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Abstract

Future CMP designs that will integrate tens of processor
cores on-chip will be constrained by area and power. Area
constraints make impractical the use of a bus or a crossbar
as the on-chip interconnection network, and tiled CMPs or-
ganized around a direct interconnection network will prob-
ably be the architecture of choice. Power constraints make
impractical to rely on broadcasts (as Token-CMP does)
or any other brute-force method for keeping cache coher-
ence, and directory-based cache coherence protocols are
currently being employed. Unfortunately, directory proto-
cols introduce indirection to access directory information,
which negatively impacts performance. In this work, we
present DiCo-CMP, a novel cache coherence protocol es-
pecially suited to future tiled CMP architectures. In DiCo-
CMP the role of storing up-to-date sharing information and
ensuring totally ordered accesses for every memory block
is assigned to the cache that must provide the block on a
miss. Therefore, DiCo-CMP reduces the miss latency com-
pared to a directory protocol by sending coherence mes-
sages directly from the requesting caches to those that must
observe them (as it would be done in brute-force protocols),
and reduces the network traffic compared to Token-CMP
(and consequently, power consumption in the interconnec-
tion network) by sending just one request message for each
miss. Using an extended version of GEMS simulator we
show that DiCo-CMP achieves improvements in execution
time of up to 8% on average over a directory protocol, and
reductions in terms of network traffic of up to 42% on aver-
age compared to Token-CMP.

1. Introduction

The huge number of transistors that are currently of-
fered in a single die has made major microprocessor ven-
dors to shift towards multi-core architectures in which sev-
eral processor cores are integrated on a single chip. Chip-

multiprocessors (CMPs) [24] have important advantages
over very wide-issue out-of-order superscalar processors.
In particular, they provide higher aggregate computational
power, multiple clock domains, better power efficiency, and
simpler design through replicated building blocks.

Most current CMPs (for example, the IBM Power5 [13])
have a relatively small number of cores (2 to 8), every one
with at least one level of private cache. These cores are
typically connected through an on-chip shared bus or cross-
bar. However, the interesting new opportunity is now that
Moore’s Law will make it possible to double the number
of cores every 18 months [7], making undesirable elements
that could compromise the scalability of these designs. One
of such elements is the interconnection network. As shown
in [15], the area required by a shared bus or a crossbar as
the number of cores grows has to be increased to the point
of becoming impractical. Tiled CMP architectures have re-
cently emerged as a scalable alternative to current CMP de-
signs, and future CMPs will be probably designed as arrays
of replicated tiles connected over a switched direct network
[28, 31].

On the other hand, most CMP systems provide program-
mers with the intuitive shared-memory model, which re-
quires efficient support for cache coherency. Although a
great deal of attention was devoted to scalable cache coher-
ence protocols in the last decades in the context of shared-
memory multiprocessors, the technological parameters and
power constrains entailed by CMPs demand new solutions
to the cache coherency problem [7].

Directory-based cache coherence protocols have been
typically employed in systems with point-to-point un-
ordered networks (as tiled CMPs are). Unfortunately, these
protocols introduce indirection to obtain coherence infor-
mation from the directory (commonly on chip as a direc-
tory cache), thus increasing cache miss latencies. An alter-
native approach that avoids indirection is Token-CMP [22].
Token-CMP is based on broadcasting requests to all last-
level private caches. In this way, caches can directly pro-
vide data when they receive a request (no indirection oc-
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Figure 1. Trade-off between miss latency and
network traffic.

curs). Unfortunately, the use of broadcasting increases net-
work traffic and, therefore, power consumption in the inter-
connection network, which has been previously reported to
constitute a significant fraction (approaching 50% in some
cases) of the overall chip power [16, 29]. Figure 1 shows the
trade-off between Token-CMP and directory-based cache
coherence protocols. An ideal protocol for tiled CMPs
would avoid the indirection of the directory protocols with-
out relying on broadcasting requests.

In this work, we present DiCo-CMP, a cache coherence
protocol for tiled CMP architectures that meets the advan-
tages of directory and Token-CMP protocols and avoids
their problems. DiCo-CMP assigns the role of storing up-
to-date sharing information and ensuring totally ordered ac-
cesses for every memory block to one of the caches that
actually shares the block, particularly the one that provides
the block on a miss (the owner cache in a MOESI protocol).
Indirection is avoided by directly sending the requests to the
owner cache instead of to the directory structure kept in the
home tile in directory protocols. In our proposal, the iden-
tity of the owner caches is recorded in a small structure as-
sociated to every core called the L1 coherence cache. Since
the owner cache changes on write misses, another structure
called the L2 coherence cache keeps up-to-date information
about the identity of the owner cache. This L2 coherence
cache replaces the directory cache required in directory pro-
tocols and is accessed each time a request fails to locate the
owner cache.

In this way, DiCo-CMP reduces the latency of cache
misses compared to a directory protocol by sending coher-
ence messages directly from the requesting caches to those
that must observe them (as it would be done in Token-
CMP), and reduces network traffic compared to Token-
CMP by sending just one request message on every cache
miss. Detailed simulations using an extended version of
GEMS and several scientific applications show that DiCo-
CMP achieves improvements in total execution time of 8%

on average over a directory protocol and of 3% on average
over Token-CMP when an interconnection network with
multicast support is used. Without multicast support, DiCo-
CMP achieves improvements of 6% over a directory pro-
tocol and 5% over Token-CMP. Moreover, our proposal re-
duces network traffic compared to Token-CMP (28% with
multicast support and 42% without this kind of support),
and consequently, the total power consumed in the inter-
connection network.

DiCo-CMP is a particular implementation of Direct Co-
herence for tiled CMP architectures. Direct Coherence rep-
resents a family of protocols that addresses the design of a
solution to the cache coherence problem that avoids indirec-
tion without relying on any brute-force method (as broad-
casting requests). In this way, implementations of Direct
Coherence in other domains (as for example, distributed
shared-memory multiprocessors [26]) are also possible.

The rest of the paper is organized as follows. In Section
2 we present a review of the related work. DiCo-CMP is
described in Section 3. In Section 4 we study the area and
power requirements of DiCo-CMP. Section 5 introduces the
methodology employed in the evaluation. Section 6 shows
the performance results obtained by our proposal. And fi-
nally, Section 7 concludes the paper.

2. Related Work and Background

In this paper, we compare DiCo-CMP against two cache
coherence protocols aimed at being used in CMPs: Token-
CMP and an implementation of a directory protocol for
CMPs. The next two subsections give some details regard-
ing these two cache coherence protocols. First of all we
comment on some of the related works.

Chenget al. [10] adapt already existing coherence pro-
tocols for reducing energy consumption and execution time
in CMPs with heterogeneous networks. In particular, they
assume a heterogeneous network comprised of several sets
of wires, each one with different latency, bandwidth, and
energy characteristics, and propose to send each coherence
message through a particular set of wires depending on its
latency and bandwidth requirements. Our proposal is or-
thogonal to this work and the ideas presented in [10] could
also be applied to DiCo-CMP.

Huh et al. [12] propose to allow replication in a CMP-
NUCA cache to reduce the access time to a shared multi-
banked cache. More recently, Beckmannet al. [5] present
ASR that replicates cache blocks only when it is estimated
that the benefits of replication (lower L2 hit latency) ex-
ceeds its costs (more L2 misses). In contrast, our proto-
col reduces miss latencies by avoiding the access to the L2
cache when it is not necessary, and no replication is per-
formed. Again DiCo-CMP could be also used in conjunc-
tion with techniques that try to make the best use of the



limited on-chip cache storage.
In the shared-memory multiprocessors domain, Acacio

et al. propose to avoid the indirection for cache-to-cache
transfer misses [1] and upgrade misses [2] separately by
predicting the current holders of every cache block. Predic-
tions must be verified by the corresponding directory con-
troller, thus increasing the complexity of the protocol on
miss-predictions. In contrast, our proposal is applicableto
all types of misses (reads, writes and upgrades) and just the
identity of the owner cache is predicted. We avoid predict-
ing the current holders by storing the up-to-date directory
information in the owner cache.

Martin et al. propose to use destination-set prediction to
reduce the bandwidth required by a snoopy protocol [19].
Differently from DiCo-CMP, this proposal is based on a
totally-ordered interconnect (a crossbar switch), which does
not scale with the number of nodes. Destination-set pre-
diction is also used by Token-M in shared-memory mul-
tiprocessors with unordered networks [18]. However, on
miss-predictions, requests are solved by resorting on broad-
casting after a time-out period. Differently, in DiCo-CMP
miss-predictions are resent immediately to the owner cache,
thus reducing latency and network traffic.

More recently and also in the context of shared-memory
multiprocessors, Chenget al. have proposed converting 3-
hop read misses into 2-hop read misses for memory blocks
that exhibit the producer-consumer sharing pattern [9] by
using extra hardware to detect when a block is being ac-
cessed according to this pattern. In contrast, our proposal
obtains 2-hops misses for read, write and upgrade misses
without taking into account sharing patterns.

Finally, some authors evaluated the use of hints with dif-
ferent objectives [6, 11]. In these works the authors try to
keep updated directory information to find out where a fresh
copy of the block can be obtained in case of a read miss. In
contrast, we use the hints as a policy to update the loca-
tion of the owner cache which servers as ordering point and
stores up-to-date directory information.

2.1. Directory-CMP

Directory-based coherence protocols [8] have been
widely used in shared-memory multiprocessors. Now, sev-
eral Chip Multiprocessors, as Piranha [4], also use direc-
tory protocols to keep cache coherency. In this paper, we
compare our proposal against a directory protocol similar
to the intra-chip coherence protocol used in Piranha, which
is based on MOESI states in the caches. In this implementa-
tion, on-chip directory caches are used for accelerating the
accesses to directory information for blocks stored in the
L1 caches. Moreover, the protocol implements a migratory-
sharing optimization [27], in which a cache holding a mod-
ified cache block invalidates its copy when responding with
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Figure 2. a) Cache-to-cache transfer in a di-
rectory protocol. b) Cache-to-cache trans-
fer in DiCo-CMP. (R=Requester; D=Directory;
O=Owner).

the block, thus granting the requesting processor read/write
access to the block (even when only read permission was
requested). This optimization has been shown to improve
substantially the performance of many applications.

2.2. Token-CMP

Token coherence [20] is a framework for designing co-
herence protocols whose main asset is that it decouples
the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need
of a totally ordered network and the introduction of addi-
tional indirection caused by the directory in the common
case of cache-to-cache transfers. Token coherence proto-
cols keep cache coherence by assigningT tokens to ev-
ery memory block, where one of theT is the owner to-
ken. Then, a processor can read a block only if it holds
at least one token for that block and has valid data. On the
other hand, a processor can write a block only if it holds
all T tokens for that block and has valid data. Token co-
herence avoids starvation by issuing a persistent request
when a processor detects potential starvation. In this paper,
we compare our coherence protocol against Token-CMP
[22], which is a performance policy aimed at achieving low-
latency cache-to-cache transfer misses. Token-CMP targets
CMP systems, and uses a distributed arbitration scheme for
persistent requests, which are issued after a single retry to
optimize the access to contended blocks.

3. The DiCo-CMP Cache Coherence Protocol

As shown in Figure 2.a, in directory-based protocols it
is necessary to obtain the directory information before any
coherence action can be performed (1). This information is
obtained either from the L2 cache or from a directory cache
(commonly on chip). Moreover, the access to the directory
information serializes the requests to the same block issued
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Figure 3. a) Upgrade in a directory proto-
col. b) Upgrade in DiCo-CMP. (O=Owner;
D=Directory; S=Sharers).

by different processors. In case of a cache-to-cache transfer,
the request is subsequently sent to the owner cache where
the miss is solved (2). It can be observed that first, the miss
is solved in three hops, and second, another request for the
same block cannot be processed by the directory until it re-
ceives the acknowledgement from the owner cache (3). In
contrast, DiCo-CMP (Figure 2.b) assigns the role of storing
up-to-date sharing information and ensuring totally ordered
accesses for every memory block to the owner cache. In-
direction is avoided by directly sending the request to the
owner cache. Moreover, by keeping together the owner and
the directory information the owner cache does not need to
receive any acknowledgement to process the next request to
the same block, thus saving some control messages and re-
ducing the latency of requests. Finally, in DiCo-CMP the
O&D cache can solve misses without using transient states
(except for those that require invalidations) thus reducing
the number of transient states and therefore making the im-
plementation simpler than the directory protocol.

Another example of the advantages of DiCo-CMP is
shown in Figure 3. This diagram represents an upgrade that
takes place in the owner node, which happens frequently
in common applications (i.e. producer-consumer pattern).
In a directory protocol, upgrades are solved sending the re-
quest to the directory (1), which replies with the number of
acknowledgements that must be received before the block
can be modified (2), and sends invalidations (3). In DiCo-
CMP only invalidations (1) and acknowledgements (2) are
required, thus solving the miss with just two hops in the
critical path.

DiCo-CMP extends the tags’ part of the L1 and L2
caches with a new field used to keep the identity of the
sharers for blocks in owned state. Additionally, DiCo-CMP
needs two extra hardware structures that keeps a pointer
which identifies the owner cache:

• L1 coherence cache(L1C$): The pointer stored in this
structure is used to directly send local requests to the
owner cache, thus avoiding indirection. Therefore, this
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Figure 4. Organization of a tile (black boxes
are the elements added by DiCo-CMP) and a
4×4 tiled CMP.

structure is located close to each processor’s core. Our
cache coherence protocol can update this information
in several ways based on network usage (see Section
3.3).

• L2 coherence cache(L2C$): Since the cache that en-
sures totally ordered accesses (the owner cache) is no
longer fixed and can change on write misses, this struc-
ture must keep the identity of the current owner cache
for each block allocated in any L1 data cache. This
structure replaces the directory structure required by
directory protocols and is accessed each time a request
fails to locate the owner cache. Therefore, this in-
formation must be updated whenever the owner cache
changes through control messages. These messages
should be processed by the L2C$ in the very same or-
der in which they were generated (see Section 3.2.3).

3.1. Architecture of Tiled CMPs

The tiled CMP architecture assumed in this work con-
sists of a number of replicatedtiles connected over a
switched direct network. Each tile contains a processing
core with primary caches (both instruction and data caches),
a slice of the L2 cache, and a connection to the on-chip
network. The L2 cache is shared among the different pro-
cessing cores, but it is physically distributed between them1.
Therefore, some accesses to the L2 cache will be sent to the
local slice while the rest will be serviced by remote slices
(L2 NUCA architecture [14]). Moreover, the L1 and L2
caches are non-inclusive to exploit the total available cache
capacity on chip. Figure 4 shows the organization of a tile
(left) and a 16-tile CMP (right).

1Alternatively, each L2 slice could have been treated as aprivate L2
cache for the local processor. In this case, cache coherencyhad to be
maintained at the L2 cache level (instead of L1). In any case,our proposal
would be equally applicable in this configuration.



The protocols evaluated in this work follow this design.
However, each tile in DiCo-CMP adds the two structures
introduced in the previous section: the L1 and L2 coher-
ence caches (see black boxes in Figure 4, left). Moreover,
to keep the directory information within the owner cache
it is necessary to add a new field in the tags’ part of the L1
caches. In contrast, DiCo-CMP does not need to keep direc-
tory information in on-chip directory caches. A comparison
among the extra storage and structures required by the three
alternatives considered in this work can be found in Section
4.

3.2. Description of the cache coherence pro-
tocol

3.2.1. Requesting processor

When a processor issues a request that misses in its pri-
vate L1 cache, the request is directly sent to the owner cache
in order to avoid indirection. The identity of the potential
owner cache is obtained from the L1C$, which is accessed
at the time that the cache miss in detected. If there is a hit in
the L1C$, the request is sent to the owner cache. Otherwise,
the request is sent to the L2 cache where the L2C$ will be
accessed to find out the identity of the current owner cache.

3.2.2. Request received by a cache that is not the owner

When a request arrives at a cache that is not the owner of
the block, the request is simply re-sent to the owner cache.
If the cache that receives the request is an L1 cache, it re-
sends the request to the L2 cache. On the other hand, if it
is the L2 cache and there is a hit in the L2C$, the request is
sent to the current owner cache. In absence of race condi-
tions the request will finally reach the owner cache. Finally,
if there is a miss in the L2C$ and the L2 cache is not the
owner of the block, the request is solved by providing the
block from main memory, where, in this case, a fresh copy
of the block resides. The requested block is allocated in
the requesting L1 cache, which gets the ownership of the
block, but not in the L2 cache (as occurs in the directory
protocol)2. Moreover, it is necessary to allocate a new entry
in the L2C$ pointing to the current L1 owner cache.

3.2.3. Request received by the owner cache

Every time a request reaches the owner cache, it is nec-
essary to check whether this cache is currently processing
a request from a different processor for the same block (a

2As already mentioned, we assume for all the configurations that the L1
and the L2 cache arenon-inclusive. Our proposal is equally applicable with
other configurations for the L1 and L2 caches, obtaining similar results to
those presented in this work.

previous write waiting for acknowledgements). In this case,
the block is in a busy or transient state, and the request must
wait until all the acknowledgements are received.

On the other hand, if the block is not in a transient state,
the miss can be immediately solved. If the owner is the L2
cache all requests (reads and writes) are solved by deallo-
cating the block from the L2 cache and allocating it in the
private L1 cache of the requester. Moreover, the identity of
the new owner cache must be stored in the L2C$.

When the owner is an L1 cache, read misses are com-
pleted by sending a copy of the block to the requester and
adding it to the sharing code field. As our protocol is also
optimized for the migratory-sharing pattern, read misses for
migratory blocks invalidate the copy in the owner cache and
send the exclusive data to the L1 cache of the requesting
processor.

For write misses, the owner cache sends in first place in-
validation messages to all the caches that hold a copy of the
block, and then, data to the requester. Acknowledgement
messages are collected at the requesting cache. Upgrade
misses that take place in the owner cache just need to send
invalidations and receive acknowledgements (two hops in
the critical path). If the miss is an upgrade the owner cache
checks the sharing code field to know whether the requester
still holds a copy of the block (note that a previous write
miss from a different processor could have invalidated its
copy and in this case the owner cache should also provide a
fresh copy of the block).

Finally, since the L2C$ must have up-to-date informa-
tion regarding the location of the owner cache, every time
that the owner cache changes, it is also sent a control mes-
sage to the L2C$ indicating the identity of the new owner.
These messages should be processed by the L2C$ in the
very same order in which they were generated. Otherwise,
the L2C$ could fail to store the identity of the current owner.
Fortunately, there are several approaches to ensure this or-
der. In our particular implementation, once the L2C$ pro-
cesses the message reporting an ownership change from
the old owner, it sends a confirmation response to the new
owner. Until this confirmation message is not received by
the new owner, it could use the block (if already received),
but cannot give the ownership to another cache (the miss
status hold register –MSHR– allocated on the cache miss is
still held). The cache miss is considered finalized once this
confirmation response (besides the message with data) has
been received.

3.2.4. Replacements

In our particular implementation, when a block is evicted
from the owner L1 cache, the block must be allocated at the
L2 cache with the up-to-date directory information. Then,
the L2C$ deallocates its entry for this block because the



owner cache is now the L2 cache. If the replacement takes
place in a cache that is not the owner, the replacement is
performed transparently to the rest of the sharers.

Finally, no coherence actions must be performed in case
of an L1C$ replacement. However, when an L2C$ entry is
evicted, the protocol should ask the owner cache to inval-
idate all the copies from the L1 caches. Luckily, as hap-
pens to the directory cache in directory-based protocols, an
L2C$ with the same number of entries than the L1 cache
and an associativity equal to the aggregate associativity of
all L1 caches is enough to completely remove this kind of
replacements.

3.3. Updating the L1 coherence cache

DiCo-CMP uses the L1C$ to avoid indirection by keep-
ing a pointer that identifies the owner cache. Several poli-
cies can be used to update the value of this pointer. A first
approach is to store the last processor that invalidated the
previous copy of the block from cache (the last processor
that wrote the block). When a block is invalidated from an
L1 cache, the L1C$ stores the identity of the processor that
requests the block. We call this policy as thebasepolicy
and it does not imply extra messages. Another approach,
with higher network usage, sends some hints to update the
L1C$s whenever the owner changes. In this approach, each
owner cache keeps a set of frequent sharers (i.e. all the cores
that have requested the block). When the owner changes
all the frequent sharers are informed by means of a con-
trol message, and the list of frequent sharers is transferred
to the new owner. We name this policy as thehintspolicy.
Finally, to find out the potential of our proposal, we have
also implemented anoracle policy in which the L1C$ al-
ways provides the identity of the current owner cache on
every cache miss. Notice that a very large L1C$ can cause
an increase in the number of owner miss-predictions due to
some entries could store obsolete information.

3.4. Preventing starvation

In DiCo-CMP each write miss implies that the cache that
keeps cache coherence for a particular block changes, and
therefore, some cache misses can take some extra time to
find out this cache. If a memory block is repeatedly written
by several processors, a request could take some time to find
the owner cache ready to process the request, even when it
is sent by the L2 cache. Hence, some processors could be
solving their requests while other requests are starved.

DiCo-CMP avoids starvation by using a simple mech-
anism. In particular, each time that a request must be re-
sent to the L2 cache, a counter into the request message
is increased. The request is considered starved when this
counter reaches a certain value (i.e. two accesses to the L2

cache). When the L2 cache detects a starved request, it re-
sends the request to the owner cache, but records the address
of the block. If the starved request reaches the current owner
cache, the miss is solved, and then the L2 cache is notified,
ending the starvation situation if there is not any additional
starved request for such address. Otherwise, when the mes-
sage informing about the change of the ownership arrives at
the L2 cache, the block is detected as suffering from starva-
tion and the acknowledgement message required on every
ownership change is not sent. This ensures that the iden-
tity of the owner does not change until the starved request
completes.

4. Area and Power Considerations

In this section we compare the memory overhead and
the extra structures needed by the three alternatives consid-
ered in this work: Token-CMP, the directory-CMP proto-
col and DiCo-CMP. Moreover, we discuss how frequently
these structures are accessed to demonstrate that our pro-
posal will not have significant impact on the power con-
sumed by these structures and, therefore, significant reduc-
tions on total power consumption can be expected as a re-
sult of the important savings in terms of network traffic that
DiCo-CMP entails (see Section 6.3).

Token-CMP needs to keep the token count for any block
stored both in the L1 and L2 caches. This information only
requires1 + log2(n) bits (the owner-token bit and non-
owner token count), wheren is the number of processor
cores. These additional bits are stored in the tags’ part of
both cache levels. Moreover, it is necessary to add a counter
to the miss status hold registers (MSHRs) that are allocated
when misses are issued. This counter is in charge of reis-
suing transient requests after a timeout period. This time-
out implies an increase in the number of accesses to the
MSHRs. Finally, Token-CMP needs extra structures to im-
plement the persistent requests mechanism. This structure
has only one entry of few bytes per each processor core, and
persistent requests are not very frequent.

Directory-based protocols store the on-chip directory in-
formation either in the L2 tags when the L2 cache holds a
copy of the block or in a distributed directory cache when
the block is stored in any of the L1 caches but not in the
L2 cache. Therefore, a number of entries for the distributed
directory cache equal to the number of entries of the L1
caches is enough to always find the directory information
on chip for misses that can be solved without leaving the
chip (obtaining the block from any cache). The directory
must be accessed on each cache miss.

DiCo-CMP stores the directory information for blocks
held in any L1 or L2 cache in the owner cache (L1 or L2).
Moreover, it uses two structures that store a pointer to the
owner cache, the L1 and L2 coherence caches. The L1C$



Table 1. Memory overhead introduced by co-
herence information (per tile) in a 4x4 tiled
CMP

Structure Entry size Entries Total size Overhead

Data L1 cache 64 bytes 2K 128KB
L2 cache 64 bytes 16K 1024KB

Token-CMP
L1$ tags 5 bits 2K 1.25KB

+0.98%
L2$ tags 5 bits 16K 10KB

Directory
L2$ tags 2 bytes 16K 32KB

+3.12%
Dir cache 2 bytes 2K 4KB

DiCo-CMP

L1$ tags 2 bytes 2K 4KB

+3.30%L2$ tags 2 bytes 16K 32KB
L1C$ 4 bits 2K 1KB
L2C$ 4 bits 2K 1KB

is accessed only when it is known that there is a cache miss
in order to keep power consumption low. The L2C$ is nec-
essary to locate the owner cache whenever the information
in the L1C$ is not correct. This structure is only accessed
by misses affected by indirection (about 18% of the cache
misses as shown in Section 6.1). As happens with the on-
chip directory cache in the directory protocol, the L2C$
does not require more entries than the aggregate number
of entries of the L1 caches. Differently from that directory
cache, just one pointer is stored in each entry. In this way,
the L2C$ required by DiCo-CMP has smaller size than the
directory cache employed in the directory-CMP protocol.
The DiCo-hintspolicy also requires to store the set of the
frequent sharers in the tag’s part of the L1 cache, which
slightly increases the memory overhead3.

For the particular configuration of this work (a 4×4 tiled
CMP with 128KB L1 private caches), the number of bits re-
quired for storing the sharing code is 16 (2 bytes), whereas
just log216 = 4 bits are needed for storing a single pointer.
Table 1 summarizes the structures and their size required by
Token-CMP, directory-CMP and DiCo-CMP. Note that the
table concentrates on the structures used for keeping coher-
ence information and, therefore, does not account for the
extra structures required by Token-CMP and DiCo-CMP to
avoid starvation. We can see that DiCo-CMP has an over-
head similar to the directory protocol.

5. Simulation Environment

We evaluate our proposal with full-system simulation us-
ing Virtutech Simics [17] extended with Multifacet GEMS
[21]. GEMS provides a detailed memory system timing
model which accounts for all protocol messages and state
transitions. In order to model precisely the interconnection
network, and thus, obtain more accurate results, we have
replaced the original (not very detailed) network simulator
offered by GEMS with the SICOSYS detailed interconnec-
tion network simulator [25]. SICOSYS allows to take into

3The memory overhead for theDiCo-hintspolicy is just 3.64%.

Table 2. System parameters.
4x4 tiled CMP

In-order Processor Parameters
Processor speed 2 GHz
Max. fetch/retire rate 4

Memory Parameters
Cache block size 64 bytes
Split L1 I & D caches 128KB,4-way
L1 cache hit time 4 cycles
Shared unified L2 cache 16MB (1MB/tile), 4-way
L2 cache hit time 6 + 9 cycles (tag + data)
L1 Coherence cache 1 KB, 4-way, 2 hit cycles
L2 Coherence cache 1 KB, 4-way, 2 hit cycles
Memory access time 160 cycles

Network Parameters
Topology 4x4 Mesh
Switching technique Wormhole
Link latency (one hop) 4 cycles
Routing time 2 cycles
Flit size 4 bytes
Link bandwidth 1 flit/cycle

account most of the VLSI implementation details with high
precision but with much lower computational effort than
hardware-level simulators. We have extended SICOSYS to
allow us to simulate multicast networks.

The simulated system is a tiled CMP organized as a
4×4 array of replicated tiles, as described in Section 3.1.
Since we consider tiled CMP designs built from a relatively
large number of cores, each tile contains an in-order proces-
sor core, thus offering better performance/Watt ratio than
a small number of complex cores would obtain. Table 2
shows the values of the main parameters of the architectures
evaluated in this work.

We have implemented the three policies described in
Section 3.3:base, hints and oracle. These three imple-
mentations have been exhaustively checked using a tester
program provided by GEMS that checks all race conditions
to raise any incoherence. We compare our proposal against
the Token-CMP protocol described in [22] and a directory
protocol similar to the intra-chip coherence protocol usedin
Piranha [4].

The eight scientific applications used in our simulations
cover a variety of computation and communication patterns.
Barnes (8192 bodies, 4 time steps), Cholesky (tk16.O),
FFT (256K complex doubles), Ocean (258x258 ocean),
Radix (1M keys, 1024 radix), Raytrace (teapot) and Water-
NSQ (512 molecules, 4 time steps) are from the SPLASH-
2 benchmark suite [30]. Unstructured (Mesh.2K, 5 time
steps) is a computational fluid dynamics application [23].
We account for the variability in multithreaded workloads
[3] by doing multiple simulation runs for each benchmark
in each configuration and injecting random perturbations in
memory systems timing for each run. The experimental re-
sults reported in this paper correspond to the parallel phase
of each program.



6. Evaluation Results

We compare the three policies for DiCo-CMP proposed
in Section 3.3 with the Token-CMP and the directory pro-
tocol described in Section 2. First, we study to what ex-
tent DiCo-CMP reduces indirection compared to a direc-
tory protocol. Second, we show how the reduction in the
number of misses affected by indirection impacts in the ap-
plications’ execution time. Finally, we analyze the traffic
in the on-chip interconnection network. We also show the
impact on execution time and network traffic using both an
interconnection network supporting multicast and another
one without this kind of support.

6.1. Impact on the number of misses with
indirection

DiCo-CMP improves the performance of parallel appli-
cations by avoiding indirection. Figure 5 shows the per-
centage of cache misses that suffer indirection. Results for
Token-CMP are not included because cache misses never
suffer from indirection in this protocol.

We consider that a read miss is free from indirection
when it is directly sent to the cache that keeps the direc-
tory information for the corresponding block and that can
provide a copy of the block (the L2 cache in a directory pro-
tocol or the owner cache in DiCo-CMP). Write misses are
free from indirection when the condition for read misses
is fulfilled and invalidations are not required. Finally, an
upgrade miss avoids indirection when it takes place in the
owner cache (only for DiCo-CMP). In all the cases, indirec-
tion avoidance leads to two-hop misses.

Considering the type of misses, we can see that for read
misses indirection can be more easily avoided than for write
misses. This is due to the fact that sometimes write misses
require invalidations, thus preventing that the miss can be
solved in two hops. On the other hand, the three configu-
rations of DiCo-CMP obtain the same results for upgrade
misses. This is because upgrade misses avoid indirection
when they take place in the owner cache and, therefore, the
policy used to update the value of the L1C$ does not affect
them. However, we can see that upgrade misses usually take
place in the owner cache (77%).

Finally, comparing the three configurations of DiCo-
CMP, we can see that theDiCo-baseconfiguration has some
miss-predictions when the miss is sent to the owner cache.
In some cases, when a block must be invalidated due to a
write miss (or a read miss for a migratory block), the owner
cache has the only valid copy of the block. This is the
case of the migratory-sharing pattern and it does not re-
quire sending invalidations. Thus, the processor that fre-
quently shares the block cannot update the pointer stored in
the L1C$, and subsequent misses will fail to find the correct

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Token-CMP
Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Multicast Network

Barnes

Cholesky
FFT

Ocean
Radix

Raytra
ce

Unstru
ctured

Water-N
SQ

Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Token-CMP
Directory
DiCo-Base
DiCo-Hints
DiCo-Oracle

Unicast Network

Figure 6. Normalized execution times.

owner cache. As can be observed in Figure 5, theDiCo-
hintsconfiguration avoids this situation by sending hints to
the frequent sharers.

6.2. Impact on execution time

The ability of avoiding indirection that DiCo-CMP
shows, translates into reductions in applications’ execution
time. Figure 6 plots the average execution times that are
obtained by the applications evaluated in this paper. All the
results have been normalized with respect to those observed
for the Token-CMP protocol.

In general, we can see from Figure 6 that Token-CMP
achieves improvements of 5% on average in execution time
with respect to a directory protocol using a multicast net-
work. As already discussed, Token-CMP avoids indirec-
tion by broadcasting requests to all caches. We can see that
without the multicast support the improvement obtained by
Token-CMP over a directory protocol is only 1%. DiCo-
CMP does not rely on broadcasting but requests are just
sent to the potential owner cache. It is clear that the per-
formance achieved by DiCo-CMP will depend on its abil-
ity to find the actual owner cache. We observe slight im-
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Figure 5. Percentage of cache misses with indirection.

provements in execution time forDiCo-basecompared to
the directory protocol. As commented on in the previous
section, just a small fraction of the misses with indirection
could be converted into two-hop misses forDiCo-base. On
the other hand, the significant fraction of two-hop misses
that can be achieved whenDiCo-hints is considered, and
the fact that our proposal removes some of the inefficiencies
that Token-CMP introduces (broadcasting and persistent re-
quests) translate into improvements of 3% or 5% on average
over Token-CMP using multicast and unicast networks, re-
spectively. Finally, theDiCo-hintspolicy can obtain virtu-
ally the same results than the unimplementableDiCo-oracle
policy when multicast support is given. In other case, the
DiCo-oraclepolicy obtains improvements of 2% with re-
spect to theDiCo-hintspolicy.

6.3. Impact on network traffic

Figure 7 compares the network traffic generated by the
configurations considered in this paper for the two networks
evaluated. In particular, each bar plots the number of bytes
transmitted through the interconnection network (the total
number of bytes transmitted by all the switches of the inter-
connect) normalized with respect to the Token-CMP case.
As we can see, the fact that Token-CMP needs to broad-
cast requests makes this protocol obtain the highest traffic

levels. Even when a single multicast message is sent per
request for the Token-CMP, it must reach all the L1 caches
in the system, thus increasing network traffic.

Network traffic can be dramatically reduced when the
directory protocol is employed (28% on average). This is
due to requests are sent to the directory controller at the
L2, which in turn sends coherence messages just to the L1
caches that must observe them. When the interconnection
network does not support multicast routing, the network
traffic is reduced to 54% on average. Since DiCo-CMP
removes the communication between the directory and the
owner cache, less coherence messages are needed to solve
cache misses. This reduction in the number of messages
translates into lower network traffic compared to a direc-
tory protocol (8% forDiCo-baseand 11% forDiCo-oracle).
DiCo-hints, however, shows higher network traffic due to
the use of hints to keep updated the information stored in
the L1C$ structures. In some cases, this results in traffic
levels higher than the observed in the directory protocol (but
always lower than those reached by Token-CMP), as occurs
for Raytrace and Unstructured, but on averageDiCo-hints
generates virtually the same network traffic than a directory
protocol would do, and 28% less traffic than Token-CMP.
Obviously this percentage becomes greater when the inter-
connect does not provide multicast support. In this case,
DiCo-hintsgenerates 42% less traffic than Token-CMP.
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Figure 7. Normalized network traffic.

7. Conclusions and Future Work

Tiled CMP architectures (i.e. arrays of replicated tiles
connected over a switched direct network) have recently
emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of
choice for future CMPs. On the other hand, although a
great deal of attention was devoted to scalable cache coher-
ence protocols in the last decades in the context of shared-
memory multiprocessors, the technological parameters and
power constrains entailed by CMPs demand new solutions
to the cache coherency problem.

In this work, we present DiCo-CMP, a cache coherence
protocol for tiled CMP architectures that meets the advan-
tages of directory and Token-CMP protocols and avoids
their problems. In DiCo-CMP the role of storing up-to-date
sharing information and ensuring totally ordered accesses
for every memory block is assigned to the owner cache.
Compared to a directory protocol, our proposal avoids the
indirection that the access to the directory entails and, there-
fore, reduces the latency by directly sending the requests to
the owner cache (as it would be done in Token-CMP). In
this way, DiCo-CMP achieves improvements in total exe-
cution time of 8% on average over a directory protocol and
of 3% over Token-CMP. On the other hand, using an inter-

connection network without multicast support DiCo-CMP
achieves improvements in total execution time of 6% on
average over a directory protocol and of 5% over Token-
CMP. DiCo-CMP also reduces network traffic compared to
Token-CMP (28% with multicast support and 42% without
this support) by sending just one request message per miss,
and consequently, the total power consumed in the inter-
connection network. These results confirm DiCo-CMP as a
promising alternative to current cache coherence protocols
for tiled CMPs.

As part of our future work, we plan to design a new pol-
icy to update the L1C$ based on prefetching the identity
of the owner, which could obtain the benefits of theDiCo-
hintspolicy with lower memory storage (no information re-
garding the set of frequent sharers would be needed) and
network traffic (hint messages to update the L1C$ on ev-
ery ownership change would be avoided). Additionally, an-
other topic of interest is to study the combination of DiCo-
CMP and a heterogeneous interconnection network. Note
that DiCo-CMP increases the number of messages that are
not in the critical path of cache misses (for example, the
hints) compared with a directory protocol. Since these mes-
sages could be sent using low-power wires without hurting
performance [10], DiCo-CMP would make more extensive
use of these wires than a directory protocol, thus resulting
in lower power consumption.
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