bit 2 sequence for Bit 0 = 0: 1010
Bit 2 sequence for Bit 0 = 1: 0101
Bit 2 MRP = (4/4 + 4/4)/2 = 1

Bit 2 sequence: 10011001; MP = 8 / 5 = 1.6Bit 1 sequence: 10101010; MP = 8 / 8 = 1

The MP metric would select Bit 1 The MRP metric would select Bit 2

Figure 3: Example of MP and MRP metrics. The cache needs two
bits for the indexing. bo is the one that passed the bit-victimization
phase. b1 and b2 are candidates to form the index.

there is a bit change (from 0 to 1, and vice versa), a new period is
computed. The mean period is then the average of these periods:

MP =

np
P

i=0

periodi

np
=

nb

np
(3)

where
n

P

i=0

periodi corresponds to the number of bits in the se-

quence (nb), and np is the number of periods, i.e., the number of
bit changes (from 0 to 1 or from 1 to 0) plus one. For example, for
the sequence 00111011, nb = 8 and np = 4, so MP = 2.

However, although the bit with smaller mean period is the bit that
more frequently changes, this metric does not guarantee that this is
the best bit to be selected. This is because the new bit could highly
correlated with one of the other bits that are going to form the in-
dex. Hence, we propose the mean relative period (MRP), which is
the mean period calculated considering subsequent accesses whose
address always has a set of bits kept unchanged. In our case, these
set of bits are the b− 1 bits that passed the bit-victimization phase.

MRP =

2b−1

P

j=0

mean period(j)

2b−1
=

2b−1

P

j=0

nbj

npj

2b−1
(4)

Our goal is to find the bit from the remaining B − (b − 1) bits
with lower MRP, because this will be the bit changing the most
while keeping fixed the other ones, i.e., not correlated with any of
the used bits. Conceptually, this will also be the bit that will help
distribute better the requested blocks among sets. Figure 3 shows
an example of the goodness of these two metrics.

The scheme illustrated in Figure 4 is used to compute this metric
for each of the candidates. The required structure is a small tag

cache with the same associativity as the data cache but half number
of sets, and it is indexed using the same bits of the data cache af-
ter removing the bit that we wish to replace. Therefore, this cache
uses a similar indexing logic as the data cache, which will be ex-
plained in Section 3.3. Only the address bits that we wish to ana-
lyze (B − (b − 1) bits) are kept in the tags field of the tag cache
along with a valid bit, and as such it is fairly small. This cache is
updated on every data cache access. However, due to its small size
the power consumption of our proposal does not increase signifi-
cantly. On a replacement from this structure, the tag of the evicted
block and the tag of the new block are bitwise XORed. This pro-
vides information about changes of relative periods for each of the
tested bits, which are kept in B − (b − 1) registers. After a certain
number of cycles, the number of periods of each bit are compared.
The bit with greater number of periods is selected, since it will be
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Figure 4: Scheme of the bit-selection process.

the one with smaller MRP. We have found through experimentation
that a good length for this phase is 100000 cycles.

Having completed the second phase, the algorithm can proceed
to update the indexing function if necessary, first evicting from the
cache those blocks that will reside in a wrong set according to the
new indexing function, as will be explained in Section 3.2.

3.1.3 Idle Phase

Once the bit-selection phase is completed and the indexing func-
tion has been changed (if necessary), we assume that the current
function will perform appropriately for some time. Therefore, we
decide to introduce an idle phase where no measurements are made,
so we can save power. Through experimentation we have found that
a length for this phase of 400000 cycles is a good trade-off because
the proposed mechanism does not lose effectiveness. When this
phase finishes, the algorithm begins a new iteration starting from
the bit-victimization phase.

3.2 Updating the Indexing Function
From the point when the indexing function changes, all subse-

quent memory references will use the new function to access the
cache. This can cause consistency issues since memory blocks that
resided in the cache prior to the indexing change can be referenced
and mapped to a different set.

A simple approach to maintain the consistency of the cache is to
evict from cache those blocks that will be mapped to a different set
after the index change. Since the proposed algorithm only changes
one bit per iteration, some of the cached blocks will be mapped to
the same set using the new indexing function.

In order to detect which cache blocks will map to a different
set after the index change, it is only necessary to check if the se-
lected bit and the victimized one have the same value for every
block stored in cache. Therefore, a cache lookup is required on ev-
ery index change. Note that the address of a cached block can be
obtained by merging its tag and the set where is stored according to
the indexing function employed to map the block to the cache.

If there is not a variation in the working set, our indexing func-
tion should not change. Therefore, we expect that index changes
are triggered on the boundaries of different program phases where
the working set also changes and as such many misses would oc-
cur in any case. As consequence, the overall impact of the misses
caused by index changes should be small. Despite the simplicity of
this scheme it works fine, as it will be shown in Section 5.

3.3 Forming the Adaptive Index
A critical component of the proposed mechanism is the one that

forms the index out of the available bits. This circuit has to be fast
since it will lie in the critical path of the cache access and as such
it may impact the access time.

The proposed circuit is depicted in Figure 5. The indexing func-
tion is determined by the position of the bits selected for the in-
dexing. This information is stored in b registers (called bit mask

Bit 0 Bit 1 b−1Bit

Indexing Function Logic

M
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X

M
U

X

0

1

M
U

X
b

−1

Address Cache set

B 1

1

1

b

log(B) log(B) log(B)

...

...

Bit mask
registers

Figure 5: Forming the index using the selected bits

Table 1: Architectural parameters of the system simulated.
Parameter Value
Core Frequency 2.33GHz
Fetch/Issue/Retire Width 6, 4, 4
I-Window/ROB 64, 100
Ld/St Queue 64, 64
Branch Predictor YAGS 64Kb
BTB/RAS 1K entries, 2-way, 32 entries
L1 DCache and ICache 16KB, 1-way, 1 cycle
L2 Cache 2MB, 16-way, 7 cycles
Main Memory 150 cycles

registers). These registers are updated when the indexing function
changes. The size of each register is log2(B). These B bits are
taken from each block address in order to calculate the correspond-
ing cache set for the block. Our logic has b B-to-1 multiplexers,
which are lied out in parallel, each of them used for selecting one
address bit according to its corresponding bit mask register. The
outputs of all the multiplexers form the desired cache index.

The multiplexers shown in this figure can be implemented us-
ing transmission gates in order to minimize their delay. Since all
multiplexers are processed in parallel, the delay of the indexing
logic is represented by the delay of a B-to-1 multiplexer. This de-
lay depends on the number of transistors in the critical path with
can be calculated as a function of B. We found that a value for B

greater than 16 does not improve the accuracy of the proposal, and
therefore we can use 16-to-1 multiplexers, whose delay when im-
plemented using transmission gates is very small (one inverter and
four transmission gates in the critical path [2]). But even this small
delay can effectively be completely hidden since the time required
to perform the tag check is typically more than the one required to
access the data component.

4. EVALUATION METHODOLOGY
To evaluate the proposed scheme we employ the Simics full-

system simulator [8] extended with the Gems toolset [9] so as to
simulate a cycle-accurate out-of-order processor (Opal) and mem-
ory subsystem (Ruby). Our area, power and timing estimations are
based on Cacti 5.3 [16], assuming a 45nm process technology. We
use the SPEC CPU2006 benchmark suite [15] to drive our simula-
tion infrastructure. We fast forward all the benchmarks for the first
4 billion instructions. Throughout this period we only warm up the
caches. We then simulate each of the benchmarks for a slice of 500
million instructions for which we keep statistics.

As the base configuration (Table 1) we evaluate a DM cache that
uses an LSB indexing scheme (LSB). ASCIB uses a value B = 16.
We also evaluate the bitwise Xor function [5] (Xor), the prime mod-
ule function [7] (PrimeMod), the near-optimal static indexing [4]
(Static) and the column-associative cache [1] (ColumnAssoc). We
also include a section comparing ASCIB to set-associative caches
that uses the least significant bits for indexing the cache (LSB-

2ways and LSB-4ways). We pessimistically, for our scheme, as-
sume the same access latency for all schemes.
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Figure 6: MPKI for the schemes evaluated in this paper.
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5. EXPERIMENTAL RESULTS

5.1 Performance Evaluation
Figure 6 presents the MPKI (misses per thousand instructions)

for the different schemes evaluated. In this graph, cache misses
are split into four categories: Cold, Capacity and Conflict misses
corresponds to the typical categories [6], while Flushing misses
represent the ones caused as consequence of evictions performed
upon index changes. The graph shows that for the assumed 16KB
DM cache, the amount of capacity misses is quite high.

We can observe that the main benefit of all the schemes over
the base case comes in terms of a reduction in the conflict misses.
Xor reduces the conflict misses by 13% on average. However, this
approach increases the number of misses for several applications
(e.g., gamess, hmmer, perlbench, and sjeng). PrimeMod avoids
65% of conflict misses on average, but do not behaves properly
for some applications, particularly for dealII where the number of
MPKI is almost doubled with respect to the base case. The static
indexing is able to reduce the number of conflict misses by 41% on
average. However, for some applications like astar, gcc, or sjeng

it incurs in more misses than the base configuration. The column
associative cache is able to reduce conflict misses by 62% on aver-
age, although it increases the number of MPKI for astar compared
to LSB. Finally, we can see that our proposal is the one that is able
to remove the largest fraction of conflict misses assuming a DM
cache (73% on average), reducing the MPKI for all the applica-
tions (47% on average). Note that the amount of Flushing misses
for our proposal is negligible. This supports our assumption that
index changes happens on the boundaries of program phases.

In Figure 7, the IPC of the evaluated approaches is presented. As
the graph confirms there is a strong correlation between the MPKI
and the IPC. The Xor scheme is 2% better than the base case. Per-
haps the most worrying fact for this scheme is its inconsistent be-
havior, since it is worse than the LSB indexing for some cases (e.g.,
gamess and perlbench). PrimeMod improves the IPC compared to
Xor, obviating the fact that the logic for generating the index can-
not be efficiently implemented for L1 caches. Particularly, if the
hash function could be implemented in less than 1 cycle it would
be 6.8% better than the base case. The static indexing is 3% bet-
ter than the base case. However, it is not behaving better that the
base configuration for all the benchmarks (e.g., astar and gcc). The
column-associative improves the IPC by 4.1% on average over the
base case. Although it obtains similar reduction in MPKI, some-
times hits require a second cache access –this happens for 22% of
the hits on average– which negatively impacts performance. Fi-
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Figure 8: Normalized IPC considering different cache sizes.

nally, ASCIB is better than all the previously proposed schemes,
improving IPC by 8.5% over the base case.

To conclude the performance evaluation, Figure 8 shows the IPC
of the evaluated proposals for different cache sizes (from 4KB to
128KB). We can see that the adaptive scheme outperforms the other
proposals for all cache sizes. Obviously, when the cache size be-
comes very large, the cache miss rate decreases, and therefore, the
improvements in IPC are lower. The schemes that perform closer
to our proposal are Xor (for large cache sizes), and the unimple-
mentable PrimeMod.

5.2 Energy Efficiency
Figure 9 presents an evaluation of the difference in the dynamic

energy consumed by the caches for all the schemes. This figure
splits the consumption of the three main structures involved in our
memory hierarchy: the L1 cache, the L2 cache, and the tag cache
and other counters employed by our mechanism. As it is shown,
the more the L1 miss ratio is reduced, the more dynamic energy is
saved at the L2 cache. The consumption of the L1 cache is sim-
ilar for all the indexing policies except for the column-associative
cache, where some times a cache hit requires two cache accesses.
Finally, the energy consumption of the tag cache along with the
counters employed by our proposal is negligible. Therefore, our
proposal reduces the energy consumption compared to the base
case by 17% on average, and it is the more energy efficient scheme
from the proposals evaluated.

5.3 Area Overhead
Our algorithm uses the following extra structures to adapt the

indexing function at run time:
b (b+1)

2
counters used to detect low-

entropy and high-correlated bits during the bit-victimization phase,
a tag cache that computes the MRP for the bits considered in the
bit-selection phase, and the other counters for storing the MRP for
each bit being analyzed to be selected.

Table 2 shows the extra area requirements of our proposal for
several cache sizes. Each of the counters employed in the bit-
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Figure 9: Normalized dynamic energy consumption for the schemes evaluated in this paper.

Table 2: Area overhead of the proposed mechanism.
Cache size Cache Index Candidate Bit-victimization Bit-selection ASCIB

(KB) sets bits (b) bits bytes (overhead) bytes (overhead) overhead
4 64 6 11 39.25 (0.90%) 69.00 (1.57%) 2.47%
8 128 7 10 51.50 (0.59%) 107.25 (1.22%) 1.81%

16 256 8 9 65.50 (0.37%) 177.50 (1.02%) 1.39%
32 512 9 8 81.25 (0.23%) 303.75 (0.87%) 1.10%
64 1024 10 7 98.75 (0.14%) 526.00 (0.75%) 0.89%

128 2048 11 6 118.00 (0.08%) 908.25 (0.66%) 0.74%

victimization phase has 14 bits. Since we only consider up to
B = 16 bits from the address and there are b − 1 bits remain-
ing from the bit-victimization phase, only 16− (b−1) bits plus the
valid bit need to be stored in the tag cache, which has half number
of sets than the data cache. We can also observe that our proposal
scales very well with the size of the cache, i.e., the area overhead
decreases as the cache size increases. Overall, the area overhead of
our proposal is only 1.39% with respect to a 16KB DM cache.

5.4 Comparison to associative caches
In this section we compare our proposal to 2-way and 4-way

associative caches, idealistically considering that the access time of
all caches is the same, i.e., favoring associative caches. Figure 10
shows this comparison in terms of CPI, energy, and area. For the
energy consumption we consider both the L1 and the L2 caches,
since an associative L1 cache incur in more energy consumed per
access, but also in less consumption at the L2 cache. Results are
normalized with respect to a traditional DM cache (LSB-DM). The
bars labeled as Energy_L1 and Energy_L2 represent the faction of
the Energy_L1+L2 bar consumed by each cache level.

The 2-way associative cache reduces CPI by 11.7%, while the
4-way associative cache reduces it by 13.4%. Although this is a
higher reduction than the obtained by our proposal, this numbers
consider 1-cycle hit time for the associative cache –for a 2-cycle
2-way cache, the CPI is slightly worse than our proposal–. How-
ever, this performance comes at both area and energy costs. The
consumption of the L1 cache increases when we use associative
caches. Although the number of L2 accesses is reduced, the impact
in L1 energy consumption is more important so the overall power
increases, up to 52% for a 4-way cache compared to a DM or a
2-way cache. Finally, the area overhead of ASCIB with respect to
a 16KB DM cache is less than 2%. A 2-way set-associative cache
increases area requirements by 8,7%.

6. CONCLUSIONS
We have proposed an adaptive cache indexing policy (ASCIB)

that is able to reduce the conflict misses, by more uniformly spread-
ing the memory references to the available sets. The basic premise
of this work is that the non-uniformity in the set usage is caused by
a poor selection of the index bits. Instead, by selecting as index bits
the bits that disperse the working set more evenly in the available
sets, a large fraction of the conflict misses can be removed.

We have shown that ASCIB is able to reduce the percentage of
conflict misses by 73%. This is reflected in IPC improvements by
8.5% on average when compared with a conventional cache that
used the least significant bits. Finally, when ASCIB is used for DM
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Figure 10: Comparison to associative caches in terms of CPI, dy-
namic energy consumption, and area. Lower is better.

caches it can obtain a CPI close to associative caches, consuming
17% less energy, and requiring 6% less area than a 2-way associa-
tive cache.
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