Hierarchical Private/Shared Classification: The Key
to Simple and Efficient Coherence for Clustered
Cache Hierarchies

Alberto Ros
Department of Computer Engineering
Universidad de Murcia, Spain
Email: aros@ditec.um.es

Abstract—Hierarchical clustered cache designs are becoming
an appealing alternative for multicores. Grouping cores and
their caches in clusters reduces network congestion by localizing
traffic among several hierarchical levels, potentially enabling
much higher scalability. While such architectures can be formed
recursively by replicating a base design pattern, keeping the whole
hierarchy coherent requires more effort and consideration. The
reason is that, in hierarchical coherence, even basic operations
must be recursive. As a consequence, intermediate-level caches
behave both as directories and as leaf caches. This leads to
an explosion of states, protocol-races, and protocol complexity.
While there have been previous efforts to extend directory-based
coherence to hierarchical designs their increased complexity and
verification cost is a serious impediment to their adoption.

We aim to address these concerns by encapsulating all
hierarchical complexity in a simple function: that of determining
when a data block is shared entirely within a cluster (sub-tree of
the hierarchy) and is private from the outside. This allows us to
eliminate complex recursive operations that span the hierarchy
and instead employ simple coherence mechanisms such as self-
invalidation and write-through—now restricted to operate within
the cluster where a data block is shared.

We examine two inclusivity options and discuss the relation
of our approach to the recently proposed Hierarchical-Race-Free
(HRF) memory models. Finally, comparisons to a hierarchical
directory-based MOESI, VIPS-M, and TokenCMP protocols show
that, despite its simplicity our approach results in competitive
performance and decreased network traffic.

I. INTRODUCTION

Setting: In their road map to scalable on-chip cache
coherence, Martin et al. [27] advocate hierarchical and clus-
tered design techniques as natural methodology for future
scalable systems to overcome two main scalability problems
of coherence: storage and traffic. Storage is drastically reduced
by requiring the last-level cache to track only the clusters—not
the individual cores inside each cluster. Global traffic is also
reduced since portions of coherence transactions are handled
inside the clusters, thus eliminating inter-cluster communica-
tion. As a direct result of intra-cluster locality, the last-level
cache sends a single invalidation message to a cluster and
receives a single acknowledgment message from that cluster
to invalidate a data block from all caches inside the cluster.

There are already commercial systems that benefit from
clustered architectures, such as NVIDIA’s Fermi GPU [33],

Mahdad Davari and Stefanos Kaxiras
Department of Information Technology
Uppsala University, Sweden
Email: {mahdad.davari,stefanos.kaxiras} @it.uu.se

Sun/Oracle’s T2 [38], and AMD’s Bulldozer [8]. Furthermore,
proposals such as Rigel [21] are based upon clustered archi-
tectures.

Motivation: But despite the arguments in support of clus-
tered cache hierarchies, there are also obstacles to overcome
as a prerequisite for their wide adoption by industry. The
prevalent obstacle is the complexity and cost due to the coher-
ence that must be implemented. For example, a hierarchical,
invalidation-based, MOESI directory protocol in GEMS has a
very high number of states, mainly in the intermediate-levels
of the hierarchy. Why is that?

Fundamentally, invalidation-based, directory coherence
must perform two functions:

1) Invalidation upon write: upon a write miss, invalidate
all other sharers

2) Indirection and downgrade: upon a read miss, find
the latest written value and downgrade the writer

These two functions enforce the Single Writer Multiple Reader
invariant and ensure that written values are propagated cor-
rectly [39]. The complexity of a flat (non-hierarchical) di-
rectory providing this functionality is well understood and
although there is ample implementation experience, there are
also significant advantages in simplifying even this case [5],
[22], [13], [10], [9], [37], [35], [16], [19]. In the case of
a hierarchical clustered cache architecture, directory-based
coherence becomes significantly more complex: it must also
be performed hierarchically. A clustered cache hierarchy is
handicapped if coherence is not implemented using a hierar-
chical directory and a hierarchical (tree) protocol [1], [26],
[34], [25], [18], [30], [31], [11], [23], [12], [31], [32]. A
single flat directory at the root of the hierarchy (e.g., the
LLC) simply negates the scalability of the whole approach
and proves problematic in handling caching in intermediate
levels between the root (LLC) and the leaves (L1s).

Thus, both the invalidation and the indirection/downgrade
functions have to be performed hierarchically. This means that
intermediate nodes must have the ability to simultaneously
behave both as root caches/directories (i.e., send invalidations,
collect acknowledgements, indirect requests, as does the LLC)
and as leaf caches (i.e., respond to invalidations and/or down-
grades, as do the L1s). Moreover, one personality (leaf or root)
can invoke the other recursively. For example, invalidations

treat nodes in intermediate levels both as leaf nodes to be
invalidated but also cause them to behave as root nodes
initiating new invalidations in their sub-cluster (similarly for
downgrade requests). It is this dual behavior and the resulting
cross-product of the states of the two personalities (root and
leaf) in intermediate levels that increases the implementa-
tion complexity to prohibitive levels. Verification becomes
inordinately costly and time to market may be dangerously
compromised.

Approach: Our approach in addressing this problem is
to simplify the source of the complexity: invalidations and
downgrades. To the best of our knowledge this is the first
paper that studies such simplification in the context of clustered
cache hierarchies. Inspired by recent work, we provide a new
solution to hierarchical coherence based on the principles laid
down by the VIPS [37] and DeNovo work [9]. Based on
data-race-free (DRF) semantics [2], we eliminate invalidations
with self-invalidation on synchronization points. We eliminate
indirection and downgrades by using a write-through policy
(also referred to as self-downgrade) [37]. However, self-
invalidation and self-downgrade in a clustered hierarchy, if not
done intelligently, can decimate caching in the intermediate
levels, effectively rendering the clustered hierarchy into a flat
two-level L1/LLC hierarchy.

Contribution: Our main contribution is to define hierarchi-
cal, selective self-invalidation and self-downgrade for clustered
caches. In previous work, classification of data into private
and shared, proved invaluable for selectively applying self-
invalidation and self-downgrade: only data classified as shared
are self-invalidated in the Lls and follow a write-through
policy—private data are excluded [37]. The key advancement
in our work is to redefine the notion of private and shared in a
clustered hierarchy. We make the following observation: data
can be shared entirely within one cluster but can be private
to this cluster when viewed from the outside. In a multilevel
hierarchy, this notion is applied recursively starting with the
levels closest to the cores.

Example: Assume now that we have a hierarchical pri-
vate/shared classification that can identify the /evel in which
each data block is shared, i.e., the common shared level that
captures all sharing for a block. Figure 1 shows an example.
We use a hypothetical 8-core system with 4 cache levels
(L1-L4) and a degree of 2 (i.e., binary tree). The system
can be subdivided into many clusters at various levels (L1-
L4). One cluster at each level is shown. In this example,
data block D is private to core 7 (L1 cluster). Data block
A is shared between cores 0 and 1. It is, however, private
to the L2 cluster that contains these two cores. Similarly,
block C is shared by cores 5 and 6 inside the L3 cluster
containing these cores. Finally, block B, shared by cores 2
and 4, is shared at the L4 (system) level. We perform this
classification dynamically as data blocks are accessed by cores.
For efficiency, we use the page table to detect the level of
sharing at page granularity. A page is classified as shared at
the highest-level cluster that encompasses the sharing of all
its blocks. Once the classification is performed for a page,
self-invalidation and write-through of all its blocks become
localized to the cluster wherein it is shared. For example, in
Figure 1 block A is self-invalidated in the L1s, but not outside
the L2 cluster (its private chain of copies in the L2, L3, and L4

L1:
©)
; 7
, B
7
L2: g |
’ ’
X \
L2 CLUSTERINN \ |) /
A N 1 Vs 7
L3: K \
S\ v ’,®/,. L3 CLUSTER
'
~ \\ / - - 4’
L4: s e O @
A B [

\ > j

Fig. 1. Hierarchical classification in a clustered hierarchical cache architecture

is left undisturbed). Block A is also written-through to the L2,
but no further—its private copies outside the L2-cluster follow
a write-back policy. Similarly, block B is self-invalidated in
all the levels between L1 and L4 (exclusive), and it is written
through to the L4.

Paper Structure: To present our approach we start with
hierarchical private/shared classification (Section III) and sub-
sequently explain how the self-invalidation and self-downgrade
of a data block are restricted to operate in the sub-cluster
where this block is shared (Section IV). We examine two
alternatives on how to use the intermediate levels of caches
between the common shared level of a data block and the L1s.
The first option is not to store a shared block in intermediate
levels and the second is to store clean copies (updated with
cascading write-throughs). These options affect whether self-
invalidation and write-through are applied only to the Lls
and the common shared level respectively, or they cascade
the cluster. Finally, we discuss the relation of our approach to
the recently proposed Heterogeneous-Race-Free models, HRF-
direct and HRF-indirect [17] (Section V).

Results: We evaluate our approach by simulating 16-core
and 64-core hierarchical topologies using GEMS and a col-
lection of all the SPLASH-2, PARSEC, and other benchmarks
(Section VI). We compare against the hierarchical directory
MOESI protocol and the TokenCMP protocol provided in
the GEMS simulator and the VIPS-M protocol [37]. Our
results show comparable or better performance and reduced
network traffic compared to both MOESI (12% less traffic
than MOESI in 64 cores, with significant reductions in 19
out of 22 benchmarks) and VIPS-M, which in a hierarchical
configuration yields similar figures as MOESI. Compared to
Token our protocol obtains similar performance but better
scalability, especially in network traffic.

II. BACKGROUND
A. Hierarchical coherence

Extending directory-based coherence protocols from flat
to hierarchical architectures has been extensively studied.
Hierarchical implementations allow more scalable CMPs by
mitigating two overheads of flat directories, storage cost, and
global traffic, by exploiting intra-cluster locality. However, the
intrinsic complexities of directory-based coherence not only
remain unresolved but are exasperated.

Wilson Jr. [1] shows the benefits of a hierarchical multi-
processor architecture by extending the shared snoopy buses to
multiple hierarchies. He further introduces a clustered design
in which the memory is distributed among clusters. Maa
et al. [26] introduce distributed directories—tree directory
and hierarchical full-map directory—to deal with the storage
overhead of large-scale multiprocessors. Their hierarchical
full-map directory drastically reduces the storage overhead
by exploiting the sparsity which enables them to have set-
associative intermediate directories. Their proposal averages
performance gain over a flat full-map directory by exploiting
locality. Locality allows majority of the transactions to be
performed within a cluster without having to traverse the
whole hierarchy. The hierarchical directory further benefits
from shorter access times due to having small intra-cluster
directories. Nilsson et al. introduce their tree-based directory
coherence protocol, known as Scalable Tree Protocol (STP)
[34] to overcome the performance bottleneck associated with
SCI [14] due to write latency. STP dynamically arranges
caches in an optimal tree structure and adopts an efficient
replacement policy to keep the tree structure balanced and
optimal upon replacements. Similar to SCI, STP uses pointers
to form the tree. Although its implementation cost is slightly
higher than SCI, STP incurs lower write latency which reduces
the overall execution time. STP can be seen as a performance-
optimized version of SCI.

Lenoski et al. [25] introduce Dash architecture to overcome
the bottleneck problem of centralized directories. Their solu-
tion relies on: 1) partitioning and distributing the directory and
main memory among clusters, and ii) a coherence protocol
optimized for such a distributed directory architecture. Dis-
tributed memory allows the system to exploit locality, resulting
in reduced traffic and latency. To keep the hierarchy coherent,
Dash employs a mixed coherence policy: intra-cluster snoop-
ing buses and inter-cluster directory-based coherence. While
the Dash architecture is more scalable than a flat one due to
intra-cluster locality and the reduced overhead of a centralized
directory, having a mixed coherence policy adds complexity,
especially when verification is concerned.

While previous efforts perform independent optimizations
for the coherence protocol and the interconnection network,
Kaxiras and Goodman propose the GLOW extensions [18] for
SCI, to enable concurrency for reads and writes (invalidations),
in the network. They implement the coherence protocol at
the network switches and dynamically create sharing trees
on arbitrary topologies based on geographical (topological)
locality. Subsequently, Eisley et al. introduce In-Network
Cache Coherence [11] by integrating coherence layer in the
interconnection network fabric. They remove directories from
the nodes and integrate in each router in the network virtual
tree caches, which form virtual links to track sharers of data.
The resulting coupled coherence and interconnection network
enables in-transit optimizations, such as reducing the latency
of read/write coherence transactions by minimizing a series
of end-to-end messages—between requestor, directory, and
sharers—needed to satisfy a coherence transaction to a single
round trip between the requestor and responder nodes. This
results in latency reduction since invalidating the sharers is
done in parallel with routing the write request towards the
home node and invalidation acknowledgments arrive at the
home node shortly after the write request.

To address the serialization bottlenecks and also non-
determinism in hierarchical shared caches imposed by using
timeouts, Ladan-Mozes et al. introduce Hierarchical Cache
Consistency (HCC) [23] which embeds the coherence protocol
in the interconnection network, resulting in distributed scalable
CMPs. They ensure progression and deadlock freedom in the
protocol by requiring a unique path between each core and
each memory bank. However, HCC inherits complexities of
MSI-/directory-based protocols, resulting in a transition table
for shared data with 93 entries.

While migrating from flat to hierarchical architectures
results in higher scalability and performance, formal verifi-
cation of the resulting coherence protocol becomes by or-
ders of magnitude more difficult than that of the flat ver-
sion. There are works that put verification first and design
hierarchical/clustered coherence protocols from the ground
up, engineered for formal verification. Marty et al. separate
correctness substrate from performance policy by introducing
token coherence for multiple-CMP systems [30]. The resulting
TokenCMP protocol exhibits flat behavior from correctness
standpoint—easily verifiable— and has hierarchical character-
istics. Moreover, Zhang et al. introduce fractal coherence [44].
By designing the coherence protocol in a fractal fashion, the
verification of the whole system is limited to the verification
of the base cluster, which is small and manageable. The
only requirement is to show that the whole cluster exhibits
fractal behavior, which is within the budget of the available
equivalence-checking tools.

How we differ: We take a different approach to hierar-
chical, clustered, coherence. Instead of trying to alleviate the
limitations of directory-based invalidation coherence and of its
verification, we ask the question: can very simple coherence
mechanisms (e.g., strictly request-response with no indirec-
tion) such as self-invalidation and self-downgrade, be applied
to a hierarchy? And how do we make them efficient? Our
aim is to burden a single uncommon function, private/shared
classification, with the complexity of the hierarchy and del-
egate this to software but relieve other common functions
(implemented in hardware) from hierarchical complexity. This
is the philosophy pioneered in Dir;-SW [42].

B. Simplifying coherence

Recently, a number of proposals aim to simplify coherence
by relying on data-race-free semantics and on self-invalidation
to eliminate invalidation traffic and the need to track readers
at the directory. With the addition of self-downgrade, the
directory can be eliminated [37] and virtual cache coherence
becomes feasible at low cost, without reverse translation [20].
The motivation for simplifying coherence has been established
by many [24], [19], [9], [40], [6], [37], [20] and we will not add
significantly by reiterating here. Suffice to say that significant
savings in area and energy consumption without sacrificing
performance have been demonstrated in many recent papers
[19], [9], [40], [6], [37], [20]. Additional benefits regarding
ease-of-verification, scalability, time-to-market, etc., ensue as
a result of simplifying rather than complicating such funda-
mental architectural constructs as coherence.

Our work takes the approach of simplicity of these ef-
forts, but now to the domain of hierarchical clustered cache

architectures—which, to the best of our knowledge, has not
been attempted before.

III. HIERARCHICAL DATA CLASSIFICATION IN
CLUSTERED HIERARCHIES

Previous proposals (e.g., VIPS-M [37]) perform pri-
vate/shared data classification [15], [22], [10], [35], [16], [5],
[43] to optimize coherence in a flat—two-level—multi-core
system. Even if there are more than one level of private caches
(e.g., private L1-L2 and shared L3) the classification remains
the same. In VIPS-M, the private/shared data classification is
used to filter self-invalidation and write-through in the Lls.

In a hierarchical cache architecture the private/shared data
classification takes a new dimension. Now, we are not inter-
ested in knowing only if data are globally private or globally
shared but also in knowing where they are shared, i.e., if
the data are shared across the whole system or only inside
a particular cluster. This classification restricts the application
to perform self-invalidation and write-through within a specific
cluster. Our aim is to encapsulate the complexity of hier-
archy to just this uncommon operation—determining cluster
sharing—while simplifying all other common operations (reads
and writes).

Before we continue, we give some nomenclature we use in
this paper. In a hierarchical cache architecture, the level of a
cache corresponds to the conventional naming of caches, e.g.,
the level of an L1 is 1 and is the lowest level, and the level
of an L4 is 4. If, for example, L4 is the LLC then it is the
highest level and the root of the hierarchy. In any sub-tree, also
called cluster, the cache at the highest level of this sub-tree
is its root cache. Leaf caches are always the L1s. Any cache
between the leaves and a root is an intermediate cache. For the
rest of the paper we discuss symmetrical, constant-degree, fully
populated hierarchies, but one can easily extend our algorithms
to any other partially-populated, or non-constant degree, or
asymmetrical hierarchy.

A block can be shared entirely within a cluster and not
outside. For example, if the block is in just two L1s which
share the same L2 in a small cluster, then the block is known
as shared in the L1s. But from the outside, the block is known
as private to the cluster. In the leaf and intermediate caches,
we only need to know that the block is shared (self-invalidates
and follows a write-through policy). Outside the cluster, we
need to know the level where the block changes from private
to shared; in other words, the level of the root cache of the
cluster. We call this the common shared level (CSL) for this
block. In the example above, the shared block between the
two Lls is private in L3 and L4 seen from L2 (the block’s
CSL is 2). The actual L2 that has this block privately needs to
be known for various operations. However, its identity can be
derived by knowing only the first core that accessed the block
and the block’s CSL. We show this below.

If a new core requests a shared block from outside the
cluster where a block is shared, then the block’s sharing level
must change. We use the page table to detect changes in the
sharing level at a page granularity. We do this to minimize
the number of transitions since: i) the sharing level of a
whole page—not each individual block—changes at once;
and ii) page-level transitions can happen only when a core

first accesses a block and thus has to take a TLB miss.
In contrast, classification at block granularity would entail
transitions for each individual block on cache misses, which
are far more numerous than TLB misses. While at page level
we have a coarser grain, less accurate classification (leading
to more blocks classified as shared at higher levels—i.e., more
globally), the transitions are far fewer and therefore their cost
is not as critical. The examination of the trade-offs when
classification is performed entirely at block granularity is left
for future work. Here, sharing at page granularity defines
the CSL of all the blocks in a page. This approach inherits
the same well-known traits of other page-level classification
approaches and has to be applied accordingly.

A. Detecting sharing-level changes

One of the first problems to solve in a hierarchical clustered
cache architecture is how to detect the common sharing level
and its changes. There are several potential algorithms that give
this answer. We are interested in an implementation that stores
as little information as possible and updates this information
the least amount possible.

Since we are performing hierarchical classification at a
page granularity, CSL changes are detected on TLB misses.
Associated with each page table entry is the core that first
accessed this page and the current common sharing level.
The first core that accesses a page is the only owner of the
page (globally private) and CSL is set to 1. If another core
attempts to access the same page then a new CSL is derived
by comparing the ID of requesting core with the ID of the
original owner. Assume that core IDs are n-bit numbers. For
a hierarchy of a degree of d we divide the core IDs into
segments of logs(d) bits. We compare pairwise segments of
the two IDs starting from most significant end. The position
of the first pair of segments that differ, identifies the CSL:
CLS _level = segment_position + 1

Example: We show an example, in Figure 2, with 8 cores
and a binary hierarchy (e.g., 1 bit segments). The first core that
accesses the page is 001. If the second core is 000 (Figure 2,
top example), then they differ in the first segment (indicated
with black background), ergo the CLS changes to 2. The L2
that is shared at this level is always identified by the most
significant segments that are the same: 00 (indicated with blue
background). If on the other hand, the second core is 011
(Figure 2, middle example), it differs from 001 in the second
segment; therefore the CSL changes to 3. The shared L3 cache
is still identified by the most significant segments that remain
the same: 0. Similarly, if the second core is 111 (Figure 2,
bottom example), it differs from 001 in the most significant
third position, thus the CLS changes to 4. The shared cache
is L4 which is uniquely identified. If a requesting core differs
from the first core in a position that gives a CSL that is less
than the current CSL, then the requesting core is already in a
sub-tree where the data are identified as shared. This algorithm
works because the first core that accesses a page defines how
the sharing sub-tree will grow. The advantage of this algorithm
is that a core ID is only stored once per page (for the first core)
and never needs updating. The CSL for the page, however, may
be changed as new cores are requesting the page.

Re-classification and thread migration: Currently re-
classification from shared to private is only performed upon

. (o

core: (1) () G () () &) @) @
L1: 001 010 011 100 101 110 1
L2: 00 01 | | 10 1 |

I
L3: | 0
L4:

;

. 0
core: (5) () () () () &) G @
L1: ﬂ 00} 010 01} 100 101 110 11
I
L2: | 00 o1 | | 10 11 |
L3: 0 1
L4:
. 0
core: (3,) () ()) (W &) G @)
L1: M Eo1 010 o1 100 101 110 1
I ,
L2: | 00 o1 | | 10 1 |
L3: 0 1
L4: =

Fig. 2. Detecting the Common Shared Level (CSL)

page evictions from main memory. Since classification is done
in software it can be changed to an adaptive approach, using
for example decay techniques [36]. This is future work. There
is, however, a case were we do perform re-classification and
this is for private data on thread migration. As in previous work
[15], private pages are self-invalidated and shot down from the
TLB of the last owner core in the event of migration and the
page owner in the page table is changed to the destination core
as the TLB entries are reloaded. Thread migration does not
affect already shared pages unless threads are migrated to new
clusters. This might increase the CSL of the pages and—in the
absence of re-classification—can be taken under consideration
in the migration algorithm.

B. Encoding the classification

Once we detect a change in the CSL the question is where
do we encode this and how do we use it. The current CSL of
a page and its first owner are always associated with the page
table entry (PTE). We preferably save these within the PTE if
there are available unused bits, or alternatively, in a separate
memory structure. We assume that this information will be
cached in the system (last-level) TLB, if one is available. The
overhead is low since we only need logs (V) bits for the first
owner and [log,[log, N/log, d]] for the CSL, in a system
with N cores and a hierarchy of degree d.

However, we also need per-page CSL information to be
readily available to restrict self-invalidation and write-throughs
to the appropriate cluster, independently for each page. Fun-
damentally, there are three operations in our approach:

e Self-invalidation (SI): Self-invalidates data of a page
in all the leaf and intermediate caches up to (but
excluding) the CSL. From the CSL onwards (i.e., to
higher levels) the page is considered private and does
not self-invalidate.

e Self-downgrade (SD): We propagate write-throughs
for this page from the L1s all the way to the CSL but
not further.

e Recovery: Finally, when the CSL changes we need
to propagate all the modified data that reside in the
old CSL cache to the new CSL cache and globally
update the CSL information. Essentially this is the
only example of a forced downgrade, similarly to
other protocols, but we restrict it to classification
where it is uncommon. To distinguish it from much
more common self-downgrade, we call this operation
recovery. Recovery also exists in VIPS-M: when a
page transitions from private to shared, the private L1
owner must be notified so it can make the modified
data of this page visible to the LLC and start self-
invalidating them at synchronization [37].

In our approach, we store only the CSL—no owner field—
in the core TLB entries. Cache lines do not need to store CSL
info, just a private/shared (P/S) bit. This has the advantage of
the CSL being available a-priori, at the time when a request is
generated, allowing for the possibility of skipping intermediate
cache levels and going directly to the CSL cache. This ability
is useful when intermediate caches do not store shared data.
Knowing the CSL would allow us to write-through directly
to the CSL cache and optimize atomic operations which only
concern the CSL cache and not any intermediate cache.

Recovery: Recovery of a page (increasing its sharing
level) concerns all TLBs that contain an entry for this page.
We must ensure that the correct (new) CSL information is
communicated to all the cores that can have a copy of the
PTE in their TLB because we need to change the level of the
future requests for this page. Potentially this includes all the
cores of the cluster whose root cache is the old CSL cache.

To recover a whole sub-cluster, we first need to ensure
that all the TLBs in cluster are locked.! This is achieved
with core-to-core interrupts (a feature which is available in
many architectures). The core causing the change in the CSL
interrupts all cores whose root cache is the old CSL. We wait
until there are no MSHR entries for the page—no pending
requests for the page. Then all cores block any new requests
for that page (lock bit in the TLB) and send a forward recovery
to the shared cache.

Subsequently, we must self-downgrade all the dirty blocks
of the page being recovered, from the old CSL cache to the
new one, and change the policy of all blocks (in the old CSL
cache) from write-back to write-through by setting their P/S

'We relax this when a TLB does not hold the corresponding PTE, since
the page table entry itself is locked by the core causing the recovery.

CORE:

L1:

L2:
h Y
L3:
AN [. -
L4: : e
A@ PIZ*PM ? PI3 g P

Fig. 3. Two-Level policy for shared blocks. Intermediate levels between
the L1 and the CSL of a shared block do not cache this block. There are no
restrictions from the CSL to the LLC for the chain of private copies (indicated
by “P/CSL”).

K .
7
,
' ,
, | J @
L
' \

1] vy

,
.
, ;
. Qm,. P/
' . .
| -

-

bit to S. If the recovery is only one level up, the only cache to
recover is the old shared level cache. However, if the recovery
is n levels up, we must recover all the caches of the next n—1
levels towards the new CSL. This is because all the dirty data
present in any intermediate cache must be reflected in the new
CSL cache.

When the recovery of the old CSL cache is done, ac-
knowledgements are sent to the TLBs that are locked. The
acknowledgment updates the CSL of the TLB entry and resets
the lock bit in the TLB. One of the cores (e.g., the core with
smallest ID in the cluster) unlocks the page table.

Discussion: Recovery of a page is an expensive op-
eration. However, it is offset by the fact that it is quite
rare. It only happens a few times per page (no more than
#HierarchyLevels — 1 per page). For this reason, it is
the operation of choice to burden with the complexity of a
hierarchy, allowing for much more common operations (reads,
writes, self-invalidations, and self-downgrades) to be imple-
mented more efficiently. Furthermore, we choose to support
this operation in software. Software can be changed, debugged,
and verified using program verification techniques. Thus, CSL
management and coherence operations are separated so that the
protocol components can be verified with a divide-and-conquer
approach.

C. Read-only classification

A different type of classification that is especially useful
with self-invalidation is read-only (RO) classification. Shared
read-only data can be excluded from self-invalidation [37].
Read-only classification can be easily implemented, relying
on the RO bits of the PTEs. When a page transitions from RO
to read-write (RW), we must also perform a recovery to notify
all the cores that share this page about the change, so they can
start self-invalidating the corresponding cache lines.

The classification change from RO to RW inside the cores
can be deferred until the next synchronization in each core.
The only requirement is that all the cores in the cluster where
the page is shared be notified about the RO-to-RW change
before the core that causes the change passes a synchro-
nization. This is done by sending notifications and collecting
acknowledgements, without the need to block any cores. The
critical observation is that a RO-to-RW transition imposes no

cost, expect in the uncommon case where a core that caused
such transition may have to wait for the acknowledgements to
pass its next synchronization.

IV. VIPS-H: A HIERARCHICAL VIPS

Given one of the hierarchical data classifications described
in the previous section, here we explain the behavior of
a coherence protocol relying on self-invalidation and self-
downgrade of shared data blocks.

The main policy decision that affects the implementation of
these operations concerns how we use the intermediate caches
between the root cache and CSL and between the CSL and
the leaf caches per data block:

Intermediate levels between the root cache (LLC) and
a CSL cache. A block is private between the LLC and its CSL
(P/S bit set to P). For performance reasons we allow copies
of the block to exist between the LLC and the block’s CSL,
but we do not enforce inclusion. When satisfying a request at
a level higher than the CSL (because the CSL and possibly
other levels have evicted) we rebuild the private chain from
the LLC to the CSL by copying the block in all the levels
where it is missing. The P/S bits of these copies are set to P
(and the correct CSL is copied in them, if we encode it in the
caches).

Intermediate levels between the CSL cache and the leaf
caches (L1s). A block is shared between its CSL and the L1s
(P/S bit set to S). We discern two policies:

e Strictly two-level policy. A shared block exists only in
the L1s and in the CSL, but not in intermediate caches.
The advantage of this approach is the simplicity in
self-invalidation (which is strictly restricted in the L1s)
and potentially in self-downgrade (if the CSL is known
and intermediate levels can be skipped). Additionally,
read misses can skip the lookup in intermediate levels.
The recovery operation must self-invalidate the old
CSL, in addition to self-downgrade. The disadvantage
is lower performance from more costly misses. This
policy is shown in Figure 3 where all sharing is strictly
two-level.

e Multilevel policy. A shared block can exist in any
intermediate level between the L1s and the CSL. The
advantage is higher performance, but self-invalidation
and self-downgrade must now cascade all the levels
between the L1 and the CSL. This policy is shown in
Figure 4 where sharing is multilevel.

In the sections below, we describe the protocol design
starting with the more frequent events (read and write misses),
to less frequent events (atomic operations, self-invalidations,
and self-downgrades).

DRF memory accesses (Loads and Stores): A DRF miss
searches for the block in the cache hierarchy, starting from the
first level and stopping at the level where the data are found.
The response copies the data in intermediate caches. For every
copy we set its P/S bit that indicates whether it is invalidated
on self-invalidation. To set the P/S bit we need to know the
CSL, which comes from the TLB. For levels below the CSL
(i.e., between the L1 and the CSL) we simply set the P/S bit

CORE:

L1:

L2:

L3:
L4: R e
A® P/Z!PM (‘;3) g P

Fig. 4. Multilevel Policy: A shared block can be cached in any intermediate
level between the L1 and its CSL. There are no restrictions from the CSL to
the LLC for the chain of private copies (indicated by “P/CSL”).

to S. When we follow a strictly two-level policy we skip the
intermediate levels between the CSL and the L1.

A DREF store writes in the L1 and is always a hit. No
invalidations and no extra latency is incurred. Out of the critical
path of the store, the data block is requested (as in a load
request) and when it arrives it is merged with the modified
words. When the L1 cache line is self-downgraded, the write
through of the dirty words (i.e., the diff of the cache line as
in [37]) cascades and updates all the shared copies of the
intermediate levels until it finds a private copy (at the CSL or
greater level). At that point the write-through stops and merges
the diff in the data block. Levels that have evicted the copy
are simply skipped.

The invariant of our approach is that we do not allow dirty
blocks in intermediate levels. We only store dirty blocks in the
L1 cache and in the CSL or higher levels. This means that we
do not need dirty bits per word at any cache level (only in the
L1 MSHRs to create diffs as in [37]). Dirty data in the CSL or
higher levels, use a write-back policy (since they are private)
and only a single dirty bit per cache line is needed.

Evictions: Evictions of clean lines are silent. An eviction
of a dirty line can cause a write-through or a write-back
depending on where it is in the hierarchy. Since we only allow
clean copies in the intermediate levels between the L1 and the
CSL an eviction can cause a write-through only in the L1
(where we have create diffs). Write-throughs cascade to the
CSL or higher level, updating all the intermediate caches that
have the block. With the strictly two-level policy, intermediate
caches are not updated. Write-backs simply write the whole
block into the next cache level.

Non-DRF memory accesses (Atomics and other):
Atomic, read-modify-write requests always operate at their
CSL and no other level. Since the CSL is known from the
TLB, all Intermediate levels can be skipped as an optimization.
The hierarchy is searched for a private line. If this line is not
at the CSL but higher (towards the LLC), it is copied in all the
levels, from where it is found all the way to the CSL. At this
point the atomic request has reached the CSL and blocks the
requested line. When the atomic is resolved, it either writes
or sends an unblock message to the CSL, so other atomics
can proceed. Our approach does support arbitrary data races
as long as they are intended and identified. Using the proper
fences (see below) racing accesses can be implemented in

any self-invalidation/self-downgrade protocols. In these cases,
competing accesses meet directly in the CSL.

Self-invalidation and self-downgrade fences: In SC for
DRF, synchronization is exposed to the hardware [2]. We
consider that fences in the program perform this job. A release
operation corresponds to a self-downgrade fence (SD fence)
that completes all outstanding write-throughs. An acquire
operation corresponds to a self-invalidation fence (SI fence)
that causes the self invalidation of shared data. We have
annotated the synchronization points of all the benchmarks
used in the evaluation accordingly. In a hierarchical clustered
architecture these fences operate as follows:

e SI fence: In the strictly two-level policy the SI fence
operates exclusively in the L1s as in VIPS-M [37].
However, in the multilevel policy the self-invalidation
cascades to all cache levels from the L1 to the LLC.
At every level it performs a 1-cycle flush by bulk-
resetting the valid bits of the shared (non-read-only)
lines. Self-invalidation flushes all the blocks whose
CSL is higher than the level they reside. This is
guaranteed by the way their P/S bits were set.

e SD fence: SD concerns the first level. Cache line diffs
are written-through as explained above (DRF memory
accesses). The SD fence awaits for the completion of
the write-throughs of all the lines that are temporally
dirty and have an allocated MSHR.

V. HETEROGENEOUS-RACE-FREE (HRF) MEMORY
MODELS AND HRF-DYNAMIC

Coherence such as VIPS [37], DeNovo [9], SARC [19],
and of course our proposal, are intimately connected to the
synchronization model since they rely on data-race-free (DRF)
semantics and synchronization exposed to the hardware to
deliver SC for DRF [2]. But in a hierarchical clustered cache
architecture, what is DRF? Hower et al. pose this question
in their work on heterogeneous-race-free models [17]. The
issue at hand is scoped synchronization which operates locally
within a cluster vs. globally-scoped synchronization which
operates across clusters. The authors propose two memory
models: HRF-direct and HRF-indirect [17].

e HRF-direct: transitivity is only guaranteed for same-
scoped synchronization.

e HRF-indirect: transitivity is guaranteed for different-
scoped synchronization.

How HRF models relate to our approach? Taking the
analogy from GPUs to a general clustered architecture the
scope of any synchronization depends on the CSL of the
synchronization variable. Assume now that we have scoped
synchronization (e.g., it is offered in the programming model).
In order for cores in a cluster to synchronize, the synchroniza-
tion variable (lock, barrier flag, etc) must be shared at the
level of the cluster’s root cache. Accesses inside the cluster
separated by this synchronization are DRF. However, if any
core in the cluster synchronizes with a core in a different
cluster, a new CSL (which encompasses both clusters) is
established for the synchronization variable. If the new cluster
attempts to access data that were private in the first cluster then

such data become (through the process of recovery) shared in
the new CSL, before the access is allowed to proceed. Thus,
the latest values of the data are exposed (on demand) to the
new cluster. This guarantees the transitive behavior dictated in
the HRF-indirect model. It follows that our approach provides
SC for DRF in the presence of scoped synchronization.

However, the interesting property of our approach is that
it also provides the benefits of HRF-indirect even if one does
not assume scoped synchronization. Viewing it from a different
perspective, even if one imposes an HRF-direct model and all
synchronizations must be non-scoped, or globally-scoped, to
provide DRF guarantees across all cores, the benefits of scoped
synchronization are obtained dynamically. Globally-scoped
synchronization does not necessarily mean global sharing. This
is due to the fact that the common shared level of race-free
data is dynamically set at least as high as the highest level of
any synchronization variable used to synchronize conflicting
accesses between any two cores (even transitively). If the
synchronization is confined within a cluster, the sharing is
generally (but not always) confined within the same cluster.

Because of such dynamic behavior and since our approach
delivers the benefits of scoped synchronization dynamically
(even in absence of scoped synchronization as such), we
venture to suggest the possibility of other models, such as for
example an HRF-dynamic model that bridges the performance
gap between HRF-direct and HRF-indirect with dynamic op-
timizations. We do not provide a formal definition for HRF-
dynamic since this is not the focus of our paper, but point out
that the discussion started by Hower et al. [17] may lead to new
models encompassing dynamic behavior and optimizations.

VI. EVALUATION
A. Simulation environment

In our evaluation we use Wisconsin GEMS [29], a detailed
simulator for multiprocessor systems. We model in-order cores
that along with the Ruby cycle-accurate memory simulator
(provided by GEMS) offers a detailed timing model. The
interconnect is modeled with the GARNET network simulator
[3]. We model hierarchical systems comprising three cache
levels: the L1 is private to each core, the L2 is partially shared,
i.e., shared only within a cluster, and the L3 is globally shared.
The three level limitation is imposed by the implementation of
our base case. We simulate both 16-core and 64-core systems.
The 16-core system has four clusters of four cores each (4x4).
The 64-core system has four clusters of 16 cores each (16x4).
All L1s are connected to the L2 cache in the cluster and all L2s
are connected to the L3, thus creating a hierarchical network.
More details about the configurations are shown in Table 1.

We evaluate the proposed VIPS-H protocol with two
caching policies (two-level and multilevel), and we compare
them with the directory-based hierarchical MOESI and hierar-
chical token-based (TokenCMP [30]) protocols provided with
GEMS (from now on, H-MOESI and H-Token), and the VIPS-
M protocol [37]. We note that H-MOESI employs unlimited
directory caches and is hardwired for only three cache levels
(hence the limitation in our comparisons). Changing the imple-
mentation to realistic limited directory caches, would increase
even more the number of states of the protocol and would
worsen performance. We chose H-Token as it has a similarly

TABLE 1. SYSTEM CONFIGURATION

Values

3.0GHz

64 bytes / 4KB (64 blocks)

16 entries / 1000 cycles

32KB, 4-way, hit time 1 (tag) + 1 (data) cycles

Parameter

Processor frequency

Block size / Page size
MSHR size / Delay timeout
Split L1 I & D caches

L2 cache 4MB, 16-way, hit time 6 (tag) + 6 (data) cycles

L3 cache 16MB, 32-way, hit time 10 (tag) + 20 (data) cycles
Memory access time 160 cycles

Flit size 16 bytes

Message size
Switch-to-switch time

72 bytes (5 flits) data, 8 bytes (1 flit) control
6 (on-chip), 13 (off-chip) cycles

low complexity as VIPS-H. H-Token uses local (intra-cluster)
and global (inter-cluster) broadcast, without further filtering
optimizations [30]. More sophisticated versions of Token,
e.g., Token-M [28], could potentially perform better but at a
penalty of additional complexity and cost and therefore not
considered. VIPS-M classifies pages either as private or as
globally shared and do not store blocks belonging to shared
pages in intermediate levels, so the selective self-invalidation
only need to be performed at the L1 caches as in [37].

We employ a wide variety (22) of parallel applications in
our evaluation. In particular, we simulate the entire Splash-2
suite [41] with the recommended input parameters. We also
run six benchmarks from the PARSEC benchmark suite [7],
all of them with the simmedium input, except Streamcluster
and Swaptions that use the simsmall input due to simulation
constraints. Finally, we simulate two additional applications:
Em3d (38400 nodes, 15% remote) is a shared-memory im-
plementation of the Split-C benchmark. Tomcatv (256 points,
5 time steps) is a shared-memory implementation of the
SPEC benchmark. We simulate the entire application, but
collect statistics only from start to completion of their parallel
section. Our results account for the variability in multithreaded
workloads, showing the corresponding error bars [4].

B. Complexity, cost, and area

One of the main characteristics of VIPS-H is its low
complexity. As a metric to show the complexity of VIPS-H
compared to the other two hierarchical approaches analyzed in
this work: H-MOESI and H-Token, Table II shows the number
of total states and base states required for the implementation
of each protocol and each cache controller. As we mention
previously, intermediate levels in H-MOESI are the cause
of the enormous complexity requiring the disproportionate
number of 59 protocol states, 13 of which are base states. On
the other hand, both VIPS-H and H-Token have most of its
complexity in the L1 controllers. However, the L1 of VIPS-H
is even more simple than the L1 in the other protocols since
L1s initiate the transactions to other levels but other levels
never issue requests to the L1s —only responses). The base
states in VIPS-H correspond to the Invalid, Clean and Dirty
states.

Regarding area requirements, VIPS-H does not use any di-
rectory structure, which significantly reduces the area overhead
entailed by coherence management and increases scalability by
removing congestion points. VIPS-H includes one P/S bit per
cache line, whose only function is to filter self-invalidation
and self-downgrade transactions. On the other hand, H-Token

TABLE II. STATES AND STORAGE COST FOR A 64-CORE 16x4 SYSTEM
H-MOESI H-Token VIPS-H
States |Bitmap|Total| States |Tokens|Total| States |P/S|Total
Controller | Tot./Base| bits | bits |Tot./Base| bits | bits |Tot./Base| bit | bits
L1 cache | 16/5 0 3 16/5 7 10 9/3 1 3
L2 cache | 59/ 13 16 20 6/4 7 9 5/3 1 3
L3 cache | 13/4 4 6 3/2 7 8 4/3 1 3
Total cost 844KB 584KB 204KB
TABLE III. EVENTS, FREQUENCY, COMPLEXITY AND EFFICIENCY
% per instr.
Event @x4) (16x4) | Frequency | Complexity | Efficiency
Load instr 21.3251% | 16.4038% High Low High
Store instr 6.8957% 5.4081% High Low High
Atomic instr | 0.0026% 0.0048% Low Low Medium
SI&SD instr | 0.0045% 0.0068% Low Medium Low
Recoveries 0.0006% | 0.0005% Very low High Low

requires a counter of tokens, (plus one owner token) per cache
line (14 [logacores]). Finally, H-MOESI requires full bitmaps
with as many bits as cores in a cluster in the L2 directory and
as many bits as clusters in the L3 directory.

Assuming a commonly employed in-cache directory, the
storage required by H-MOESI for the coherence information
is 844KB, as show in Table II (recall, however, that we evaluate
H-MOESI with unlimited directories). For this number we
account for the bits required to code the states (log2b), where
b is the number of base states, and the coherence information.
The storage required by H-Token is 584KB (69% of H-
MOESI). The storage required by VIPS-H is only 204KB
(24% of H-MOESI). Regarding scalability, it is important
to note that the storage required by VIPS-H grows in con-
stant order, except for the TLB’s CSL field that grows as
[log, [log, cores/ log, degree]].

But how can VIPS-H, having so low complexity, achieve
performance numbers similar to H-MOESI? The answer lies in
Table III, which shows frequencies (in percentage of events per
instruction), complexity, and efficiency of the possible events
in VIPS-H. The most frequent events are resolved in a simple
way and are very efficient, while the less frequent events carry
all the complexity and inefficiency, requiring cache blocking
or software intervention.

C. VIPS-H hierarchical behavior

Figure 5 shows the fraction of pages that, at the end of the
application, have their CSL in the L1 (i.e., private), L2 (i.e.,
partially shared), and L3 (i.e., globally shared). As expected
there are few pages in L2, since applications typically have
either private data or highly shared data. On average, the CSL
of about half the pages is the L3 for a 16x4 configuration,
although the trend when increasing the number of cores favors
private data. The large number of L3-CSL pages is also due to
the lack of clustered locality even when we have low degrees
of sharing. We run all our benchmarks unmodified and have
not attempted to affect thread placement or data sharing to
maximize the benefits of clustering. Such orthogonal optimiza-
tions on the software side can help hierarchical coherence to
perform and scale better.

Figure 6 shows for every L1 miss the target CSL (first bar)
and the eventual level where they are resolved in the two-level

INNANNNANNNANNNN\NN

<
bl
»
T
IS
X
=
N
PRI <
el
»
T
>
2
=
u
= |0
s
)
EIN]
s
©

NN\
Y

NNNNNNNNNNNNNNNNNAN|
N NNNNNNNNNNAN
ENNNNANNNNNNNNNNNNNNAN
INNNNNNNNNNNN
S \NNNN|
S NNNNNNNNN\\N

OOOOOO—

INNNNANNNNNNNNNNNNNNNNNN

7
/
?
?
7
/
0
7
é

ey
AAUARNANRUANANARNRNR NN RSN

Pages in Common Shared Level

0
% '&g‘a =3 Q?‘@x\\x“ <\° e‘b(\ A9 8 \%& *\@o \‘ev 50\ Sg\o\z:\‘ ‘\e'b e&‘? ,;\e (’"j\\%?‘\p o

ad\

Fig. 5. Fraction of pages classified to each CSL

-Multilevel ELIOLAL3

AERRIRIRRRIRRRRRRRRRRRR Y

AIRIIRIRRIRRRRRRRRRRRRRRRYY
RN Ty

o RIIRRIRIRRRRRRRRRRRRRRRY
ANNNNNNSNN

e

ey
sy
SN
e INNN RN RNNNNSNNS
 — U NNNNNNNNN
Ty
ATy
oS RIRIRRRRRRRRRRRRRRRRRRRY
Sy
mmIImmmIhhiTTy:yYy
IRIIIRRIRRRRIRRRRRRRRRRRRY
S ey
Sy
ARSI R R Y
RTINS
FERSIRRRRRRRRRRRRRRRRRTRY
e AN
SR E T
RIIIIITRRRRIRRRRRRRRRRRYYY
ey
e SNNNNNNNNNNNNNNNNNNNY
S Ty
- SNNNNNNNNNNNNNNNNNNNNNNNY
Sy
Sy
R iy
EORITIRRTITRRRURRRRRRRRRRRRY
SRSt
EXIRITIRRRRRRRIRRRRRRR R R R RYY
R S SSSS
Sy
SRRRIIRRRRRRRRRRRRRRY
ey
i USSR
e S NNNNNSSSS

e Y
L N

o
7
7|
7|
]

Percentage of L1 misses

" 088 S ;(‘?\\\\‘\ 25\\ <\§\ \\“%6\ & 0\‘

O S 2 O o
\e“q:\e‘ 23\“’\@1\‘ % e““?o%‘e 5 @“% R o
o

(a) 4x4 clustered system

<

IPS-H-|

(2]}

evel 3. Multilevel L L
/|

ASIIIRRIRRRRRIRRRRRRRRRR Yy
ISR NNNNNNNNN
o RIITRRRRIRRRRRRRRRRRRRRY

u
o
=4In
n
N
- |

ANNNNNSSSR
sy
B RIIIRRRRRRRRRRRRRRR R R RYY
e AN SN AN
— USSR

e NS

Ty
Yy
=S SUNNNNSNNNNSNSSSSNS
S Ny
iy
ISNSNNSSSNNSSSSNSNY
—NaaR—
 —CNNNNNNNNNNNNNN
ey
P Sy
ATy
ey
A Sy
s NNNANNNNNNNNNNNNN
SNy
ESRRRIRRRRRRRIRRRRRIRRRY

ANTIITIIIL L ———
AR Ry
Y
E—SNNANSANSRaRN L.
L SNNNNNNNNNNNNNNNNNN

ANTITIIIITIT IR
:ESNNNNNNNNNNNNNNNNNNNNNNNNY

N

ey
e N SNNSNSSSS

ATt
RNy
S ENNNNNNNNNNNNNNNNNNNNNNN
| ES—S SNNNNNNNNNNNSNNSNSNS\N

T S Sy
ARRRIRRRRRRRRRRRRRRRRRRRRYY
ES SN
Sy
ASIIIRRRRIRRRRRRRRRRYY
Ty
AT TR Yy
ESSSSSNNNNNNNNNNSNNNNSNNSS

PSS N

é
/
/
/
/
/
/
/
/
/
i
/

Percentage of L1 misses

@@ o L <\° 20 oo o0 e 59 O 3¢ o o? 2 o0 0 N o
%@\c‘;\ AR RN G ?@&o %\?ﬁ\& 3& \e‘“ \e‘ & 0 % 6 S o 50 @;\ R &2
@

(b) 164 clustered system

Fig. 6. CSL of L1 misses and their resolution level (L2/L3)

and multilevel policies (second and third bar, respectively).
Between 70% and 80%, on average, of L1 misses are for
blocks whose CSL is the L3. This fraction increases with
respect to Figure 5 since private blocks suffer fewer misses
than shared blocks. There is a high correlation between the
CSL and the level of resolution of a miss for the two-level
policy, since the L2 (i.e., the intermediate level in this case)
does not hold blocks whose CSL is the L3. However, allowing
caching of these blocks (multilevel policy) leads to better
utilization of the L2, and as a consequence a reduction of the
miss latency both in the 4x4 and the 16x4 configurations.

D. Performance comparison to H-MOESI and VIPS-M

Figure 7 shows the average L1 miss latency for every
application evaluated, for H-MOESI, VIPS-M, VIPS-H-Two-
level, and VIPS-H-Multilevel. H-MOESI does not scale well as
it increases the average latency considerably: from 78 cycles in
the 4 x4 configuration to 220 cycles in the 16x4 configuration.
This is mainly due to the blocking of cache controllers while
performing invalidations and forwarding. Queuing latency in
the cache controllers increases considerably with more cores
(and levels) in the system. In contrast, the average latency in
the VIPS protocols only increases from 80-100 cycles to 120—
150 cycles. The exception is Radix, where the large number
of L3 misses (see Figure 6) due to all-to-all communication
[41] increases L3 contention, and therefore, miss latency.

‘ [H-MOESI [VIPS-M 4 VIPS-H-Two-level (1 VIPS-H-Multilevel ‘

£ 140.0
120.0
100.0

JSSSSSTIRTTIRRY

00 o0 S0 45 o8

@88 L W 2 S
gz»‘“ <l e, ?\ (5\06‘%% *\‘ i"\f’@\}\ ot 50‘\ e

e"’ \s‘? 1 2 (0 o
(\0 ?(\ :9 5©' (,);\\ “‘r’pe"‘)

(a) 4x4 clustered system

‘ M H-MOESI [VIPS-M 2 VIPS-H-Two-level (1 VIPS-H-Multilevel ‘

6 (&a\e 2 QG‘?\\N‘

X 0@ R 3@ 08 20 o
SO 'ad‘ x’o e *""Q 59 S AT R e e
'a) é‘ N ?;‘\e\‘\\«g@ ‘l‘ e 6 o Ko e

(b) 164 clustered system
Fig. 7. Average miss latency
Additionally, the two policies of VIPS-H reduce the latency
with respect to VIPS-M for both the configuration with 16
cores and the configuration with 64 cores due to performing
a more accurate classification, which allows the protocol to
be more selective in the self-invalidation and to write-through
to lower cache levels. Finally, VIPS-H-Multilevel reduces the
latency with respect to VIPS-H-Two-level due to a better use
of the L2 cache.

Figure 8 shows the application execution time of VIPS-M
and VIPS-H normalized with respect to H-MOESI. On aver-
age, VIPS-M degrades performance compared to H-MOESI
for the 4 x4 configuration, but obtains similar performance for
the 16x4 configuration. On the other hand, although VIPS-
H does not obtain performance improvements with respect
to H-MOESI for a 4x4 configuration, it achieves 10% less
execution time for the 16x4 configuration. This indicates
better scalability for the VIPS protocols in general and for
VIPS-H in particular.

Some applications (Radiosity, Radix, and Raytrace) per-
form worse with VIPS-H than with H-MOESI for 16x4. As
shown in Figure 7, VIPS-H considerably increases miss latency
for Radix (a large percentage of misses go to the L3), with a
direct impact on execution time. Raytrace, on the other hand,
has a significant number of locks (94.5K [41]), which result
in excessive self-invalidation, and thus, extra misses. These
misses are evident in the Response_data bar in Figure 9 which
grows considerably in Raytrace. The extra misses adversely
impact execution time. The increase in the Response_data
bar, is far worse in Radiosity. Radiosity has far more locks
(231K [41]) than Raytrace and is one the most challenging
programs to run in self-invalidation protocols. Curiously, its
execution time is not as severely affected. The reason is
that, while Raytrace spends very little time in synchronization
(5%), Radiosity spends about 30% of its execution time! Its
performance is dominated by synchronization overhead and
the penalty of the extra self-invalidation misses is mitigated.

Regarding VIPS-H policies, some applications, like
Barnes, Volrend, Blackscholes, and Bodytrack performs better

[@ H-MOESI O VIPS-M & VIPS-H-Two-level O VIPS-H-| Multl\evel |

Normalized Execution Time
OO0O0O00000O -+ ——t—t—t—t
O=NWAUINROO—=NWAUI

—

AANANNRNRNRNRNS———

JESTTSSTITIRTIINNY
JESSTTITTIRITRRTINT

C o0 3 e 2 N
S e"’ e>\o "‘i\é\\‘ﬁ‘o\x \“Qx »\e,xs" \(\v&%@ eé"\o% ASR @0 o% e

o ‘(\e S e€ <,\4\\4“ W
o

(a) 4x4 clustered system

[@ H-MOESI O VIPS-M & VIPS-H-Two-level O VIPS-H-| Multl\evel |

ESTTSTTTTTIITIITY

SSTTTTISIUITOY

o ‘(\e St e€ N\\~Y‘
o

© o o ©
<\ e’o &05'%%6*\‘ 0\‘@\\\: 6‘90\6 \{\ %‘\‘\8'56(3\5909\3\\0 @Q oa’\“‘ag

(b) 16 x4 clustered system
Fig. 8. Execution time normalized to H-MOESI
with the multilevel than with the two-level policy for the
16 x4 configuration, as expected. However, for some other
applications, such as Raytrace and Em3d the two-level pol-
icy exhibits better performance. This happens in applications
with intense locking, where self-invalidation is frequent and
therefore caching at the L2 is not useful, and the effect of
bypassing the L2 on every request to the L3 level can actually
reduce miss latency.

The network traffic is shown in Figure 9, normalized
to H-MOESI. On average, VIPS-M does not saves network
traffic compared to H-MOESI since the self-invalidation of
unnecessary cache blocks causes extra cache misses, and
consequently extra traffic, as shown by the increase in the
Response_data bar. VIPS-H reduces traffic in 19 out of the
22 benchmarks. This reduction in traffic is achieved despite
the enormous traffic generated by Radiosity, which is the only
outlier. Again, VIPS-H scales well with respect to H-MOESI,
by reducing the traffic more for the 16x4 configuration (12%)
than for the 4x4 one (7%). A key to this reduction is the low
overhead entailed by the write-through traffic (WT_data bar
in Figure 9). Most of the write-backs are converted to write-
throughs, which send diffs across the network.

Traffic and execution time in VIPS-H may not be directly
related. The reason is that write-throughs, which cause traffic,
increase due to propagation of writes to higher cache levels,
but that does not cause an increase in execution time as writes
do not block the cores. Note that the increase in traffic in fft
is due to WT-data.

E. Performance comparison to H-Token

To compare with H-token we employ the simple network
model provided by GEMS instead of Garnet. The reason is that
the miss latency variability introduced in Garnet renders the
prediction to reissue requests inaccurate, thus injecting extra
traffic and causing considerable congestion in the network
and slowdown in the applications, especially for the 16x4
configuration. Em3d for the 4x4 system and Em3d, Ocean,

1.H-MOESI | | 2. VIPS-M ' 3. VIPS-H-Two-level == 4. VIPS-H-Multilevel

M Request_control B WB_control
O Response_control (] WB_data
Response_data N WT_data

sl

Normalized Network Traffic
o

A [b1 N
) 1 Y
os Wl paly)
0677 / 7
4 / 7
0477 9 7
0.2 1 %4
0.0
@2 (€ \N EPR: NS0, SR 508, 29* % oo @ o
oo T SRR 3\3&«%‘6‘ oot Pt oy

(a) 4x4 clustered system

1.H-MOESI = 2. VIPS-M = 3. VIPS-H-Two-level ' = 4. VIPS-H-Multilevel

£ fg 22 W Request_control [WB_control
c E O Response_control] WB_data
=16 o i | 4 Response_data IWT data
< 1.4 N i
. b f
3, ?4 o
210 o AN
i A g
2 0.8 7 NN)
g 087 m G 7
S o067 7 W %
£ 047 7 i i
S o2 I 1724, 1904
0.0 :
3o ¢l WY <\° efa“ B A SR 9% ¢ o2 Q\N 30 08 (B B o
@“ < 2 & a % \x .ax & o e o O (0 o
Ao e NQa \e\s 2ot Veefue® o

(b) 16 x4 clustered system

Fig. 9. Network traffic normalized to H-MOESI

[B H-Token [VIPS-H-Two-level £ VIPS-H-Multilevel]

o

214

F13

511

309

208

Ch

sos

g 813

201 i
9.8 1 A L) / 117]

G é‘ N \,\5 BN N2 R s 0@ o @ ot A oo

"’“\ el ‘\ 5‘ \%& ‘ \?z‘ \e‘ ‘\0 e 066 ; Ko “\GP o

(a) 4x4 clustered system

[B H-Token O VIPS-H-Two-level £ VIPS-H-Multilevel]

0
6"’“2—? eSS «* ?\t\\‘“ \,\>\)0 oe\‘*

o2 > (SR ge® @o “e'o 6\39 3 o 5
‘l‘%\e“qa\e o‘\ N %\e et Qﬁ“\k

(b) 16x4 clustered system

Fig. 10. Execution time normalized to H-Token

Ocean-nc, and Volrend for the 16x4 system where causing
deadlocks when running the token protocol, and therefore,
were excluded.

Figure 10 shows that H-Token edges VIPS-H slightly in
execution time when assuming such an ideal network. In some
benchmarks H-Token outperforms VIPS-H and in others vice
versa. In 64 cores, execution time differences become smaller
and the performance of VIPS-H converges to that of H-Token.
VIPS-H, however, has the upper hand in network traffic in
both the 16- and the 64-core case (8% less traffic for the 4 x4
configuration and 55% for the 16x4 configuration). In fact,
the differences in network traffic increase significantly in the
larger system showing that VIPS-H scales better than H-Token.

Normalized Network Traffic

.H-Token = 2. VIPS-H-Two-level == 3. VIPS-H-Multilevel

25 A IRequesl control [l WB_control
4 @ Response_control 0 WB_data
2.0 ?a @Response data IWT da1a
M :
15 éa
|
1.0 ” N .
05 4% 4k 1
i EL

o
o

D X
o o%\“ ShaSe O 0 ‘5 o\e @5 23 @ o0 B @Q
29500 ot A e quaesS ot e Oe > %‘“h

@2 o €S \D (0© o
%7%\ Qe el WO cP R o \ﬁ?’ 0\

(a) 4x4 clustered system

.H-Token = 2. VIPS-H-Two-level = = 3. VIPS-H-Multilevel

M Request_control B WB_control
@ Response_control 0 WB_data
P4 Response_data WT_data

1.0

1

N
4N 7
3 R Ho%
gos tg i ?é
5 04 % 2 i 7
£ 7 i 77
5 02 1 1%
0.0
S B2 SR\ NN VIR S S PR SR @ AR € (® N o
ea%‘\o\@e <<l \5?\ TR \{@(S@‘ ,\2\50 d\\\x 0@,6 oS Q\\o «\“Pe‘a

Fig.

(b) 16x4 clustered system

11. Network traffic normalized to H-Token

VII. CONCLUSIONS

In this work we set out to answer whether a simple and

efficient approach to coherence is feasible for hierarchical

clu

stered cache architectures. We show how this can be

achieved by using simple mechanisms such as self-invalidation
and write-through/self-downgrade, coupled with a hierarchi-

cal

private/shared classification of data. The hierarchical pri-

vate/shared classification encompasses the complexity of the
hierarchy and allows simple implementations of far more
common coherence operations. The end result is a coherence
protocol that uses a fraction of the states (complexity) of
a hierarchical directory protocol, at a comparable or better
performance and reduced network traffic (12% overall and sig-
nificantly reduced network traffic in 19 out of 22 benchmarks).

ACKNOWLEDGMENT

This work was supported by the “Fundaciéon Seneca-

Agencia de Ciencia y Tecnologia de la Regién de Murcia”
under grant "Jévenes Lideres en Investigacién” 18956/JLI1/13,
and by by the Spanish MINECO, as well as European Com-
mission FEDER funds, under grant TIN2012-38341-C04-03.

(1]

(2]

(3]

(4]

(5]

REFERENCES

J. A. W. Wilson, “Hierarchical cache/bus architecture for shared mem-
ory multiprocessors,” in I4th Int’l Symp. on Computer Architecture
(ISCA), Jun. 1987, pp. 244-252.

S. V. Adve and M. D. Hill, “Weak ordering — a new definition,” in /7th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2-14.

N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in /EEE Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33-42.

A. R. Alameldeen and D. A. Wood, “Variability in architectural
simulations of multi-threaded workloads,” in 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2003, pp. 7-18.

M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec. 2012, pp. 341-350.

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

T. J. Ashby, P. Diaz, and M. Cintra, “Software-based cache coherence
with hardware-assisted selective self-invalidations using bloom filters,”
IEEE Transactions on Computers (TC), vol. 60, no. 4, pp. 472-483,
Apr. 2011.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in /7th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Oct. 2008, pp. 72-81.

M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas, “Bulldozer: An
approach to multithreaded compute performance,” IEEE Micro, vol. 31,
no. 2, pp. 6-15, Mar. 2011.

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011,
pp- 155-166.

B. Cuesta, A. Ros, M. E. Gémez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for
private memory blocks,” in 38th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2011, pp. 93-103.

N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” in
39th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2006,
pp. 321-332.

N. D. Enright-Jerger, L.-S. Peh, and M. H. Lipasti, “Virtual tree co-
herence: Leveraging regions and in-network multicast tree for scalable
cache coherence,” in 41th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), Nov. 2008, pp. 35-46.

M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in 17th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2011,
pp. 169-180.

D. B. Gustavson, “The scalable coherent interface and related standards
proyects,” IEEE Micro, vol. 12, no. 1, pp. 10-22, Jan. 1992.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun.
2009, pp. 184-195.

H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coherence
protocol optimization for both private and shared data,” in 20th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Oct. 2011, pp. 45-55.

D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-
free memory models,” in 19th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Feb. 2014,
pp. 427-440.

S. Kaxiras and J. R. Goodman, “The glow cache coherence protocol ex-
tensions for widely shared data,” in 10th Int’l Conf. on Supercomputing
(ICS), Jan. 1996, pp. 35-43.

S. Kaxiras and G. Keramidas, “SARC coherence: Scaling directory
cache coherence in performance and power,” I[EEE Micro, vol. 30, no. 5,
pp. 54-65, Sep. 2011.

S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache
coherence,” in 40th Int’l Symp. on Computer Architecture (ISCA), Jun.
2013, pp. 535-547.

J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. 1. Frank, and S. J. Patel, “Rigel:
an architecture and scalable programming interface for a 1000-core
accelerator,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun.
2009, pp. 140-151.

D. Kim, J. A. J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 111-
122.

E. Ladan-Mozes and C. E. Leiserson, “A consistency architecture for
hierarchical shared caches,” in 20th ACM Symp. on Parallel Algorithms
and Architectures (SPAA), Jun. 2008, pp. 11-22.

A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” in 22nd Int’l
Symp. on Computer Architecture (ISCA), Jun. 1995, pp. 48-59.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. L.
Hennessy, M. A. Horowitz, and M. S. Lam, “The Stanford DASH
multiprocessor,” IEEE Computer, vol. 25, no. 3, pp. 6379, Mar. 1992.

Y.-C. Maa, D. K. Pradhan, and D. Thiebaut, “Two economical di-
rectory schemes for large-scale cache coherent multiprocessors,” ACM
SIGARCH Computer Architecture News, vol. 19, p. 10, Sep. 1991.

M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, pp.
78-89, Jul. 2012.

M. M. Martin, “Token coherence,” Ph.D. dissertation, University of
Wisconsin-Madison, Dec. 2003.

M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92-99, Sep. 2005.

M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. Martin,
and D. A. Wood, “Improving multiple-cmp systems using token coher-
ence,” in 11th Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb. 2005, pp. 328-339.

M. R. Marty and M. D. Hill, “Virtual hierarchies to support server
consolidation,” in 34th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2007, pp. 46-56.

M. R. Marty and M. D. Hill, “Virtual hierarchies,” IEEE Micro, vol. 28,
no. 1, pp. 99-109, Jan. 2008.

J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56-69, Mar. 2010.

H. Nilsson and P. Stenstrom, “The scalable tree protocol - A cache
coherence approach for large-scale multiprocessors,” in 4th Int’l Con-
ference on Parallel and Distributed Computing, Dec. 1992, pp. 498—
506.

S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“SWEL: Hardware cache coherence protocols to map shared data
onto shared caches,” in 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2010, pp. 465-476.

A. Ros, B. Cuesta, M. E. Gémez, A. Robles, and J. Duato, “Temporal-
aware mechanism to detect private data in chip multiprocessors,” in
42nd Int’l Conf. on Parallel Processing (ICPP), Oct. 2013, pp. 562—
571.

A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241-252.

M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Saha, D. Sheahan,
L. Spracklen, and A. Wynn, “UltraSPARC T2: A highly-threaded,
power-efficient, SPARC SoC,” in [EEE Asian Solid-State Circuits
Conference, Nov. 2007, pp. 22-25.

D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on Computer
Architecture, M. D. Hill, Ed. Morgan & Claypool Publishers, 2011.

H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
hardware support for disciplined non-determinism,” in /8th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2013, pp. 13-26.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun. 1995,
pp. 24-36.

D. A. Wood, S. Chandra, B. Falsafi, M. D. Hill, J. R. Larus, A. R.
Lebeck, J. C. Lewis, S. S. Mukherjee, S. Palacharla, and S. K.
Reinhardt, “Mechanisms for cooperative shared memory,” in 20st Int’l
Symp. on Computer Architecture (ISCA), May 1993, pp. 156-167.

J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coherence direc-
tories,” in 46th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
Dec. 2013, pp. 359-370.

M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal coherence: Scal-
ably verifiable cache coherence,” in 43rd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Dec. 2010, pp. 471-482.

