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Abstract—In many-core architectures, memory blocks are
commonly assigned to the banks of a NUCA cache by following
a physical mapping. This mapping assigns blocks to cache banks
in a round-robin fashion, thus neglecting the distance between
the cores that most frequently access every block and the
corresponding NUCA bank for the block. This issue impacts
both cache access latency and the amount of on-chip network
traffic generated. On the other hand, first-touch mapping policies,
which take into account distance, can lead to an unbalanced
utilization of cache banks, and consequently, to an increased
number of expensive off-chip accesses. In this work, we propose
the distance-aware round-robin mapping policy, an OS-managed
policy which addresses the trade-off between cache access latency
and number of off-chip accesses. Our policy tries to map the
pages accessed by a core to its closest (local) bank, like in a first-
touch policy. However, our policy also introduces an upper bound
on the deviation of the distribution of memory pages among cache
banks, which lessens the number of off-chip accesses. This trade-
off is addressed without requiring any extra hardware structure.
We also show that the private cache indexing commonly used
in many-core architectures is not the most appropriate for
OS-managed distance-aware mapping policies, and propose to
employ different bits for such indexing. Using GEMS simulator
we show that our proposal obtains average improvements of
11% for parallel applications and 14% for multi-programmed
workloads in terms of execution time, and significant reductions
in network traffic, over a traditional physical mapping. Moreover,
when compared to a first-touch mapping policy, our proposal
improves average execution time by 5% for parallel applications
and 6% for multi-programmed workloads, slightly increasing on-
chip network traffic.

I. INTRODUCTION

Nowadays, the most efficient way of organizing the increas-
ing number of transistors per chip is to integrate multiple pro-
cessor cores in the same chip. Recent examples of these chip
multiprocessors (CMP) are, among others, the 2-core IBM
Power6 [1] and the 8-core Sun T2 [2]. CMP architectures that
integrate tens of processor cores (usually known as many-core
CMPs) are expected for the near future, after Intel unveiled
recently the 80-core Polaris prototype [3]. Particularly, tiled
CMP architectures, which are designed as arrays of identical
or close-to-identical building blocks (tiles), are a scalable
alternative to current small-scale CMP designs and will help in
keeping complexity manageable. In these architectures, each
tile is comprised by a core, one or several levels of caches,
and a network interface that connects all tiles through a point-
to-point network.

One important decision when designing tiled CMPs is how
to organize the last-level on-chip cache, since cache misses
at this level result in long-latency off-chip accesses. The two
common ways of organizing this cache level, e.g. the L2 cache,
are private to the local core or shared among all cores. The
private L2 cache organization, implemented, for example, in
the AMD AthlonTM Dual-Core processor, offers a fast access
to the L2 cache. However, it has two main drawbacks that lead
to an inefficient use of the aggregate L2 cache capacity. First,
local L2 banks keep a copy of the blocks requested by the
corresponding core, potentially replicating blocks in multiple
L2 cache banks. Second, load balancing problems appear when
the working set accessed by all the cores is heterogeneous,
i.e., some banks may be over-utilized while others are under-
utilized. Since these drawbacks can result in more off-chip
accesses, which are very expensive, it seems that the trend is
to implement a shared cache organization [1], [2], [4].

The shared L2 cache organization, also called non-uniform
cache architecture (NUCA) [5], achieves more efficient use of
the L2 cache by storing only one copy of each block and by
distributing the copies across the different banks. The main
downside of this organization in many-core CMPs is the long
L2 access latency, since it depends on the bank wherein the
block is allocated, i.e., the home bank or tile. This issue is
addressed in this work.

The most straightforward way of distributing blocks among
the different tiles is by using a physical mapping policy in
which a set of bits in the block address defines the home
bank for every block. Some recent proposals [6], [7] and
commercial CMPs [1], [2] choose the less significant bits1

for selecting the home bank. In this way, blocks are assigned
to banks in a round-robin fashion with block-size granularity.
This distribution of blocks does not take into account the
distance between the requesting core and the home bank on a
L1 cache miss. Moreover, the average distance between two
tiles significantly increases with the size of the CMP, which
can become a performance problem for many-core CMPs.

On the other hand, page-size granularity seems to be a
better choice than block-size granularity for future tiled CMPs
because (1) it is more appropriate for new technologies aimed

1In this paper, when we refer to the less significant bits of an address we
are not considering the block offset.
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to reduce off-chip latencies, like 3D stacking memory archi-
tectures [8], and (2) it provides flexibility to the OS for im-
plementing more efficient mapping policies [9], such as first-
touch, which has been widely used in NUMA architectures to
achieve more locality in the memory accesses. The behavior
of a first-touch policy is similar to a private cache organization
but without replication. One nice aspect of this policy is that it
is dynamic in the sense that pages are mapped to cache banks
depending on the particular memory access pattern. However,
this policy can increase off-chip accesses when the working
set of the application is not well-balanced among cores.

Additionally, many-core architectures are very suitable for
throughput computing [10] and, therefore, they constitute
a highly attractive choice for commercial servers in which
several programs are running at the same time using different
subsets of the cores available on chip. The use of these
architectures as commercial servers emphasize the need of
efficient mapping policies because (1) data is shared by cores
that are placed in a small region of the chip, but with a round-
robin policy they could map to any bank in the chip, and (2)
more working set imbalance can occur in these systems since
the applications running on them could have very different
memory requirements.

In this work, we propose the distance-aware round-robin
mapping policy, an OS-managed policy which does not require
extra hardware structures. This policy tries to map the pages
to the local bank of the first requesting core, like a first-touch
policy, but also introduces an upper bound on the deviation of
the distribution of memory pages among cache banks, which
lessens the number of off-chip accesses.

We also observe that OS-managed distance-aware mapping
policies can hurt in some cases the L1 cache hit rate. This
happens when the same bits that define the home bank are
used for indexing the private L1 caches. In these cases, some
sets in the cache are overloaded while others remain almost
unused. This imbalance increases conflict misses. Hence, we
propose to avoid the home bank bits for indexing the L1 caches
when distance-aware mapping policies are employed.

Our proposal obtains average improvements of 11% for
parallel applications and 14% for multi-programmed work-
loads over a round-robin policy. In terms of network traffic,
our proposal obtains average reductions of 39% for parallel
applications and 65% for multi-programmed workloads. When
compared to a first-touch policy average improvements of
5% for parallel applications and 6% for multi-programmed
workloads are obtained, slightly increasing on-chip network
traffic.

The rest of the paper is organized as follows. A background
on mapping policies for NUCA caches is given in Section II.
Section III describes the distance-aware round-robin mapping
policy. The impact of distance-aware mapping policies on
private cache miss rate is discussed in Section IV. Section V
introduces the methodology employed in the evaluation. Sec-
tion VI shows the performance results. Section VII presents a
review of the related work and, finally, Section VIII concludes
the paper.
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Fig. 1. Granularity of L2 cache interleaving and its impact on average home
distance.

II. BACKGROUND ON MAPPING POLICIES IN NUCA
CACHES

Non-uniform cache architecture (NUCA) caches [5] are a
set of cache banks distributed across the chip and connected
through a point-to-point network. Although cache banks are
physically distributed, they constitute a logically shared cache
(the L2 cache level in this work). Therefore, the mapping of
memory blocks to cache entries is not only defined by the
cache set, but also by the cache bank. The cache bank where
a particular block maps is called the home bank for that block.

Most CMP architectures that implement NUCA caches map
memory blocks to cache banks by taking some fixed bits of the
physical address of the block [1], [2]. This physical mapping
uniformly spreads blocks among cache banks, resulting in
optimal utilization of the cache storage. Commonly, the bits
taken to select the cache bank for a particular block are the
less significant ones, leading to a block-grained interleaving
(Block diagram in Figure 1(a)). One of the advantages of this
interleaving is that it offers less contention at the home tile by
distributing contiguous memory blocks across different cache
banks.
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Another option is to use an interleaving with a granularity
of at least the size of a page (e.g., Page or L2 bank diagram
in Figure 1(a)). As shown in Figure 1(b), when a physical
mapping, or round-robin, policy is considered the granularity
of the interleaving does not significantly affect the average
distance to the home bank. However, this interleaving becomes
an important decision when either 3D stacked memory or OS-
managed mapping techniques are considered.

A 3D stacked memory design can offer latency reductions
for off-chip accesses when a coarse-grained interleaving (at
least of page size) is employed. In tiled CMPs with 3D
stacking memory, each tile includes a memory controller
for the memory bank that it handles [8]. Low-latency, high-
bandwidth and very dense vertical links [11] interconnect the
on-chip controller with the off-chip memory. These vertical
links provide fast access to main memory. On a L2 cache miss,
it is necessary to reach the memory controller of the memory
bank where the block is stored. If the memory controller is
placed in a different tile than the home L2 bank, a horizontal
on-chip communication is entailed. Since blocks in memory
are handled at page-size granularity, it is not possible to assign
the same mapping for the L2 cache if a block-size granularity
is considered. Differently, with a granularity of at least the size
of a page the same mapping can be assigned to both memories,
thus avoiding the horizontal latency.

The other advantage of a coarse-grained interleaving is
that it allows the OS to manage the cache mapping without
requiring extra hardware support [9]. The OS maps a page
to a particular bank the first time the page is referenced, i.e,
a memory miss. At that moment, the OS assigns a physical
address to the virtual address of the page. Therefore, some
bits in the address of the page are going to change (Virtual
to Physical field in figure 1(a)). Then, the OS can control the
cache mapping by assigning to this page a physical address
that maps to the desired bank. For example, a first-touch
policy can be easily implemented by assigning an address that
physically maps to the tile wherein the core that is accessing
the page resides. The OS only needs to keep in software a list
of available physical addresses for each memory bank. With
a first-touch mapping policy, finer granularity offers shorter
average distance between the missing L1 cache and the home
L2 bank, as shown in Figure 1(b). Therefore, it is preferable
to use a grain size as fine as possible. Since block granularity
is not suitable for OS-managed mapping, the finest granularity
possible is achieved by taking the less significant bits of the
Virtual to Physical field, i.e., a page-grained interleaving.

The drawback of a first-touch policy is that applications
with a working set not balanced among cores do not make
optimal use of the total L2 capacity. This happens more
frequently in commercial servers where different applications
with different memory requirements run on the same system,
or when some applications are running in a set of cores while
the other cores remain idle. To avoid this situation, policies like
cache pressure [9] can be implemented. Cache pressure uses
bloom filters to collect cache accesses in order to determine
the pressure of the different data mapping to cache banks.

In this way, newly accessed pages are not mapped to the
most pressured caches. However, this approach has several
drawbacks. First, it requires extra hardware, (e.g., bloom filters
that have to be reset after a timeout period). Second, an
efficient function to detect the pressured cache banks can be
difficult to implement. Third, this mechanism only considers
neighbouring banks, i.e., banks at 1-hop distance. Finally,
as far as we know, neither parallel nor multi-programmed
workloads have been evaluated using this technique.

III. DISTANCE-AWARE ROUND-ROBIN MAPPING

In this work, we propose distance-aware round-robin map-
ping, a simple OS-managed mapping policy for many-core
CMPs that assigns memory pages to NUCA cache banks.
This policy minimizes the total number of off-chip accesses as
happens with a round-robin mapping, and reduces the access
latency to a NUCA cache (the L2 cache level) as a first-
touch policy does. Moreover, this policy addresses this trade-
off without requiring any extra hardware support.

In the proposed mechanism, the OS starts assigning physical
addresses to the requested pages according to a first-touch
policy, i.e, the physical address chosen by the OS maps to the
tile of the core that is requesting the page. The OS stores a
counter for each cache bank which is increased whenever a
new physical page is assigned to this bank. In this way, banks
with more physical pages assigned to them will have higher
value for the counter.

To minimize the amount of off-chip accesses we define
an upper bound on the deviation of the distribution of pages
among cache banks. This upper bound can be controlled by
the OS through a threshold value. In this way, in case that
the counter of the bank where a page should map following
a first-touch policy has reached the threshold value, the page
is assigned to another bank. The algorithm starts checking the
counters of the banks at one hop from the initial placement.
The bank with smaller value is chosen. Otherwise, if all banks
at one hop have reached the threshold value, then the banks
at a distance of two hops are checked. This algorithm iterates
until a bank whose value is under the threshold is found. The
policy ensures that at least one of the banks has always a value
smaller than the threshold value by decreasing by one unit all
counters when all of them have values different than zero.

Figure 2 shows, from left to right, the behavior of this
mapping policy for a 2×2 tiled CMP with a threshold value
of two. First, processor P0 accesses a block within page 0x00

which faults in memory (1). Therefore, a physical address that
maps to the bank 0 is chosen for the address translation of
the page, and the value for the bank 0 is increased. Then,
processor P1 perform the same operation for page 0x01 (2).
When processor P1 accesses page 0x00 no action is required
for our policy because there is a hit in the page table (3). The
next access of processor P0 is for a new page, which is also
stored in bank 0, which reaches the threshold value (4). Then,
if processor P0 accesses a new page again, this page must be
allocated in another bank (5). The closer bank with a smaller
value is bank 2. Finally, when processor P3 accesses a new
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Fig. 2. Behavior of the distance-aware round-robin mapping policy.
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Fig. 3. Changes in the L1 cache indexing policy.

page, the page is assigned to its local bank and all counters
are decreased (6), allowing bank 0 to map a new page again
(7).

The threshold defines the behavior of our policy. A thresh-
old value of zero denotes a round-robin policy in which a
uniform distribution of pages is guaranteed, while an unlimited
threshold implies a first-touch policy. Therefore, with a small
threshold value, our policy reduces the number of off-chip
accesses. Otherwise, if the threshold value is high, our policy
reduces the average latency of the accesses to the NUCA
cache. Note that the threshold value serves as a proxy ap-
proximation for the cache pressure since the actual pressure
does not directly depend on the uniform distribution of pages,
but on the utilization of blocks within pages. However, pages
are distributed among all cache banks, thus performing an
efficient use of the shared cache. Although, the OS could
choose different thresholds depending on the workload, we
have found that values between 64 and 256 work well for the
workloads considered in this work.

IV. FIRST-TOUCH MAPPING AND PRIVATE CACHE

INDEXING

In this section, we study how OS-managed mapping can
hurt the hit rate of private L1 caches, mainly when a first-touch
policy is implemented. Figure 3(a) shows the cache mapping
and indexing used in an OS-managed mapping policy. As
mentioned in Section II, it is important to choose the smallest

granularity (the less significant bits of the virtual to physical
field), to achieve shorter average distance to the home bank.
On the other hand, the bits used to index the private caches,
i.e, to select the set for a particular block, are commonly the
less significant bits of the block address. When the number of
bits used to index the L1 cache is greater than the number of
bits of the page offset two main issues appear. First, no virtual
indexing can be used to accelerate the L1 cache access [12].
Second, the L1 hit rate can be reduced as consequence of the
changes in the assignment of physical addresses.

A first-touch mapping policy tries to map blocks frequently
requested by a processor to its closest (local) cache bank. This
is carried out by the OS when it assigns the physical address
to the requested page (e.g., Figure 3(b) represents a physical
address that maps to the bank 0). Therefore, most of the blocks
that the processor’s private L1 cache holds have these bits with
the same value. If some of the bits used for selecting the home
tile are also used for indexing private L1 caches (Figure 3(b)),
most of the blocks will map to a specific range of the L1 cache
sets, while other sets will remain under-utilized. This factor
increases the number of conflict misses in the L1 cache.

This problem also arise with the mapping policy proposed
in this work. The closer our policy is to a first-touch policy
(high threshold value) the more set imbalance will occur in
private caches. Therefore, we propose to avoid the bits used
to define the home tile when indexing private caches, as shown
in Figure 3(c). This change allows for better utilization of the
private L1 caches, which in turn results in higher L1 cache hit
rates, as we show in Section VI-A.

V. SIMULATION ENVIRONMENT

We have evaluated our proposals using the Simics full-
system multiprocessor simulator [13] extended with GEMS
1.3 [14] and SiCoSys [15]. GEMS provides a detailed cache
coherent memory system timing model. SiCoSys simulates
a detailed interconnection network that allows one to take
into account most of the VLSI implementation details with
high precision but with much lower computational effort than
hardware-level simulators.

Besides the policy already provided by GEMS, a phys-
ical mapping with block-grained interleaving that we call
Block-RoundRobin, we have implemented the other three OS-
managed policies evaluated in this work. The first one, named
as Page-RoundRobin, is an OS-managed policy that assigns
physical pages in a round-robin fashion to guarantee the
uniform distribution of pages among cache banks. Therefore,
this policy does not take into consideration the distance to the
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Fig. 4. Number of pages mapped to each cache bank in a first-touch policy for the workloads evaluated in this work.

TABLE I
SYSTEM PARAMETERS.

Memory Parameters: GEMS (4GHz)
Cache block size 64 bytes
Split L1 I & D caches 64KB, 4-way
L1 cache hit time 3 cycles
Shared unified L2 cache 512KB/tile, 16-way
L2 cache hit time 6 cycles
Memory access time 300 cycles
Page size 4KB

Network Parameters: SICOSYS (2GHz)
Topology 2-dimensional mesh
Switching technique Wormhole
Routing technique Deterministic X-Y
Data and control message size 4 flits and 1 flit
Routing time 1 cycle
Switch time 1 cycle
Link latency (one hop) 2 cycles
Link bandwidth 1 flit/cycle

home bank. The second one, named as Page-FirstTouch, maps
memory pages to the local cache bank of the first processor
that requested the page. Although this policy is distance-aware,
it is not concerned about the pressure on some cache banks.
Finally, we also implement the policy proposed in this work.
We simulate our proposal with threshold values ranging from
2
0 to 2

10. We call our policy Page-DARR-T, where T is the
threshold value. In addition, we have implemented a cache
indexing scheme that skips the bits employed for identifying
the home bank, as explained in Section IV.

The simulated system is a tiled CMP in which each tile con-
tains an in-order processor core since a large number of simple
cores can offer better performance/Watt ratio than a small
number of complex cores. Moreover, a memory controller
connected to a 3D-stacked memory bank is placed in each
tile. Table I shows the values for the main parameters of the
system evaluated in this work, where cache latencies have been
calculated using the CACTI tool [16] for 65nm technology and
a processor frequency of 4GHz. Memory blocks stored in the
private L1 caches are kept coherent by means of a directory-
based cache coherence protocol that uses MESI states.
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Fig. 5. Multi-programmed workloads evaluated in this work.

A. Benchmarking

We have evaluated our proposal with parallel and multi-
programmed workloads. Multi-programmed workloads consist
of several program instances running at the same time in
the system. We classify workloads as either homogeneous or
heterogeneous. Homogeneous workloads uniformly distribute
memory pages among cache banks when a first-touch policy
is employed. In contrast, in heterogeneous workloads a few
banks allocate more pages than the others considering a first-
touch policy.

For evaluating the parallel applications we have chosen two
homogeneous and two heterogeneous scientific benchmarks.
FFT (256K complex doubles), with a small working set, and
Ocean (258x258 ocean), with a larger working set, represent
the homogeneous workloads. Unstructured (Mesh.2K, 5 time
steps), with small working set, and Radix (1M keys, 1024
radix), with a larger working set, constitute the heterogeneous
workloads. FFT, Ocean and Radix belong to the SPLASH-2
benchmark suite [17] while Unstructured is a computational
fluid dynamics application [18]. Since, in general, the working
set of the scientific benchmarks is small we have shrunk the
simulation parameters to 32KB 2-way L1 caches, 128KB 4-
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way L2 caches and 16 cores. However, the access latencies
are kept unchanged.

Since multi-programmed workloads have bigger working
sets, we can fairly simulate a 32-core CMP with the cache
sizes shown in Table I. We have simulated the configurations
shown in Figure 5, again, two homogeneous and two heteroge-
neous workloads. Ocean4 and Radix4 consist of four instances
of the Ocean and Radix applications, respectively, with eight
threads each one, representing homogeneous workloads. Mix4
and Mix8 run Ocean, Raytrace (teapot), Water-NSQ (512
molecules, 4 time steps) and Unstructured. In Mix4 each
application has eight threads. In Mix8 two instances of each
application are run with four threads each. These two work-
loads represent the heterogeneous and more common multi-
programmed workloads. Figure 4 shows for all the workloads
evaluated in this work the number of pages mapped to each
bank for a first-touch policy.

We account for the variability in multithreaded workloads
[19] by doing multiple simulation runs for each benchmark
in each configuration and injecting random perturbations in
memory systems timing for each run.

VI. EVALUATION RESULTS

This section firstly evaluates the impact of the change in
the bits used for indexing private L1 caches, as described in
Section IV. On the other hand, to understand the improvements
obtained by the distance-aware round-robin mapping policy,
we study the average distance to the home cache bank and
the number of off-chip accesses, and how a good trade-off
in those metrics can reduce the applications execution time.
Finally, we study the network traffic required by our proposal
since it has serious impact on the energy consumed in the
interconnection network.

A. Private cache indexing and miss rate

As discussed in Section IV, an OS-managed mapping policy
that tries to reduce the distance to the home bank can increase
the miss rate of private L1 caches. In this section, we study
this issue and compare the traditional indexing method with
the proposed one. Figure 6 shows the L1 miss rate for the
workloads evaluated in this work and two indexing methods:
the traditional method, that we call less significant bits, and the
proposed one, named as skip home bits. Moreover, the miss
rate is shown for a range of threshold values for our policy,
from 0, i.e., a round-robin (RR) policy, to unlimited threshold,
i.e., a first-touch (FT) policy.

In general, we can see that the less significant bits indexing
scheme has worse hit rate than the skip home bits indexing
scheme when the distance-aware mechanism is more aggres-
sive. However, when the policy tries to guarantee a uniform
distribution of pages, the hit rate of the indexing scheme
only depends on the locality in the memory accesses of each
workload.

Therefore, for the rest of the evaluation we use the less
significant bits indexing scheme for the round-robin policies
and the skip home bits indexing scheme for the first-touch
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Fig. 6. Impact of the changes in the indexing of the private L1 caches for
the workloads evaluated in this work.

and the proposed policy, which are the best schemes for each
configuration.

B. Average distance to the home banks

Figure 7 plots the average distance in terms of network
hops between the tile where the miss takes place and the tile
where the home L2 bank is placed. As discussed, a round-robin
policy does not care about this distance and, therefore, the
average distance for these policies matches up with the average
number of hops in a two-dimensional mesh (2.5 for a 4 × 4

mesh and 3.875 in a 4×8 mesh). On the other hand, the first-
touch policy is the one that requires less hops to solve a miss
(1.58 for parallel applications and 0.82 for multi-programmed
workloads). As can be observed, the results obtained by our
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Fig. 8. Normalized number of off-chip accesses for the workloads evaluated in this work.

policy always lie between those of the round-robin and first-
touch schemes.

Some parallel applications, like Radix and Unstructured do
not obtain representative reductions in the average distance,
even when a first-touch policy is considered. This is because
the blocks that frequently cause a cache miss are widely
shared. Other applications in which most of the misses are
for blocks with a small number of sharers, like Ocean, obtain
significant reductions in the average distance with a first-touch
policy. On the other hand, we can observe that the multi-
programmed workloads always achieve important reductions
in the average distance. Even when all the applications running
in the system are instances of Radix, which does not offer
reductions in the parallel case, as happens in Radix4. This is
because data is only shared in the region of the chip running
each instance.

Finally, it is important to note that a threshold value of one
for our policy reduces the average distance compared to round-
robin (by 25% for parallel and 32% for multi-programmed
workloads), and also guarantees a uniform distribution of
pages. The higher threshold value is employed, the more
reductions in the average number of hops are achieved by
our proposal.

C. Number of off-chip accesses

The main issue of the first-touch policy is that it incurs
in more off-chip accesses specially for workloads that have
unbalanced working sets. Figure 8 shows the number of off-
chip accesses for the policies evaluated in this work normal-
ized with respect to the first-touch policy. We can observe
that for homogeneous workloads the difference in the number
of off-chip accesses is minimal. On the other hand, when
the working set is not well balanced among the processors,
the first-touch policy severely increases the number of off-
chip accesses. This increment happens mainly in Unstructured
(≈ ×3), Mix4 (≈ ×5) and Mix8 (≈ ×3). Note that servers
usually run a heterogeneous set of applications, like Mix4 and
Mix8. Although Radix has also a heterogeneous distribution of
pages the first-touch policy does not significantly increase the
number of off-chip accesses compared to round-robin. This is
because its working set is larger than the aggregate L2 cache
and, therefore, even when a round-robin policy is used, the
number of off-chip misses is high.

Regarding the threshold value of our policy, we can observe
that with a value smaller than 256 the number of off-chip
accesses is kept very close to the round-robin policy. Finally,
when the value is very high, the behavior is close to the first-
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Fig. 9. Normalized execution time for the workloads evaluated in this work.
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Fig. 10. Normalized network traffic for the workloads evaluated in this work.

touch policy and the number of off-chip accesses becomes
prohibitive.

D. Execution time

The results discussed in the previous subsections show
that our distance-aware round-robin mapping policy is able
to achieve a good trade-off between short distance to the
home bank and balanced mapping of memory pages. This
achievement results in improvements in execution time as
Figure 9 shows.

As we can observe, the first-touch policy achieves important
improvements compared to a round-robin policy when the
working set accessed by the different cores is homogeneous,
as happens in FFT, Ocean, Ocean4 and Radix4. In contrast,
when the distribution of pages accessed by each core is
heterogeneous, as occurs in Radix, Unstructured, Mix4 and
Mix8, the first-touch policy incurs in more off-chip accesses,
thus degrading performance. In contrast, our proposal achieves
the best of a round-robin policy and a first-touch policy with
a threshold value between 64 and 256. In this way, we obtain
improvements of 11% on average for parallel applications and
of 14% on average for multi-programmed workloads compared
to a round-robin policy with page-sized granularity. When
compared to a first-touch policy we obtain improvements of

5% for parallel applications and 6% for multi-programmed
workloads, but additionally avoiding the performance degra-
dation incurred by the first-touch policy in some cases.

E. Network traffic

Figure 10 compares the network traffic generated by the
policies considered in this work. In particular, each bar plots
the number of bytes transmitted through the interconnection
network (the total number of bytes transmitted by all the
switches of the interconnect) normalized with respect to the
Block-RoundRobin policy. We can see that the round-robin
policies lead to the highest traffic levels because the distance
to the home bank is not taken into consideration. However, the
Page-RoundRobin policy leads to less traffic than the Block-
RoundRobin policy. This reduction comes as consequence of
using a 3D-stacked memory design, in which the horizontal
traffic generated by L2 cache misses disappears when pages
are equally mapped to the L2 cache and the memory.

On the other hand, network traffic can be tremendously
reduced when a first-touch policy is implemented. In parallel
applications, network traffic is reduced by 40% on average. For
multi-programmed workloads the savings are greater (72% on
average), since most of the blocks are only accessed by cores
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placed in a small region of the chip. The distance-aware round-
robin policy proposed in this work always obtains reductions
in network traffic compared to the round-robin policy, even
when the threshold value is just one. When the threshold
value increases, the memory-demanding cores can allocate
more pages in its local bank and, therefore, less network
traffic is generated. As discussed in the previous subsection,
a threshold value between 64 and 256 achieves an optimal
compromise between round-robin and first-touch. Now, we can
see that with a threshold of 256 the network traffic generated
by our proposal is reduced by 39% for parallel applications and
65% for multi-programmed workloads. Obviously, the first-
touch policy introduces less traffic than our proposal (3% on
average for parallel applications and 31% on average for multi-
programmed workloads), at the cost of increasing the number
of off-chip accesses.

VII. RELATED WORK

There are several ways of reducing cache access latency in
NUCA caches. The most relevant ways are data migration,
data replication or to perform an intelligent data mapping to
cache banks. Next, we comment on the most important works
for these approaches.

Kim et al.[5] presented non-uniform cache architecture
(NUCA) caches. They studied both a static mapping of blocks
to caches and a dynamic mapping based on spread sets. In such
dynamic mapping, a block can only be allocated in a particular
bank set, but this bank set can be comprised of several cache
banks that act as ways of the bank set. In this way, a memory
block can migrate from a bank far from the processor to
another bank closer if the block is expected to be accessed
frequently. Chishti et al. [20] achieved more flexibility than the
original dynamic NUCA approach by decoupling tag and data
arrays, and by adding some pointers from tags to data, and vice
versa. The tag array is centralized and accessed before the data
array, which is logically organized as distance-groups. Again,
memory blocks can reside in different banks within the same
bank set. Differently from the last two proposals, Beckmann
and Wood [21], considered block migration in multiprocessor
systems. They proposed a new distribution of the components
in the die, where the processing cores are placed around the
perimeter of a NUCA L2 cache. Migration is also performed
among cache banks belonging to the same bank set. The block
search is performed in two phases, both requiring broadcasting
the requests. Unfortunately, these proposals have two main
drawbacks. First, there are data placement restrictions because
data can only be allocated in a particular bank set and, second,
data access requires checking multiple cache banks, which
increases network traffic and power consumption.

Zhang and Asanovic [7] proposed victim replication, a
technique that allows some blocks evicted from an L1 cache
to be stored in the local L2 bank. In this way, the next cache
miss for this block will find it at the local tile, thus reducing
miss latency. Therefore, all L1 cache misses must look for
the block at the local L2 bank before the request is sent to
the home bank. This scheme also has two main drawbacks.

First, replication reduces the total L2 cache capacity. Second,
forwarding and invalidation requests must also check the L2
tags in addition to the L1 tags. Later on, in [22], they proposed
victim migration as an optimization that removes some blocks
from the L2 home bank when they are frequently requested
by a remote core. Now, the drawback is that an extra structure
is required to keep the tags of migrated blocks. Moreover, in
both proposals, write misses are not accelerated because they
have to access the home tile since coherence information does
not migrate along with the data blocks.

Differently from all the previous approaches, and closer to
ours, Cho and Jin [9] proposed using a page-size granularity
(instead of block-size). In this way, the OS can manage the
mapping policy, e.g, a first-touch mapping policy can be
implemented. In order to deal with the unbalanced utilization
of the cache banks, they propose using bloom filters that
collect cache access statistics. If a cache bank is pressured,
the neighbouring banks can be used to allocate new pages. As
discussed in Section II, this proposal has several implemen-
tation issues (e.g., it is difficult to find an accurate metric
to decide whether a cache is pressured or not) and they
do not evaluate the cache pressure mechanism with neither
parallel nor multi-programmed workloads. In addition, they
only distribute pages among neighbouring banks, i.e., at one-
hop distance. In contrast, in our proposal pages are distributed
among all banks, if necessary, in an easy way and without
requiring any extra hardware. On the other hand, they do
not care about the issue of the private cache indexing since
they use 16KB 4-way L1 caches, in which the number of
bits used to index them is smaller than the number of bits
of the offset of the 8KB pages considered in that work,
and they can use virtually indexed L1 caches. Lin et al.
[23] applied Cho and Jin’s proposal to a real system. They
studied the dynamic migration of pages and the high overheads
that it causes. Recently, Awasthi et al. [24] and Chaudhuri
[25] proposed several mechanisms for page migration that
reduce the overhead of migration at the cost of requiring
extra hardware structures. Unfortunately, since migration of
pages entails an inherent cost (e.g., flushing caches or TLBs),
this mechanism cannot be performed frequently. Although
migration can be used along with our proposal, this work
focuses on the initial mapping of pages to cache banks. Finally,
Awasthi et al. do not consider the private cache indexing issue
because they use small caches that can be virtually indexed,
and Chaudhuri do not take care about the indexing bits despite
one bit matches with the home offset bits.

VIII. CONCLUSIONS

In CMP architectures, memory blocks are commonly as-
signed to the banks of a NUCA cache by following a physical
mapping policy in which the home tile of a block is given by
a set of bits in the block address. This mapping assigns blocks
to cache banks in a round-robin fashion, thus neglecting the
distance between the requesting cores and the home NUCA
bank for the requested blocks. This issue impacts both cache
access latency and the amount of on-chip network traffic
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generated, and can become a performance problem for large-
scale tiled CMPs. On the other hand, first-touch mapping
policies, which take into account distance, can lead to an
unbalanced utilization of cache banks, and consequently, to
an increased number of expensive off-chip accesses.

In this work, we propose the distance-aware round-robin
mapping policy, an OS-managed policy which addresses the
trade-off between cache access latency and number of off-
chip accesses. Our policy tries to map the pages accessed
by a core to its closest bank, like in a first-touch policy.
However, we also introduce an upper bound on the deviation of
the distribution of memory pages among cache banks, which
lessens the number of off-chip accesses. This upper bound
can be controlled by a threshold. We have observed that our
proposal achieves a good compromise between a round-robin
and a first-touch policy with a threshold between 64 and 256.

We also show that the private cache indexing commonly
used in CMP architectures is not the most appropriate for OS-
managed distance-aware mapping policies like a first-touch
policy or our policy. When the bits used for selecting the home
bank are also used for indexing the private L1 cache, the miss
rate of private caches can increase significantly. Therefore, we
propose to reduce the miss rate by skipping these bits when
private L1 caches are indexed.

Our proposal obtains average improvements of 11% for par-
allel applications and of 14% for multi-programmed workloads
compared to a round-robin policy with page granularity (better
improvements are obtained compared to a policy that uses
block granularity). In terms of network traffic, our proposal
obtains average improvements of 39% for parallel applications
and 65% for multi-programmed workloads. When compared to
a first-touch policy we obtain average improvements of 5% for
parallel applications and 6% for multi-programmed workloads,
slightly increasing on-chip network traffic. Finally, one of the
main assets of our proposal is its simplicity, because it does
not require any extra hardware structure, differently from other
previously proposed mechanisms.

ACKNOWLEDGMENT

This work has been supported by European Comission
funds under HiPEAC Network of Excellence and under grant
“Consolider Ingenio-2010 CSD2006-00046”. Alberto Ros is
supported by a research grant from Spanish MEC under the
FPU national plan (AP2004-3735).

REFERENCES

[1] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM
POWER6 microarchitecture,” IBM Journal of Research and Develop-
ment, vol. 51, no. 6, pp. 639–662, Nov. 2007.

[2] M. Shah, et al, “UltraSPARC T2: A highly-threaded, power-efficient,
SPARC SoC,” in IEEE Asian Solid-State Circuits Conference, Nov.
2007, pp. 22–25.

[3] M. Azimi, et al, “Integration challenges and tradeoffs for tera-scale
architectures,” Intel Technology Journal, vol. 11, no. 3, pp. 173–184,
Aug. 2007.

[4] N. Sakran, M. Uffe, M. Mehelel, J. Dowweck, E. Knoll, and A. Kovacks,
“The implementation of the 65nm dual-core 64b merom processor,” in
IEEE Int’l Solid-State Circuits Conference (ISSCC), Feb. 2007, pp. 106–
590.

[5] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in 10th Int. Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Oct. 2002, pp. 211–222.

[6] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler,
“A NUCA substrate for flexible CMP cache sharing,” in 19th Int’l
Conference on Supercomputing (ICS), Jun. 2005, pp. 31–40.

[7] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in 32nd Int’l
Symp. on Computer Architecture (ISCA), Jun. 2005, pp. 336–345.

[8] G. H. Loh, “3d-stacked memory architectures for multi-core processors,”
in 35th Int’l Symp. on Computer Architecture (ISCA), Jun. 2008, pp.
453–464.

[9] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
OS-level page allocation,” in 39th IEEE/ACM Int’l Symp. on Microar-
chitecture (MICRO), Dec. 2006, pp. 455–465.

[10] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay, “High-performance
throughput computing,” IEEE Micro, vol. 25, no. 3, pp. 32–45, May
2005.

[11] S. Das, A. Fan, K.-N. Chen, C. S. Tan, N. Checka, and R. Reif, “Tech-
nology, performance, and computer-aided design of three-dimensional
integrated circuits,” in Int’l Symposium on Physical Design, Apr. 2004,
pp. 108–115.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th ed. Morgan Kaufmann Publishers, Inc., 2007.

[13] P. S. Magnusson, et al, “Simics: A full system simulation platform,”
IEEE Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[14] M. M. Martin, et al, “Multifacet’s general execution-driven multiproces-
sor simulator (GEMS) toolset,” Computer Architecture News, vol. 33,
no. 4, pp. 92–99, Sep. 2005.

[15] V. Puente, J. A. Gregorio, and R. Beivide, “SICOSYS: An integrated
framework for studying interconnection network in multiprocessor
systems,” in 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Jan. 2002, pp. 15–22.

[16] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti
5.1,” HP Labs, Tech. Rep. HPL-2008-20, Apr. 2008.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in 22nd Int’l Symp. on Computer Architecture (ISCA), Jun. 1995,
pp. 24–36.

[18] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus, A. Rogers,
and J. Saltz, “Efficient support for irregular applications on distributed-
memory machines,” in 5th Int’l Symp. on Principles & Practice of
Parallel Programming (PPoPP), Jul. 1995, pp. 68–79.

[19] A. R. Alameldeen and D. A. Wood, “Variability in architectural sim-
ulations of multi-threaded workloads,” in 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2003, pp. 7–18.

[20] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance associativity
for high-performance energy-efficient non-uniform cache architectures,”
in 36th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec.
2003, pp. 55–66.

[21] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in 37th IEEE/ACM Int’l Symp. on Microarchi-
tecture (MICRO), Dec. 2004, pp. 319–330.

[22] M. Zhang and K. Asanovic, “Victim migration: Dynamically adapting
between private and shared CMP caches,” Massachusetts Institute of
Technology Computer Science and Artificial Intelligence Laboratory,
Tech. Rep., Oct. 2005.

[23] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems,” in 14th Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb. 2008, pp. 367–378.

[24] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage capac-
ity allocation and sharing within large caches,” in 15th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2009, pp. 250–
261.

[25] M. Chaudhuri, “PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in 15th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2009,
pp. 227–238.

88


