
Callback: Efficient Synchronization without Invalidation

with a Directory Just for Spin-Waiting

Alberto Ros
Department of Computer Engineering

Universidad de Murcia, Spain
aros@ditec.um.es

Stefanos Kaxiras
Department of Information Technology

Uppsala University, Sweden
stefanos.kaxiras@it.uu.se

Abstract

Cache coherence protocols based on self-invalidation allow

a simpler design compared to traditional invalidation-based

protocols, by relying on data-race-free (DRF) semantics and

applying self-invalidation on racy synchronization points ex-

posed to the hardware. Their simplicity lies in the absence of

invalidation traffic, which eliminates the need to track readers

in a directory, and reduces the number of transient protocol

states. With the addition of self-downgrade these protocols

can become effectively directory-free. While this works well

for race-free data, unfortunately, lack of explicit invalidations

compromises the effectiveness of any synchronization that re-

lies on races. This includes any form of spin waiting, which is

employed for signaling, locking, and barrier primitives.

In this work we propose a new solution for spin-waiting

in these protocols, the callback mechanism, that is simpler

and more efficient than explicit invalidation. Callbacks are set

by reads involved in spin waiting, and are satisfied by writes

(that can even precede these reads). To implement callbacks

we use a small (just a few entries) directory-cache structure

that is intended to service only these “spin-waiting” races.

This directory structure is self-contained and is not backed

up in any way. Entries are created on demand and can be

evicted without the need to preserve their information. Our

evaluation shows a significant improvement both over explicit

invalidation and over exponential back-off, the state-of-the-art

mechanism for self-invalidation protocols to avoid spinning in

the shared cache.

1. Introduction and Motivation

In self-invalidation protocols, writes on data are not explicitly

signaled to sharers. It is straightforward to show that data races

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions@acm.org.

ISCA’15, June 13-17, 2015, Portland, OR USA

c© 2015 ACM. ISBN 978-1-4503-3402-0/15/06 ...$15.00

DOI: http://dx.doi.org/10.1145/2749469.2750405

throw such protocols in disarray, producing non-sequential-

consistent executions [14, 23]. All proposals thus far [5, 7, 12,

13, 14, 22, 23, 26] offer sequential consistency for data-race-

free (DRF) programs [3].1

Despite the advantages of self-invalidation, there are sit-

uations where explicit invalidation is better. For instance,

spin-waiting can be performed more efficiently with inval-

idations and local spinning on a cached copy, rather than

repeatedly self-invalidating and re-fetching, which is the way

self-invalidation protocols get the value updated by writes.

Without explicit invalidations, complex and expensive so-

lutions have been proposed for synchronization. To imple-

ment locks, VIPS-M blocks last-level cache (LLC) lines and

queues requests at the LLC controller [23]; while DeNovoND

uses complex hardware queue locks (based on QOSB [11])

with lock bits and queue pointers in the L1 caches [25, 26].

Spin-waiting on a variable causes repeated self invalidation

in VIPS-M, while DeNovoND [26] assumes the existence of

barriers,2 later implemented with exponential back off [25].

Repeated self-invalidations of a spin flag mean that we

spin directly on the LLC. This dramatically increases network

traffic and LLC accesses and, consequently, is a very costly

solution in terms of energy consumption. To alleviate this

problem exponential back-off is used, as for example in VIPS-

M [23] and in DeNovoSync [25]. To cap the back-off interval

to reasonable levels —and hence the delay penalty incurred

on the last access that exits the spin-waiting— exponentiation

must cease after a few times.

Figure 1 compares invalidation, LLC spinning with expo-

nential back-off using four limits for the number of exponenti-

ations: 0 (no back-off), 5, 10, and 15 times. The two sets of

bars in each of the graphs show the results (normalized to the

largest value) for spin-waiting in a CLH queue lock [8, 17] and

in a tree sense-reversal barrier [19], while the two graphs show

number of LLC accesses and latency (in cycles), respectively.3

1Conceptually, one could eliminate the requirement for DRF by self-

invalidating after every use of data, but this would defeat the purpose of

caching.
2Hardware barrier implementations would tie very well with self-

invalidation as they can be directly exposed to the coherence layer and can

initiate the proper self invalidations. Unfortunately, we cannot assume their

availability in the general case.
3Results represent the geometric mean of the synchronization of all bench-

marks evaluated in this work (see Section 5) for a 64-core system.

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 L

L
C

 a
c
c
e
s
s
e
s

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15

Acquire Barrier
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Figure 1: Explicit invalidation vs. self-invalidation

It is obvious from this figure that invalidation is very ef-

ficient while LLC spinning trades off the number of LLC

accesses to latency, depending on the limit of the number of

exponentiations. While it can be made competitive to invali-

dation, this comes at a significant cost in traffic. Conversely,

LLC spinning requires precise tuning as it can incur significant

delays when one tries to minimize traffic. Thus, there is no

“best” back-off for both time and traffic because it is always a

trade-off between the two metrics.

Thus, it is tempting to consider reverting back to explicit

invalidation for a small set of addresses, namely spin variables.

However, explicit invalidations are unsolicited and unantici-

pated, giving rise to a number of drawbacks that make them

unappealing —if our overarching goal is to simplify coherence.

Because they are unanticipated, invalidations cause significant

protocol state explosion to resolve protocol races. Because

they are unsolicited, invalidations break the mold of a simple

request-response protocol, meaning that they cannot be used

for virtual caches without reverse translation [13].

Our objective is to address a weakness of self invalidation,

but at the same time refrain from compromising some of its

important properties such as protocol simplicity and compati-

bility with virtual cache coherence [13].

To this end, we propose a new simple and transparent call-

back mechanism to avoid repeated self-invalidation and re-

fetch of data. Callbacks follow a request-response paradigm,

are efficiently implemented in a small structure, and eliminate

wasteful re-fetches of data while at the same time allowing

the cores to pause (e.g., to save energy) rather than actively

spin on a cached copy waiting for a change of state. Callbacks

are inherently more efficient than invalidation in terms of traf-

fic. Communicating a new value requires five messages with

invalidation while only three with callback. (Section 3).

Callbacks are set by reads wishing to be notified of a new

value if one is not readily available. A write that creates a new

value notifies all (or alternatively just one) of the readers that

are waiting for it. We propose a number of callback variants to

optimize common synchronization idioms (Section 2) and we

give a detail description of the resulting algorithms (Section 3).

Callbacks are implemented efficiently in a small directory-

cache structure that is not backed-up by external storage. En-

tries in a callback directory are created and evicted without

introducing the protocol complexity involved in directory re-

placements. This is due to the simple semantics of the callback

that allow the loss of directory information and re-initialization

at a known state.

More abstractly, we propose a directory just for races in-

volved in spin-waiting. The reasoning is the following: in

an environment with self-invalidation and self-downgrade, re-

sponsibility for coherence is distributed to the core caches

when it comes to data-race-free accesses. In other words, there

is no need to track data-race-free data in a centralized direc-

tory. What remains are the conflicting accesses, that need a

meeting point. This is straightforward in SC for DRF [3], the

model of self-invalidation protocols, since all synchronization

must be exposed to the hardware, and any conflicting accesses

must be synchronization (otherwise the model would be vio-

lated). Further, we exploit the fact that races are unordered and

specify how directory entries can be evicted without having to

preserve their information.

We evaluate our proposals using simulation and an ex-

tensive set of benchmarks (Section 5). Our results show

that, the proposed callbacks invariably retain the benefits

of self-invalidation and self-downgrade, but most impor-

tantly, severely limit the penalties when these appear in

synchronization-intensive benchmarks, bringing a truly simple

and competitive coherence a step closer to reality.

2. Optimizing Synchronization with Callbacks

While self-invalidation can be optimized for race-free data, it

shows an inherent weakness when it comes to spin-waiting.

Entering a critical section or just spin-waiting for a change

of state requires repeated self-invalidation of the lock or flag

variable —we assume that atomic instructions always go to the

LLC as in [23]. And herein lies the problem: spin loops cannot

spin on a local copy of the synchronization variable which

would be invalidated and re-fetched only with the writing of a

new value. Repeated self-invalidation leads to excessive traffic

to the LLC.

The solutions that have been proposed so far are costly.

For locks, they involve some form of hardware queuing. The

VIPS-M approach uses a blocking bit in the LLC cache lines

and queues requests in the LLC controller when this bit is

set [23]. DeNovoND proposes a full-blown hardware imple-

mentation of queue locking based on the QOSB operation

[11, 25, 26]. The cost and complexity of these proposals is not

trivial. Further, they tie the lock algorithm to the specifics of

the hardware implementation (so the lock algorithm inherits,

for better or worse, whatever fairness, starvation, live-lock

properties, etc. are offered by the hardware mechanism [24]).

For spin-waiting, both VIPS-M [23] and DeNovoSync [25]

rely on exponential back-off.

What we need is a similar effect to these complex proposals,

only much simpler and much more general (not restricting

the lock algorithm by the hardware, nor imposing exponential

back-off for spinning).

2.1. Callback

Our solution is a “callback” read operation that can be applied

to loads that participate in spin-waiting. A Callback read

blocks waiting for a write, if no intervening write happened

since its last invocation. In many respects the callback concept

reminds of a C++11 “future” [2] but is more low-level, and

more flexible. Similarly to a future, if the value has been

created it can be readily consumed; otherwise, like a future,

a callback awaits the creation of the value. Our proposal is

inspired by the Full/Empty concept [21] but is different. It

works as follows: A core issues a callback read to an address.

If the address has been written (i.e., the value is in state "full")

the read completes immediately; otherwise it blocks and awaits

a write. So far it is similar to the functionality of a Full/Empty

bit. The novelty of our approach is that we allow any set

of cores to simultaneously issue callback reads to the same

address and simultaneously consume the same write, but at the

same time allow complete freedom on when a callback can be

set by a core with respect to writes. Writes never block as is

the case with Full/Empty bits. The callback optimizes reads in

spin-waiting in an environment lacking explicit invalidations.

Thus, our objective is to provide the benefit of explicit in-

validation, for only these few accesses that need it, but without

the cost of implementing a full-blown invalidation protocol,

and without having to track indiscriminately all data in a direc-

tory (as this would obviously defeat the purpose of simplifying

cache coherence with self-invalidation). A callback is different

than an invalidation as it is explicitly requested and waited

upon.4 This is what makes callback simple. From the point of

view of the cache, a callback read is still an ordinary request-

response transaction —no other complexity is involved. It

introduces no protocol races because cores are either blocked

waiting for the callback response or immediately complete

the read. From the point of view of the LLC, a callback is a

simple data response without any further bookkeeping.

In contrast, invalidations are unsolicited and their arrival

unanticipated. An invalidation can arrive to a core at any

time and at any cache state, which dramatically increases the

protocol race conditions and therefore the number of states

required in the caches to account for all the scenarios. In

addition, invalidations are not suitable for efficient virtual-

cache coherence [13], for the same reason. Invalidations are

not anticipated at a virtual cache, which means that a reverse

translation (physical to virtual) must be performed to ensure

correct delivery to the virtual cache. In contrast, callbacks are

explicitly waited for (as a result of a request) so they require

no address identification (other than an MSHR index).

In terms of energy efficiency, callbacks have two advantages

over invalidations. First, callbacks are more efficient in the

number of messages needed to communicate a new value. A

callback requires three messages: {callback, write, data} or

4For similar reasons, a callback is different than unsolicited update opera-

tions (e.g, as in update protocols).

�� �� �� ��

�� �� �� ��

��	

��

	��
��

� � � �

�������������	���

�������������������	 �����!

"�
#�	$ #�	% #�	
&

� � � �

& �

Figure 2: Callback Directory

{write, callback, data} depending on the relative order between

the read and the write. Invalidation, however, requires five:

{write, invalidation, acknowledgment, load, data}. A further

important benefit of a callback is that a core can easily go into

a power-saving mode while waiting. Many works have shown

that significant energy savings are possible by slowing down

non-critical threads that are simply waiting for critical threads

to reach a synchronization point (typically a barrier) [15, 16].

However, demonstrating this benefit is outside the scope of

this paper and is left for future work.

2.2. Implementation

To implement callbacks we need a callback bit (CB) and a

Full/Empty (F/E) bit per core. Potentially every address could

have its own set of CB and F/E bits, but of course, we argue

that this is not needed, nor wanted. First, as we argued in the

introduction, CB and F/E bits are needed only for a limited set

of addresses (for synchronization variables, locks and flags) so

the callback directory does not need to cover the entirety of the

address space or even the entirety of the cached data. Second,

CB and F/E bits are primarily needed to handle the case where

a (repeating) read is trying to match a specific value of a write.

Such “ongoing” races at any point in time typically concern

very few addresses. Thus, a very small directory cache at the

LLC maintains this set of bits just for few addresses (Figure 2).

The callback directory is managed as a cache (with evictions

and a replacement policy) but is completely self-contained

and not backed by main memory. This is achieved by the

way entries and initialized and evicted and is explained in

detail below. Only callback reads can install an entry in the

directory (any other read or write cannot affect the contents of

the directory).

A reasonable upper limit for the number of entries in this

directory would be equal to the number of cores (since there

can be only so many callbacks set on different variables as

the number of cores).5 Further, since we only need to track

the CB bits for a limited set of addresses, we can afford to do

this at a word granularity, thus allowing independent callback

reads for individual words in a cache line.6 We explain below

what happens on replacement (and thus complete loss of the

CB and F/E bits for some address).

5This can be optionally extended to the number of threads for multi-

threaded cores.
6This works well with the individual-word updating of the LLC lines in a

self-downgrade protocol such as VIPS-M [23].

����������������

��� ��
����	�
 ����	�
���

�������������������������������

������������������������������

��������	���������
���������������� ����
��������

���������������	�

��������
�����������������
����������������

���������������

������������������������������

���������� �� ����������
����������������

������������������
����������������

�!������

�����������������

�����������������

�����������������
��������������������"����#���

����
����������

�����������������

�

	

$

%

&

'

���"

������������
���������

������������������ �� ���������

Figure 3: Callback example

It is also important to note that in contrast to invalidation

directories, a callback directory is not in the critical path of

reads (GetS) or writes (GetX). In the latter case, the callback

directory is accessed in parallel with the LLC. As shown in

Figure 2 only callback reads (GetCB) need to consult the

callback directory before accessing the LLC.

2.3. Callback Example

Figure 3 shows how the callback directory functions. The

example concerns a single directory entry for a variable ac-

cessed by four cores (core0..core3). There are four F/E bits

and four CB bits, one per core. When an entry is allocated in

the callback directory it is initialized with all the F/E bits set to

1 (full), and all callback bits set to 0 (no callback) —recall that

the directory is not backed up, so its entries must be created

anew. This is also the default state after F/E and CB bits are

lost due to a replacement.

The first time a core issues a callback to a newly initialized

entry it will find the corresponding F/E bit full. This means

that the core simply reads the current value of the data and the

F/E bit is reset. Assume that all cores read the variable after

its callback entry is installed in the directory so the starting

state of all the bits is 0, in our example.

Assume now that cores 0 and 2 issue callback reads to

this address, setting the corresponding CB bits (step 2). The

callback reads block since there is no value to consume. When

later a write is performed on the address from core 3, the

callbacks are activated and two wakeup messages carry the

newly created value to cores 0 and 2. Now, the corresponding

callbacks are set to false (0) and the unset F/E bits of the cores

that did not have a callback are set to full (step 3). Cores

that had a callback have now consumed the write, but cores

that did not set a callback can henceforth directly access the

written value because their corresponding F/E bits are set to

full. When a core issues a callback and finds its F/E bit set

(full), it consumes the value and leaves both its F/E bit and

callback bit unset (empty and no callback). This is shown

in step 4. It is clear from this example that a callback can

consume a single write, whether it happens before or after it.

If the write happened before then the callback immediately

returns, otherwise it will get called back from the write itself.

It is also clear that we have a bulk behavior for all the cores

that are waiting on a callback.

2.3.1. Loss of F/E and CB Bits. But what happens if a re-

placement in the directory causes the F/E and CB bits to be

lost for an address? Since we do not back the directory in the

main memory, our solution for this is to send the data to all

callbacks that are set on the address (step 5). The cores that

have a callback are notified that their callback is answered but

without getting a newer value.

In a directory replacement both the CB bits and the F/E bits

are lost. When a new entry is created as a result of a callback

read that misses in the directory, all its F/E bits are set to full,

and since there cannot be any outstanding callbacks all the CB

bits are set to 0 (step 6).

2.4. Callback-All vs. Callback-One

The callback mechanism described so far is intended to opti-

mize the case of a data race involving multiple reads conflict-

ing with a write. When a new value is produced by a write

all (waiting) reads are woken up. Likewise, reads from many

different cores may consume the same value that was previ-

ously written. This fits well synchronization idioms having

a broadcast or multicast behavior (e.g., barriers). However,

if one considers lock synchronization, a callback mechanism

that wakes up all waiting reads may be inefficient. In lock syn-

chronization only one out of a set of competing lock acquires

succeeds. Thus, releasing a lock, which is a write on the lock

variable, should wake up one waiting acquire instead of all.

Likewise, a free lock could be read by the first lock acquire

that arrives, rather than all. This kind of behavior requires a

functional change to our basic callback mechanism. But the

structure of the callback directory remains unchanged —only

functionality changes.

WriteCB1. To optimize the case of locks, we use a variant of

the write that wakes up a single waiting callback: writeCB1.

Note that the number of callbacks that are satisfied is specified

by the write —not the reads that set the callbacks.

Using a writeCB1 wakes up a single callback, if there are

any callbacks set. But it also has another equally important

effect: it forces all F/E bits to act in unison, i.e., behave as a

single F/E bit. This “mode” change in the functionality of the

F/E bits is encoded in a “All/One” (A/O) bit in the callback

directory entries. This bit is set to “All” by default and the F/E

bits act individually as described in the previous section. In

this case the entry is a “callback-all” entry. A writeCB1 sets

the A/O bit to “One” causing the F/E bits to behave in unison

and making the entry “callback-one.” (Any normal write or

read resets the A/O bit to “All.”)

Example. Figure 4 gives a high-level example, without going

into much detail on the lock implementation, something that

Operation Example and Comments

ld_through General conflicting load. First load in spin-

waiting. LLC responds immediately. Resets

the F/E bit (see Sec. 3.3).
ld_cb Subsequent (blocking) loads in spin-waiting.

Waits for F/E bit to be full. Resets F/E bit.
st_cb0 Not used. Does not service any callbacks.
st_cb1 Lock release. Services one callback.
st_through (or st_cbA) General conflicting store. Barrier release. Ser-

vices all callbacks.
{ld}&{st_cb0} Test&Test&Set to acquire a lock and enter a

critical section.
{ld}&{st_cb1} Fetch&Add to signal one waiting thread.
{ld}&{st_cbA} Fetch&Add in a barrier.
{ld_cb}&{st_cb0} Spin-waiting on Test&Set to acquire a lock and

enter a critical section.
{ld_cb}&{st_cb1} Not used.
{ld_cb}&{st_cbA} Not used.

Table 1: Synchronization primitives for self-invalidation

(W→RELEASE). The fence instructions we consider enforce

the same ordering of accesses across them: self-invl→R

and W→self-down.7

Regarding the conflicting accesses that we use for synchro-

nization, load_through, store_through, and atomics, they are

coherent and sequentially consistent among themselves. They

bypass the L1 and go directly to the LLC where they meet at

a single point and update atomically or read. Thus, they are

coherent because cores cannot observe different write orders,

only the order in which writes reach the LLC. They are SC be-

cause, in addition to the above, load_throughs, store_throughs,

and atomics are blocking so no later “_through” operation or

atomic can be initiated until they complete.

The callback variants of these accesses do not change the

memory model. When a callback read is held back in the call-

back directory waiting for the next write, we are effectively

changing the interleaving of accesses while still respecting pro-

gram order. The effect is the same as if cores that have issued a

callback are completely stalled until the next write. Similarly,

a writeCB1 has the effect of further stalling all waiting cores

except one, and a writeCB0 has the effect of prolonging the

stall of all waiting cores until (at least) the subsequent write.

Atomicity for RMW instructions is provided by locking in

the LLC MSHRs and LLC controller as we described previ-

ously. It is because of their SC semantics and atomicity for

RMW that these LLC operations can be collectively employed

for the synchronization in SC for DRF protocols.

3.3. Forward Progress

As we have discussed so far, a callback load blocks if it has

consumed the previous value (setting its F/E bit to “empty”

and/or clearing its CB bit). It is clearly intended to be used just

for spinning. But what happens when we want to consume the

same value more than once? This situation may occur with

back-to-back spin loops as in the example in Figure 7.

7A self-invl fence also performs a self-downgrade of all the tran-

sient dirty blocks in order to invalidate them. As a result it also enforces

W→self-invl

flag = 1; while(flag == 0);
while(flag == 0);

Figure 7: Example of callback deadlock

If the flag is read with callback reads, then the final callback

that exits the first spin-loop consumes the value 1 and leaves

the callback entry “empty” and without a callback. The next

callback (the first of the second spin-loop) cannot see that

the correct value is already in the L1 (since it skips the L1)

and will immediately block in the callback directory. Yet,

the correct value that we are seeking for exiting the second

spin-loop is already there and no new value will be written to

unblock the callback! This happens because two consecutive

callbacks from the same core wish to consume the same value

without an intervening write. This situation leads to deadlocks

and forward progress is forsaken.

For this reason, a callback spin-loop is always preceded by

a load_through that checks whether the value we want is

already there, regardless of whether the value was consumed

in the past. A load_through has the behavior of a non-

blocking callback. It consumes a value if one is available (i.e.,

sets the F/E to “empty” if it was “full”) but does not block and

returns the current value of the data if there is no new value

(i.e., F/E bit previously set to “empty”). In the same vein,

if any spin loop is interrupted for any reason it must restart

from the load_through (or with a load_through) as a

thread migration may have ensued.

3.4. Synchronization Algorithms

With all of the above in mind, in the rest of this section we

compare the encodings of the most frequent synchronization

idioms (adapted directly from the code in [1]) for an SC (un-

fenced) MESI implementation, a fenced VIPS-M implemen-

tation with LLC spinning, and a fenced VIPS-M using call-

backs.8

3.4.1. Test&Set Lock Algorithm. Figure 8 shows a simple

Test&Set spin-lock algorithm. The code for MESI is shown on

the left and a fenced (self-invl, self-down) VIPS-M

code on the right. Code using callbacks is shown in Fig-

ure 9. A callback-all implementation is shown on the left and

a callback-one on the right. We use a single non-callback T&S

({ld}&{st_cb0}) as a guard just before the callback T&S

({ld_cb}&{st_cb0}) spin-loop (label tas:), as per our

discussion in Section 3.3. If this succeeds we enter the critical

section, otherwise the callback T&S sets a callback and waits

in the spin-loop.

3.4.2. Test-and-Test&Set Lock Algorithm. Figure 10

(MESI:left, VIPS-M:right) shows the more common Test-

and-Test&Set (T&T&S) lock algorithm [24]. The first

“Test” is implemented with a ld_through in VIPS-M. In

the callback implementations in Figure 11 (callback-all on

8Because of space constraints we cannot include the original high-level

code from [1]. We suggest consulting this high-level code for an easier

understanding of our examples.

acq: t&s $r, L, 0, 1
bnez $r, acq
/* CS */

rel: st L, 0

acq: t&s $r, L, 0, 1
bnez $r, acq
self_invl
/* CS */

rel: self_down
st_through L, 0

Figure 8: Test&Set algorithm for MESI and VIPS-M

acq: ld&st $r, L, 0, 1
beqz $r, cs

spn: ld_cb&st $r, L, 0, 1
bnez $r, spn

cs : self_invl
/* CS */

rel: self_down
st_through L, 0

acq: ld&st0 $r, L, 0, 1
beqz $r, cs

spn: ld_cb&st0, $r, L, 0, 1
bnez $r, spn

cs : self_invl
/* CS */

rel: self_down
st_cb1 L, 0

Figure 9: Test&Set callback algorithm

the left and callback-one on the right), we use ld_cb as

the first test and the non-callback versions of the atomic

T&S: {ld}&{st_cbA} and {ld}&{st_cb1}. Only the

first “Test” blocks in the callback directory and a guard

ld_through (see Section 3.3) precedes the ld_cb.

3.4.3. CLH Queue Lock Algorithm. Figure 12 (MESI:left,

VIPS-M:right) shows the CLH queue lock algorithm [1, 8, 17].

The atomic in this case is an unconditional fetch&store.

The callback implementation is shown in Figure 13. This algo-

rithm only has one thread spinning on a variable, so callback-

all and callback-one behave in the same way. The spin-loop

is in all cases a simple ld which is replaced in the callback

implementation by a guard ld_through and a spin-loop

with ld_cb.

3.4.4. Sense Reversing Barrier. Figure 14 (MESI:left, VIPS-

M:right) shows the sense reversing (SR) barrier [1, 24].

Code using callbacks is shown in Figure 15. The atomic

used is a non-callback fetch&decrement of the form

{ld}&{st}. In this algorithm all threads waiting for the

barrier spin until the sense changes, so a callback-all works

efficiently.

3.4.5. Tree Sense Reversing Barrier. Figure 16 (MESI:left,

VIPS-M:right) shows the simple scalable tree-based (sense

reversing) barrier (TreeSR) [1, 19]. Code using callbacks is

shown in Figure 17. In this algorithm there are two spin-loops

(labels bar: and spn:) and no atomics are used. Only one

acq: ld $r, L
bnez $r, acq
t&s $r, L, 0, 1
bnez $r, acq
/* CS */

rel: st L, 0

acq: ld_through $r, L
bnez $r, acq
t&s $r, L, 0, 1
bnez $r, acq

cs: self_invl
/* CS */

rel: self_down
st_through L, 0

Figure 10: Test-and-Test&Set algorithm for MESI and VIPS-M

acq: ld_through $r, L
beqz $r, tas

spn: ld_cb $r, L
bnez $r, spn

tas: ld&st $r, L, 0, 1
bnez $r, spn

cs : self_invl
/* CS */

rel: self_down
st_through L, 0

acq: ld_through $r, L
beqz $r, tas

spn: ld_cb $r, L
bnez $r, spn

tas: ld&st0 $r, L, 0, 1
bnez $r, spn

cs : self_invl
/* CS */

rel: self_down
st_cb1 L, 0

Figure 11: Test-and-Test&Set with callbacks

// $l = lock pointer (L); $i = my node pointer (I)

acq: st $i->succ_wait, 1
f&s $p, L, $i

spn: ld $r, $p->succ_wait
bnez $r, spn
/* CS */

rel: ld $p, $i->prev
st $i->succ_wait, 0
st I, $p

acq: st_thr. $i->succ_wait, 1
f&s $p, L, $i

spn: ld_thr. $r, $p->succ_wait
bnez $r, spn

cs : self_invl
/* CS */

rel: self_down
ld $p, $i->prev
st_thr. $i->succ_wait, 0
st I, $p

Figure 12: CLH queue lock algorithm for MESI and VIPS-M

...

try: ld_through $r, $p->succ_wait
beqz $r, si

spn: ld_cb $r, $p->succ_wait
bnez $r, spn

cs : self_invl
...

Figure 13: CLH queue lock algorithm with callbacks

thread waits for the value to be modified in both spin-loops, so

any callback (callback-all or callback-one) works efficiently.

The example is coded with callback-all.

3.4.6. Signal/Wait and Spin Waiting on Flags. Figure 18

(MESI:left, VIPS-M:right) shows a signal/wait synchroniza-

tion. Each signal wakes up only one thread. Code using

callbacks in Figure 19. The signal-wait only wakes up one

thread, so callback-one is the efficient solution. In the case of

spin waiting on flags, the safe way is to use callback-all, but if

the programmer knows that only one thread should wake up,

callback-one is more efficient.

4. Related Work

Our work, of course, builds on a number of previous works

that paved the way for simplifying coherence [7, 12, 13, 22, 23,

25, 26]. We use a VIPS-M protocol [23] as a representative SC

for DRF protocol with self-invalidation and self-downgrade.

VIPS-M suffers from the inability to efficiently handle data

races intended for synchronization (spin-waiting) as we dis-

cussed in previous sections. In this work we address this

shortcoming for SC for DRF protocols.

// $s = local sense (L); $p = number of processors

bar: not $s, $s
f&d $c, C
bne $c, 1, spn
st C, $p
st S, $s

spn: ld $r, S
bne $r, $s, spn

bar: not $s, $s
self_down
f&d $c, C
bne $c, 1, spn
st_through C, $p
st_through S, $s

spn: ld_through $r, S
bne $r, $s, spn

si : self_invl

Figure 14: Sense reversing barrier for MESI and VIPS-M

bar: not $s, $s
self_down
f&d $c, C
bne $c, 1, sw
st_through C, $p
st_through S, $s

try: ld_through $r, S
beq $r, $s, si

spn: ld_cb $r, S
bne $r, $s, spn

si : self_invl

Figure 15: Sense reversing barrier with callbacks

// $s = sense; $r = child not ready (R);
// $h = have child; $p = parent ptr; $c = child ptr

bar: ld $r, R
bnez $r, bar
st R, $h
st 0($p), 0
bnez $pid, sen

spn: ld $r, $p->sense
bne $r, $s, spn

sen: st 0($c), $s
st 1($c), $s
not $s, $s

bar: self-down
ld_through $r, R
bnez $r, bar
st R, $h
st_through 0($p), 0
bnez $pid, sen

spn: ld_through $r, $p->sense
bne $r, $s, spn

sen: self-invl
st_through 0($c), $s
st_through 1($c), $s
not $s, $s

Figure 16: Tree sense reversing barrier for MESI and VIPS-M

bar: self-down
ld_through $r, R
beqz $r, res
ld_cb $r, R
bnez $r, bar

res: st R, $h
st_through 0($p), 0
bnez $pid, sen

try: ld_through $r, $p->sense
beq $r, $s, sen

spn: ld_cb $r, $p->sense
bne $r, $s, spn

sen: self-invl
st_through 0($c), $s
st_through 1($c), $s
not $s, $s

Figure 17: Tree sense reversing barrier with callbacks

The DeNovoND work of Sung et al. [26] is also close to

our work. We see our works as complementary. DeNovo [7],

and by extension DeNovoND and DeNovoSync, starts from a

disciplined programming language to drive coherence; we aim

for the general case with as little interaction with the software

as possible (i.e., limited to exposing synchronization to the

hardware). One of the main contributions of Sung et al. is to

implement a “synchronization” protocol for critical sections,

that was lacking in DeNovo. For this, DeNovoND relies on

a specialized hardware implementation of queue locks. For

critical sections, a form of immediate notification is needed

to signal changes on data. Without direct invalidations this

is accomplished by tracking each core’s changes (while in

the critical section) and conveying them to the next core that

enters the critical section. Changes encoded in a signature, are

sig: f&i $c, C

...

spn: ld $c, C
beqz $c, spn

tad: t&d $r, C
beqz $r, spn

sig: self_down
f&i $c, C

...

spn: ld_through $c, C
beqz $c, spn

tad: t&d $c, C
beqz $c, spn
self_invl

Figure 18: Signal-wait for MESI and VIPS-M

sig: self_down
ld&stA $c, C

...

try: ld_through $c, C
bnez $c, tad

spn: ld_cb $c, C
beqz $c, spn

tad: ld&st0 $c, C
beqz $c, spn
self_invl

sig: self_down
ld&st1 $c, C

...

try: ld_through $c, C
bnez $c, tad

spn: ld_cb $c, C
beqz $c, spn

tad: ld&st0 $c, C
beqz $c, spn
self_invl

Figure 19: Signal/wait with callbacks

compounded from core to core in the same order the lock is

taken. In essence, Sung et al. extend the work of Ashby et al.

[5] from barrier synchronization to critical section synchro-

nization. However, the DeNovoND approach is bound to a

specific lock implementation, which carries a significant com-

plexity and cost and is overloaded with tracking invalidation

signatures.

Our focus is different. We propose a low-level mechanism to

assist spin-waiting thus covering both locking and spin-waiting

on flags, and therefore a variety of algorithms implemented

using these primitives, while DeNovoND focuses on a single

high-level lock construct.

4.1. Hardware-Assisted Spin-Waiting

Quiesce instructions [9] found in Intel, Alpha, and other

processors, use cache coherence to implement functionality

reminiscent of a callback (specifically the callback-all) mecha-

nism. Invariably, instructions of this type halt the execution of

the program until an event occurs. This requires an event mon-

itor next to the core (that has to be explicitly “armed”) to check

for the occurrence of an event. In the case of spin-waiting,

the event is a write signaled by an invalidation that reaches

the L1. Another related approach is the lock-box mechanism

by Tullsen et al. [27] which takes the event monitor inside

the core to detect events among SMT threads. The funda-

mental difference between such approaches and ours is that

event monitors cannot “detect” a write prior to the arming of

the mechanism. In other words, they have no concept of a

value already present for consumption, as we do with the F/E

functionality. This is why event monitors must have an abort

time-out mechanism that introduces unnecessary latency in

this case. In addition, the functionality of the callback-one

(st_cb1 and st_cb0) cannot be replicated in a quiesce

mechanism.

While the goal of these approaches is the same as ours, we

propose callbacks for a system that lacks directory invalida-

tions and forwardings where prior proposals are not applicable.

Further, we show that a small and self-contained directory

cache (not backed up by memory) handles callbacks with ease

without introducing any complexity to deal with evictions.

5. Evaluation

5.1. Simulation Environment

We use Wisconsin GEMS [18], a detailed cycle-accurate sim-

ulator for multiprocessor systems. We model a chip multi-

processor comprised of 64 in-order cores. The interconnect

is fully modeled with the GARNET network simulator [4].

Table 2 shows the main parameters that define our system.

Energy consumption is modeled with the CACTI 6.5 tool [20],

assuming a 32nm process technology.

The evaluation covers a wide variety of parallel applications.

In particular, we evaluate the entire Splash-2 suite [28] with

the recommended input parameters. Additionally, we run

Parameter Value

Block and page size 64 bytes and 4KB
Private L1 cache 32KB, 4-way
L1 cache access time 1 cycle
Shared L2 cache 256KB per bank, 16-way
L2 cache access time Tag: 6 cycles; tag+data: 12 cycles
Callback directory 4 entries per bank (1 cycle)
Memory access time 160 cycles
Network topology 8×8 2-dimensional mesh
Routing technique Deterministic X-Y
Flit size 16 bytes
Switch-to-switch time 6 cycles

Table 2: System parameters

T&T&S-Acquire CLH-Acquire SR-Barrier TreeSR-Barrier Spin-Wait
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 L

L
C

 a
c
c
e
s
s
e
s

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15 CB-All CB-One

T&T&S-Acquire CLH-Acquire SR-Barrier TreeSR-Barrier Spin-Wait
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 l
a
te

n
c
y
 (

c
y
c
le

s
)

Figure 20: Effect of callbacks on synchronization.

several benchmarks from the PARSEC benchmark suite [6],

all of them with the simmedium input, except streamcluster

that uses the simsmall input due to simulation constraints. We

simulate the entire application, but collect statistics only from

start to completion of their parallel section.

5.2. Configurations Evaluated

The goal of our evaluation is to assess the impact of the call-

back mechanism. We use two base cases. One is a con-

ventional invalidation-based, directory-based MESI protocol

(Invalidation). The other is a simple protocol using self-

invalidation and self-downgrade similar to VIPS-M [23] but

with acquire and release semantics, so self-invalidation is nec-

essary only on acquire, and self-downgrade only on release op-

erations. Further, loads used for synchronization (racy loads)

always bypass the L1 cache, and racy stores always perform

a write-through operation without any delay. In essence, we

employ the synchronization algorithms described in Section 3.

VIPS-M avoids spinning on the LLC with an exponential

back-off mechanism for racy loads. This mechanism must be

tuned to obtain a good trade-off between LLC accesses and

latency, as shown in Figure 1. By experimentation we found

that an exponential back-off algorithm with approximately 10

exponentiations and a ceiling fits the performance numbers

reported in [23]. However, we show results for four different

number of exponentiations before the ceiling: 0 (BackOff-0),

5 (BackOff-5), 10 (BackOff-10), and 15 (BackOff-15).

We evaluate both the callback-all (CB-All) and the callback-

one (CB-One) mechanisms with just four entries per bank (64

in total) for the callback directory. We simulated more than

4 (16, 64, and 256) entries per bank without any noticeable

change in our results.

Finally, we use the combination of T&T&S and SR barrier

(naïve synchronization) or CLH and TreeSR barrier (scal-

able synchronization), unless otherwise noted. Following the

Splash-2 POSIX implementation of the SR barrier, in the

evaluation we use a lock to atomically decrement the barrier

counter and not a single atomic as shown in Figure 14.

5.3. Synchronization Behavior

Figure 20, extends our motivation graph (Figure 1) and shows

the behavior of all the analyzed synchronization algorithms

(T&T&S, CLH, SR barrier, and TreeSR barrier, and the wait

procedure of a signal/wait) for all the techniques (Invalidation,

exponential back-off, and callbacks). Results are normalized

to the highest result for each synchronization algorithm.

LLC accesses: Exponential back-off techniques dramatically

increase the number of accesses to the LLC for all algorithms,

even for the largest number of exponentiations. Callback-all

and callback-one obtain similar results for all constructs except

for the T&T&S acquire (where only callback-one approaches

Invalidation) and the SR barrier (which uses the T&T&S).

The reason in both cases, as explained in Section 2.4, is that

callback-all wakes up all threads, but only one can go into the

critical section.

Latency: Interestingly, Invalidation is outpaced by all other

techniques for the naïve synchronization algorithms (T&T&S

and SR barrier). This behavior is mainly caused in highly

contended T&T&S locks, where the t&s operation has to in-

validate all copies requested by other threads in an invalidation-

based protocol, which in turn also affects its companion syn-

chronization the SR barrier. This behavior is absent from the

scalable CLH locks and less pronounced in the TreeSR barrier.

5.4. Execution Time, Network Traffic, and Energy

Figure 21 show execution time and network traffic for all 19

benchmarks running on 64 cores with scalable synchronization

(CLH and TreeSR barrier). Results are normalized to Invalida-

tion. Overall, we see that the self-invalidation variants, either

with exponential back-off or with callbacks, in many cases

outperform Invalidation.

5.4.1. Execution Time and Network Traffic. From the pro-

tocols with exponential back-off, one has to find a very fine

balance (in the number of exponentiations) in order to outper-

form Invalidation in both traffic and execution time. For the

cases we studied, BackOff-10 seems to strike this balance for

most benchmarks. The more aggressive BackOff-15 misses

the target in execution time, and the more tame BackOff-5

cannot reduce the traffic below Invalidation in many cases.

The callback variants achieve as good execution time as the

best exponential back-off case (even compared to BackOff-0

barnes bodytrack canneal cholesky dedup fft fmm lu lunc ocean oceannc radiosity radix raytrace streamclusterswaptions volrend waternsq watersp GeoMean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15 CB-All CB-One

2.1 5.7 4.0 21.3 2.1

barnes bodytrack canneal cholesky dedup fft fmm lu lunc ocean oceannc radiosity radix raytrace streamclusterswaptions volrend waternsq watersp GeoMean
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

N
o

rm
a

liz
e

d
 n

e
to

rw
k
 t

ra
ff

ic

Invalidation BackOff-0 BackOff-5 BackOff-10 BackOff-15 CB-All CB-One

13.4 7.5 10.5 2.5 5.6 12.2 4.07.5 4.3 6.3 3.5 7.0 2.7

Figure 21: Normalized execution time and network traffic for 64 cores CLH and Tree

barnes bodytrack canneal cholesky dedup fft fmm lu lunc ocean oceannc radiosity radix raytrace streamclusterswaptions volrend waternsq watersp Average
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

L1 LLC Network

2.7 1.61.7

1. Invalidation 2. BackOff-0 3. BackOff-5 4. BackOff-10 5. BackOff-15 6. CB-All 7. CB-One

Figure 22: Normalized energy consumption for 64 cores CLH and Tree

which is direct LLC spinning), while at the same time incur

on average 7% less traffic than the best-in-traffic exponential

back-off case (BackOff-15). The difference between callback-

all and callback-one is not visible here since the scalable

synchronization spinning is performed by only one thread per

variable.

Overall callbacks achieve: i) 11% better execution time than

Invalidation and ii) 5% better execution time than BackOff-10,

which is a configuration similar to but better than VIPS-M

(recall that we use acquire-release semantics for fencing). In

terms of traffic a callback-enhanced self-invalidation protocol

can outpace an invalidation protocol by 27% and a VIPS-M

exponential back-off version (BackOff-10) by 15%.

We also experimented with the non-scalable (naïve) version

of the synchronization algorithms by running all benchmarks

(we cannot show detailed results due to lack of space). As

it is evident form Figure 20, T&T&S and SR barrier do not

perform particularly well for invalidation in 64 cores. In fact,

in this case the callback-enabled self-invalidation protocols

outperformed invalidation by 40% in execution time and by

34% in network traffic. Compared to BackOff-10, which is

the best-in-time exponential back-off version for the naïve

synchronization, callbacks obtain similar execution time but

saving 12% traffic, on average.

These results are significantly better than the corresponding

scalable-synchronization results, which brings up the question

of whether callbacks can make up for less scalability in the

synchronization algorithms. For this we run another set of

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Invalidation CB-All CB-One

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o
rm

a
liz

e
d
 n

e
tw

o
rk

 t
ra

ff
ic

CLH T&T&S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
.

Figure 23: Test-and-Test&Set versus CLHQueue

experiments using the TreeSR barrier and changing only the

lock implementation between T&T&S and CLH. The results

(geometric mean of the total execution time and total network

traffic over all benchmarks) are shown in Figure 23. Indeed,

while the effects of scalable synchronization algorithms are

visible in invalidation (in execution time), the same is not true

for callbacks! In fact, naïve synchronization with callbacks

is as good as scalable synchronization with callbacks and en-

ables a self-invalidation protocol to outperform an invalidation

protocol in both cases.

5.4.2. Energy. Figure 22 shows energy consumption by con-

verting L1, LLC accesses and network traffic into energy re-

sults with the use of Cacti and Garnet respectively. This figure

is interesting in that it shows how spinning affects the L1,

the LLC, and the network and how the energy consumption

“weight” is transferred among them depending on the technique

used. Invalidation which spins in the L1 (which is relatively

more expensive to access than the LLC) shows increased L1

energy consumption, while the exponential back-off versions

transfer some of this energy to the (relatively cheaper) LLC

and network (for any increase in the LLC we experience a cor-

responding increase in the network that transfers the requests

and responses to and from the LLC). The callback versions

minimize all three types (L1, LLC, network) of energy con-

sumption. Overall, callbacks reduce energy consumption by

40% compared to Invalidation and by 5% over BackOff-10.

6. Conclusions

There is an inherent difficulty in a self-invalidation/self-

downgrade protocol to handle spin-waiting. In this case ex-

plicit invalidations work better but carry significant complexity.

Spinning on the LLC with exponential back-off is a solution

but trades traffic for latency and requires precise fine tuning to

avoid run-offs in latency. We introduce callbacks as a new so-

lution to a weakness of self-invalidation protocols: intentional

data races for spin-waiting. Our callback proposal is general

and efficient without the overhead and complexity of includ-

ing an invalidation protocol alongside with self-invalidation,

reverting to specialized and complex hardware queue locking,

or trying to fine tune exponential back-off to strike a balance

between latency and traffic [5, 23, 25, 26]. Callbacks are ef-

ficiently implemented with a small self-contained “callback”

directory cache that is not backed-up by memory, avoiding

the complexities of replacements and reloads. Our callback

proposal retains the valuable properties of self-invalidation pro-

tocols (simplicity, low cost, compatibility with virtual caches

[13]) while at the same time brings this protocols on par with

invalidation protocols in synchronization performance.

Acknowledgments

This work was supported in part by the "Fundación Seneca-

Agencia de Ciencia y Tecnología de la Región de Murcia"

under grant "Jóvenes Líderes en Investigación" 18956/JLI/13,

by the Spanish MINECO, as well as European Commission

FEDER funds, under grant TIN2012-38341-C04-03, and by

the Swedish VR (grant no. 621-2012-5332).

References

[1] “Sclalable Synchronization Algorithms,” http://www.cs.rochester.edu/
research/synchronization/pseudocode/ss.html.

[2] C++11: ISO/IEC 14882:2011. ISO. 2 September 2011, 2011.

[3] S. V. Adve and M. D. Hill, “Weak ordering – a new definition,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2–14.

[4] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,” in
IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2009, pp. 33–42.

[5] T. J. Ashby, P. Díaz, and M. Cintra, “Software-based cache coherence
with hardware-assisted selective self-invalidations using bloom filters,”
IEEE Transactions on Computers (TC), vol. 60, no. 4, pp. 472–483,
Apr. 2011.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Oct. 2008, pp. 72–81.

[7] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in 20th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2011, pp. 155–166.

[8] T. S. Craig, “Building fifo and priority-queuing spin locks from atomic
swap,” Univerisy of Washington, Technical report FR-35, Feb. 1993.

[9] J. S. Emer, R. L. Stamm, B. E. Edwards, M. H. Reilly, C. B. Zilles,
T. Fossum, C. F. Joerg, and J. E. H. Jr., “Method and apparatus to
quiesce a portion of a simultaneous multithreaded central processing
unit US 6493741 B1,” http://www.google.com/patents/US6493741.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. L. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in 17th Int’l Symp. on Computer
Architecture (ISCA), Jun. 1990, pp. 15–26.

[11] J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient synchroniza-
tion primitives for large-scale cache-coherent multiprocessors,” in 3th
Int’l Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), Apr. 1989, pp. 64–75.

[12] S. Kaxiras and G. Keramidas, “SARC coherence: Scaling directory
cache coherence in performance and power,” IEEE Micro, vol. 30,
no. 5, pp. 54–65, Sep. 2011.

[13] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache
coherence,” in 40th Int’l Symp. on Computer Architecture (ISCA), Jun.
2013, pp. 535–547.

[14] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” in 22nd Int’l
Symp. on Computer Architecture (ISCA), Jun. 1995, pp. 48–59.

[15] J. Li, J. F. Martínez, and M. C. Huang, “The thrifty barrier: Energy-
aware synchronization in shared-memory multiprocessors,” in 11th
Int’l Symp. on High-Performance Computer Architecture (HPCA), Feb.
2004, pp. 14–23.

[16] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin, “Exploit-
ing barriers to optimize power consumption of CMPs,” in 19th Int’l
Parallel and Distributed Processing Symp. (IPDPS), Apr. 2005, p. 5.1.

[17] P. S. Magnusson, A. Landin, and E. Hagersten, “Queue locks on cache
coherent multiprocessors,” in 8th Int’l Symp. on Parallel Processing
(IPPS), Apr. 1994, pp. 165–171.

[18] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[19] J. M. Mellor-crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Transactions
on Computer Systems (TOCS), vol. 9, no. 1, pp. 21–65, Feb. 1991.

[20] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0,”
HP Labs, Tech. Rep. HPL-2009-85, Apr. 2009.

[21] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-
store architecture,” in 17th Int’l Symp. on Computer Architecture
(ISCA), Jun. 1990, pp. 82–91.

[22] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared classi-
fication: the key to simple and efficient coherence for clustered cache
hierarchies,” in 21th Int’l Symp. on High-Performance Computer Ar-
chitecture (HPCA), Feb. 2015, pp. 186–197.

[23] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241–252.

[24] M. L. Scott, Shared-Memory Synchronization, ser. Synthesis Lectures
on Computer Architecture, M. D. Hill, Ed. Morgan & Claypool
Publishers, 2013.

[25] H. Sung and S. V. Adve, “DeNovoSync: Efficient support for arbi-
trary synchronization without writer-initiated invalidations,” in 15th
Int’l Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), Mar. 2015, pp. 545–559.

[26] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
hardware support for disciplined non-determinism,” in 18th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2013, pp. 13–26.

[27] D. Tullsen, J. Lo, S. Eggers, and H. Levy, “Supporting fine-grained
synchronization on a simultaneous multithreading processor,” in High-
Performance Computer Architecture, 1999. Proceedings. Fifth Interna-
tional Symposium On, Jan 1999, pp. 54–58.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consid-
erations,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun.
1995, pp. 24–36.

