Direct Coherence: Bringing Together
Performance and Scalability in Shared-Memory
Multiprocessors

Alberto Ros, Manuel E. Acacio, and José M. Garcia

Departamento de Ingenierfa y Tecnologia de Computadores
Universidad de Murcia, 30100 Murcia (Spain)
{a.ros,meacacio, jmgarcia}@ditec.um.es

Abstract. Traditional directory-based cache coherence protocols suffer
from long-latency cache misses as a consequence of the indirection intro-
duced by the home node, which must be accessed on every cache miss
before any coherence action can be performed. In this work we present a
new protocol that moves the role of storing up-to-date coherence infor-
mation (and thus ensuring totally ordered accesses) from the home node
to one of the sharing caches. Our protocol allows most cache misses to be
directly solved from the corresponding remote caches, without requiring
the intervention of the home node. In this way, cache miss latencies are
reduced. Detailed simulations show that this protocol leads to improve-
ments in total execution time of 8% on average over a highly optimized
MOESI directory-based protocol.

1 Introduction

Shared-memory multiprocessors are quite popular since the communication be-
tween the processors that conform the machine occurs implicitly as a result of
conventional memory access instructions (i.e. loads and stores), which makes
them easier to program than message-passing multiprocessors. In most of these
architectures, memory accesses are accelerated using one or several levels of pri-
vate caches to each processor. Caches are made transparent to software through
a cache coherence protocol. Supporting cache coherence in hardware, however,
requires important engineering efforts.

In general, there are several approaches to solve the cache coherence problem
in hardware. Snoopy protocols [5] typically rest on one or several buses to broad-
cast coherence operations. In this way, coherence messages go directly from the
requesting caches to their proper recipients (those caches that hold a copy of the
corresponding memory block), which reduces cache miss latencies. TokenB [9]
removes the requirement of using buses and enable low-latency cache-to-cache
transfer misses on unordered interconnection networks. Unfortunately, the fact
that the latter two alternatives are based on broadcasting coherence actions
restricts their scalability. Currently, scalable cache coherence is based on a dis-
tributed directory that keeps the location and state of cached blocks (directory-
based protocols [5]). In these protocols, each memory block is assigned to the

home node which keeps the directory information for the memory block and acts
as an intermediary for it. When a cache miss takes place, a request is sent over
an unordered interconnection network to the corresponding home node, which
performs the coherence actions necessary to satisfy the miss. In this way, apart
from providing main memory storage for every memory block and keeping the
associated directory information, the home node acts as an ordering point for
the different requests that several caches issue over the block.

The fact that cache misses must reach the home node before any coherence
action can be performed introduces indirection, which adds unnecessary hops
(and thus, cycles) into the critical path of cache misses, finally resulting in long
cache miss latencies. Moreover, the increasing gap between processor and mem-
ory speeds (the memory wall problem [16]) and the availability of low-latency
interconnects make that cache coherence protocols that exploit cache-to-cache
transfers for blocks in shared state (MOESI-like protocols) will be preferable to
those that obtain them from main memory (MESI-like protocols)!. This results
in a very significant fraction of the cache misses suffering from indirection.

In this work, we address the design of a solution to the cache coherence
problem that avoids this indirection without using any brute-force method (as
broadcasting requests) or requiring particular network topologies. The later two
aspects compromise scalability. In particular we present Direct Coherence, a
novel cache coherence protocol that based on MOESI decouples the role of pro-
viding main memory storage for every memory block, which is still responsibility
of the home, from the role of storing up-to-date sharing information (and thus
ensuring totally ordered accesses) for every memory block, which is moved from
the home to one of the nodes that actually shares the block, particularly the
node that provides the block on a cache miss. We call this node the owner node,
and that copy of the block will be the primary copy.

In Direct Coherence, each cache keeps up-to-date sharing information for
every primary copy of a block stored on it and every miss is solved by sending
the request to the owner node instead of the home node. We have found that for
most cache misses the owner node is the last node that invalidated the copy from
the rest of caches. Hence, this information can be stored in a small structure to
find the owner node when a subsequent miss takes place. Moreover, as the owner
node changes on write misses, the requests sent by several caches for a particular
block could be distributed among different nodes, thus helping prevent potential
bottlenecks at the home node, and therefore, helping scalability.

Direct Coherence, therefore, reduces the latency of cache misses by avoiding
the indirection added by the access to the home node. In this way, our proposal
offers both the performance advantage of snoopy-based protocols, since coher-
ence messages are directly sent from the requesting caches to those that must
observe them, and the scalability of directory-based ones, since our proposal is

! Cache-to-cache transfers of clean data has also been recently used as a simple form of
cooperation that reduces the number of off-chip accesses in CMPs [3]. In the context
of cc-NUMAs, it has been also shown that cache-to-cache transfer for clean blocks
can reduce average cache miss latency [14].

not based on any brute-force method or requires any particular network topol-
ogy. Detailed simulations using a modified version of RSIM and several scientific
applications demonstrate that using Direct Coherence most of the cache misses
can be completed without requiring indirection, which leads to improvements in
total execution time of 8% on average over a highly optimized MOESI protocol.
In this work, Direct Coherence has been evaluated in the context of cc-NUMAs,
although it is equally applicable to other domains, such as CMPs.

The rest of the paper is organized as follows. Direct Coherence is described in
Section 2. Section 3 introduces the methodology employed in the evaluation. In
Section 4 we show the performance results obtained for our proposal. In Section
5 we present a review of the related work. Finally, Section 6 concludes the paper.

2 Direct Coherence

2.1 The owner node and the home node

In directory-based protocols the home node maintains cache coherence and all
the misses must go through it to obtain the directory information. Direct Coher-
ence avoids this indirection by storing the directory information in the node that
must provide the block in case of cache misses, the owner node, and by assigning
the role of keeping cache coherence to this node. Then, when a cache miss takes
place the request is sent to the owner node instead of the home node. Since the
owner node is no longer fixed and can change on write misses, it is necessary
to keep the identity of the current owner node in some place. In particular, the
home node has the role of storing the identity of the owner and it is notified of
every change.

The owner node of a block is either main memory when the block is not
stored in any cache, an L2 cache in exclusive state, or the last L2 cache that
wrote the block when there are multiple sharers. In this way, it is easy to find out
the owner node because the other nodes can easily store the identity of the last
node that invalidated their copy. Moreover, being the owner node the last one
that wrote the block, many upgrades avoid indirection for some common sharing
patterns. For the producer-consumer pattern, the node that updates the block is
always the same one, and therefore the upgrades always take place in the owner
node. For the migratory-sharing pattern, upgrades that follow the load misses
just need two hops since the identity of the owner is known once the load misses
have been completed, and the owner is the only node that must be invalidated
in this case.

2.2 Changes to the structure of the L2 caches

Direct Coherence requires the L2 caches included in each node of the system
to store extra coherence information. This information can be divided into the
following three categories:

Pointer Cache Data Cache

Tag ‘V ‘ Pointer Tag ‘ St‘ Sharing Code ‘ Data

Tag ‘V ‘ Pointer Tag ‘ S‘ Sharing Code ‘ Data
Tag ‘3‘ Sharing Code ‘ Data

Fig. 1. Organization of the L2 caches required by Direct Coherence.

— Updated Sharing Information (USI): This information is necessary for all the
primary copies of all the blocks stored in any L2 cache, since the node that
holds one of these copies in its L2 cache is responsible for keeping coherence
between the accesses to this memory block. The USI must identify all the
sharers of the block.

— Current Owner Information (COI): For each block stored in any cache, its
home node must maintain a pointer which identifies the owner node. This
information must be updated whenever the owner node changes and it is
accessed when the requesting cache is not able to locate the current owner.

— Extra Owner Information (EOI): This information is stored in any node
except the home and the owner. It is used for avoiding the access to the
home node on a cache miss. Particularly, each node keeps a pointer in its
L2 cache that identifies the last node that invalidated its previous copy of a
memory block. Future misses will use the value of this pointer to send the
request directly to the owner node, thus removing indirection. Our cache
coherence protocol can perform correctly in absence of EOI, but performs
more efficiently when this information is included.

For storing this information, we propose the L2 cache organization shown in
figure 1. The sharing code field is used to store the USI for the primary copies
of the blocks held in the data cache. The pointer cache is used for storing the
identity of the owner (COI if it is the home node or EOI in other case). Note
that our proposal does not need to keep directory information in main memory
nor the use of additional directory caches.

2.3 Description of the Coherence Protocol

Requester node When a cache miss takes place in a node (requester node),
the identity of the owner node must be obtained. If the identity of the owner
is found in the pointer cache (COI for local misses or EOI in other case) the
request is sent to this node. Otherwise (first reference to a block or replacement
in the pointer cache), the request is sent to the home node which subsequently
redirects the miss to the current owner.

Request received by a node that is not the owner When a request arrives
to a node that is not the owner of the block, the request must be resent to another
node. If the former node is the home and the COI is found in the pointer cache,
the request is sent to the owner node. The COI is recent since this information is
updated whenever the owner changes. Hence, in absence of race conditions the
request will reach the owner node. On the other hand, if the home node does
not find the COI in the pointer cache, the owner of the block is main memory
because the block is not held by any cache. Then the miss is solved by providing
the block from main memory, and the home node allocates a new COI entry
in its pointer cache. Finally, if the request reaches any other remote node, it is
resent to the home node.

Request received by the owner node Every time a request reaches the
owner node, it is necessary to check whether this node is currently processing a
request from a different processor for the same block. In this case, we can say
that the block is in busy state, and the request must be returned to the requester
node asking it to try again.

On the other hand, if the block in the owner node is not in busy state, the
miss can be solved. Read misses are completed by sending a copy of the block
to the requester node and adding it to the sharing code. For write misses, the
owner node must invalidate all the copies from all the caches before it can send
the block to the requester. If the miss is an upgrade the owner node checks the
sharing code field to know whether the requester still holds a copy of the block
(note that a previous write miss from a different processor could have invalidated
its copy and in this case the owner node should also provide a new copy of the
block). In this case, the owner node replies to the requester with the ownership
of the block once the rest of the copies have been invalidated. Note that upgrade
misses that take place in the owner node just need to send invalidations and
receive acknowledgements (two hops in the critical path).

Moreover, as the home node must have up-to-date information of the owner
of the block (COI), every time that an owner node gives its ownership to other
node, it must send a control message to the home node indicating the identity
of the new owner. Note that messages reporting ownership changes for a par-
ticular block should be processed by the home node in the same order in which
they were generated. Otherwise, the COI could fail to store the identity of the
current owner. Although there are other alternatives to ensure this order, in our
particular implementation we associate a version number to every primary copy.
This version number is stored in both the home node and the current owner of
the block, and is increased on every ownership change. The idea is that when
a message reporting an ownership change arrives to the home node, it is only
processed (the identity of the new owner is stored) if the version number in the
message has the same value than the one stored in the home, along with the
COL. In other case, the message could be buffered or NACKed to the processed
later. In practice, we have found that this version number could be stored using
a small 3-bit wrapping counter.

Replacements In our particular implementation the replacement of a block
stored in any cache only requires coherence actions when it is a primary copy. In
other case, the replacement is performed transparently to the rest of the sharers.
The replacement algorithm used in the data caches is LRU, but the age of the
primary copy of every block is updated every time that it is accessed by any
local or remote request.

When the primary copy of a block is evicted, it is looked for another node
that will receive the responsibility of keeping coherence for the block (the owner
property is moved to one of the sharers). Since the owner node knows the current
set of the sharers, it sends the request to one of them (chosen randomly). If the
new owner node had previously invalidated its copy, it resends the request to
another node (note that the request includes directory information for the block
as well). The node that receives this request and has a valid copy of the block
will be the new owner node, and therefore, must notify the home node of the
change of the owner. On the other hand, if all the nodes had replaced its copy,
the request is finally sent to the home node which removes the COI from the
pointer cache and stores the block in main memory.

On the other hand, replacements in the pointer cache also follow the LRU
algorithm, but it is distinguished between COI and EOI. EOI entries are prefer-
ably evicted for two reasons. First, we have found that keeping EOI entries too
much time is not worthy since this information gets obsolete (it would cause a
significant number of misses when finding the identity of the owner node). Sec-
ond, when a COI entry is replaced, the home node must ask the owner node to
invalidate all the copies of the block and main memory must be updated.

2.4 Preventing Deadlock and Starvation

Direct Coherence ensures that not deadlock can occur by returning back to the
issuing nodes those requests that cannot be solved instead of enqueuing these
requests in a buffer.

On the other hand, in directory-based protocols starvation can be easily
avoided if the requests are buffered in FIFO order at the home node. In Direct
Coherence each write miss implies that the identity of the owner node changes.
If a memory block is repeatedly written by several nodes, a request could take
some time to find the owner node, even when it is sent by the home node. Hence,
some nodes could be solving their misses while other misses are starved. Figure
2 shows an example of a scenario in which starvation appears. The nodes N;
and N> are issuing write requests repeatedly, and therefore, the owner node is
continually moving from N7 to N5 and vice versa. Each time that the owner
changes, the home node is notified. However, at the same time, the home node
is trying to send the request issued by the node N3 to the owner node, but this
request could always be returned to it whenever the write request issued by the
other node arrives before.

Since this kind of scenario is very infrequent, we think that it is more impor-
tant for the starvation avoidance mechanism to be simple rather than efficient.
In particular, each time that a request must be retried, a counter is increased.

g”"\‘\ — MissinN ;
/ . --» MissinN ,
~-» MissinN 3

@ \Write Request
@® Change Owner
® Reply

O Rd/Wr Request

Fig. 2. Example of a starvation scenario.

Starvation is detected when this counter reaches a certain maximum value. To
guarantee that the identity of the owner node does not change during certain
period of time, and therefore, the owner can be reached by the request, each
time that a starved request arrives to a node that cannot solve it, the node is
blocked and it cannot issue new requests for the same block. Once the starved
request is solved by the owner node, some messages are sent to the nodes that
were blocked to allow them to continue issuing requests for the block. Through
experimentation we have found that a value of 100 hops works fine in most cases.

3 Simulation Environment

We have implemented and evaluated the Direct Coherence protocol through
RSIM, a detailed execution-driven simulator that models cc-NUMA multiproces-
sors [7]. Our proposal is compared against a highly optimized MOESI directory-
based protocol that employs unbounded directory caches in each node to cut
down the number of accesses to main memory (base configuration from now on).
Moreover, this MOESI protocol has been optimized to allow that a read miss can
be directly solved by providing the requesting block from the home node when-
ever this node has a copy of it in its cache (either in shared or owned state).
MOESI states allow that for most cache misses the corresponding memory block
is provided by a remote cache instead of main memory.

In both cases, bit-vector has been used as the sharing code (4 bytes per entry
in a 32-node system). Therefore, the L2 cache used in Direct Coherence protocol
employs 32 KB of additional storage for the sharing code field. The size of the
pointer cache (5 bits per pointer) is just 2 KB. We have found that this small
size avoids replacements of COI entries. In this way, the total memory overhead
of our proposal is very small (6.6% of the L2 cache storage). Remember that for
the base configuration we consider unbounded directory caches.

We have simulated multiprocessors with 32 uniprocessor nodes. Table 1 shows
the main parameters used for our proposal. Simulations have been performed
using an optimized version of the sequential consistency model with specula-
tive load execution [7]. The nine scientific programs used in our simulations
cover a variety of computation and communication patterns. Barnes (8192 bod-
ies, 4 time steps), Cholesky (tk16.0), FFT (256K complex doubles), Ocean

Table 1. System parameters.

32-Node System
ILP Processor Parameters Directory Parameters
Processor speed 5 GHz Directory controller cycle[1 cycle (on-chip)
Max. fetch/retire rate |4 Coherence information |6 hit cycles
Instruction window 128 Message creation time 4 cycles first, 2 next
Branch predictor 2 bit agree, 2048 count Memory Parameters
Cache Parameters Memory access time 300 cycles
Cache block size 64 bytes Memory interleaving 4-way
Split L1 I & D caches:|write-through Internal Bus Parameters
Size 32 KB Bus width 8 bytes
Associativity direct mapped Bus cycles 1 cycle
Hit time 2 cycles Network Parameters
Unified L2 cache: write-back Topology 2D mesh (4x8)
Size 512 KB Flit size 8 bytes
Associativity 4-ways Non-data message size 2 flits
Hit time 6 + 9 cycles (tag + data) |Flit delay 4 cycles
Pointer cache 2 KB, 4-ways, 6 hit cycles|Arbitration delay 5 cycles

(258x258 ocean), Radix (1M keys, 1024 radix) and Water-NSQ and Water-SP
(512 molecules, 4 time steps) are from the SPLASH-2 benchmark suite [15].
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics appli-
cation. Finally, EM3D (38400 nodes, 15% remotes, 25 time steps) is a shared
memory implementation of the Split-C benchmark. All the programs were run
to completion, but all experimental results reported in this paper are for the
parallel phase of these benchmarks. The size of the L2 caches (512KB in our
simulations) has been chosen taking into account both current L2/L3 cache
sizes and the characteristics of the applications used for the evaluation.

4 Evaluation Results

In this section, we present and analyze the simulation results obtained for the
Direct Coherence protocol (DiCo configuration) presented in this work. Our
proposal is compared against the base system described in the previous section
(Base configuration).

4.1 Impact on the number of hops needed to solve cache misses

In general, Direct Coherence can reduce the number of hops needed to solve a
miss by avoiding the indirection that the access to the home node introduces.
The extent of the reductions varies depending on the cache miss type (read miss,
write miss or upgrade miss). Therefore, we study separately how the number of
hops is reduced according to the miss type. Figure 3 shows how each type of
cache miss is solved in both the base protocol and Direct Coherence protocol.
These results are normalized with respect to the base case. Each cache miss can
be classified in one of the following types:

— 2-hop misses: This miss type does not suffer indirection. Read and write
misses are solved using two hops when the identity of the owner node is

Write
Misses

Read
Misses

Barnes
Cholesky
Ocean
Radix
Unstruct
Barnes
Cholesky
Emad
FFT
Ocean
Radix
Unstruct
Water-
Water-
SP

g
Sa
B

Em3d
FFT
Water-
NSQ

"
5
8

Z)

S Memory
m+3-hops
03-hops

m2-hops m 2-hops

Normalized L2 misses
Normalized L2 misses

DiCo |
Dico —— | NSO

DiCo I

8
8
DiCo |

ase
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
DiCo
Base
Base
ase
DiCo
Base
Base
Base

Total
Misses

60 S Memory
Upgrade
Misses

m+3-hops
2 c
g
=% &
100
80
S Memory 60
m+3-hops.
013-hops 0
W 2-hops.
20
0
i 8 4 8 4 8 8 &8
& 3 8 & 8 & 5334

13-hops
Fig. 3. How each miss type is solved.

Cholesky

2
i
2
S
5}

Barnes

Em3d
T

Ocean
Radix
Unstruct
Barnes
Emad

" Ocean
Unstruct
sp

S Memory
m+3-hops
03-hops
m2-hops

Normalized L2 misses

DiCo | —
L — e RO
DiCo. I——— e NSQ
Base T .
DiCo

Normalized L2 misses

s 8 & 3 3 8
Base
DICo |
Base |——
DICo |
Base I
DICo | ————
Basc |——
DiCo |
Basc |
DICo | —————
Base |——
Base | |y
DiCo —————— NSQ
Basc |—
Base T

DiCo |

Base
DiCo
Base
DiCo
Base
DiCo

stored at the requesting cache (and invalidation messages are not necessary).
Upgrade misses fall into this category when they take place in the owner
node, or alternatively, when the block is just shared by the node that issues
the miss and the owner node.

— 8-hop misses: A miss belongs to this type when the requesting cache has
not EOI and the home node resends the request to the proper owner, which
solves the miss without invalidation messages.

— +3-hop misses: We include in this category misses that need more than three
hops to be solved.

— Memory misses: When the block is provided by main memory since it is not
held by any L2 cache.

As shown in figure 3, in general, our protocol increases the number of misses
solved in two hops. The number of read misses that need only two hops increases
in some applications, especially in Barnes. In EM3D and FFT applications, all
the read misses are already solved in two hops. Finally, in other applications
the number of 2-hop read misses does not increase since the optimized MOESI
protocol already increases the number of read misses solved in two hops by
providing the block from the home node’s cache whenever clean data is found in
it (even when it is not the current owner of the block).

The percentage of two-hop write misses is smaller than the percentage of
two-hop read misses, but fortunately, write misses are less frequent than read
misses. This lower percentage is because some blocks are continuously written
by different nodes, and therefore, the EOI becomes obsolete quite soon. Nev-

ertheless, Direct Coherence increases the number of two-hop write misses with
respect to the base protocol for all the applications except Barnes and Water-SP.

Upgrade misses, that account for 23% of all misses on average, usually take
place in the owner node when Direct Coherence is used (see Section 2.1). In this
case, invalidation messages are directly sent to all the sharers, thus reducing the
number of hops in the critical path needed to solve the miss from four to two.
In Em3d and FFT, they are already solved in two hops with the base protocol.
In contrast, Barnes, Cholesky, Unstructured and Water-NSQ need four hops to
solve a great fraction of the upgrade misses in the base case, and many of these
misses can be solved in just two hops with Direct Coherence. The most important
growth happens in Unstructured (88%), in which upgrade misses represent a
significant fraction of the total misses.

On the other hand, the number of +3-hop misses is increased for some ap-
plications. This is because either the EOI does not point to the owner node or
the owner node is changing or busy (race conditions). In the last case, the extra
number of hops in our protocol is equivalent to the cycles that in the base pro-
tocol some requests spend waiting in the node home until it can solve the miss,
and therefore, it does not suppose extra latency.

Finally, the number of misses changes in some applications from the base
configuration to the DiCo one. In general, our proposal reduces the miss latency,
and therefore, the number of attempts per lock acquisition?. We have found that
this number is greatly reduced in Ocean (from 11.9 to 4.3 tries). This is the
reason for the lower number of misses observed in applications like Cholesky,
Ocean, Unstructured and Water-SP. On the other hand, our proposal increases
the number of misses in Barnes. This is because in our protocol owner blocks
cannot be evicted from cache when they have pending requests (busy state).
If a cache set has several busy blocks for long time, the rest of blocks stored
in the same set will be evicted quite frequently, even when they are frequently
requested by the local processor. This growth can be easily avoided in L2 caches
with higher associativity. Radix is also affected by this fact, but the total number
of misses does not increase because many upgrade misses are removed when
Direct Coherence is used. The latter is because in our protocol replacements of
the primary copy of memory blocks are sent to another node, thus informing of
the replacement and changing the identity of the owner of the block. In this way,
when the new owner subsequently upgrades the block and finds that no other
cache holds it, the miss is avoided. In the base protocol, only when the upgrade
miss reaches the directory is when it is known that the requesting cache is the
only sharer for the block. Finally, some applications like FFT and Water-SP
convert some write misses into upgrades, since they keep the primary copy of
some blocks in cache longer.

2 Note that locks in RSIM are implemented using the well-known test-and-test&set
method.

95 .95

i 099 099 _ 100 0.99

0. 0.
o.
02 W Base

==
“En CAE R

o ot o e et W\‘“Za@xﬁow\eﬁ? W o o o® e 0\«:,““:@@»& e
Fig. 4. Percentage improvements for cache Fig. 5. Normalized execution time.

miss latencies.

4.2 Impact on L2 cache miss latencies

For each miss type, figure 4 shows the speed-up obtained for Direct Coherence
with respect to the base protocol. We can observe that the latency of read misses
is reduced in all the applications except Unstructured. In this application, we
have found that Direct Coherence increases the number of +3-hop read misses
due to that the EOI gets obsolete. On the other hand, read misses are signifi-
cantly accelated in Barnes and Ocean (1.22 and 1.36 respectively). Both appli-
cations increase the number of two-hop misses, and contrary to Unstructured,
the increase in the number of +3-hop misses is due to race conditions that do
not increase the latency of the misses.

The important speed-up (2.37) for write misses found in FFT is due to almost
all the write misses are solved in two hops instead of accessing memory. Barnes,
Ocean and Water-NSQ also obtain important speed-ups ranging from 1.49 to
2.07.

For upgrade misses some applications like Barnes, Cholesky, Unstructured
and Water-NSQ increase very significantly the total number of two-hop misses,
and therefore, obtain speed-ups ranging from 1.56 in Barnes to 2 in Cholesky.
Radix reaches a reduction in the number of upgrade misses. As these misses do
not have to invalidate any copy in the base case, they have low miss latencies.
This is why there is a growth in the average miss latency in our protocol.

4.3 Impact on execution time

Finally, the percentage improvements in terms of L2 miss latency translate into
reductions on applications’ execution time. Figure 5 plots the execution times
that are obtained for the base configuration (Base), the oracle configuration
(Oracle) which shows the improvements in total execution time that would be
obtained by Direct Coherence if the identity of the owner were known on every
miss, and Direct Coherence (DiCo). Results have been normalized with respect
to the base case.

Important reductions are observed for Barnes (15%), Ocean (30%) and Un-
structured (12%). In Barnes and Ocean important reductions have been reported

for the L2 cache misses. Unstructured reduces considerably the latency of up-
grade misses that are the bottleneck of this application. For the rest of the
applications (except for FFT), reductions range from 1% for Cholesky, Em3d
and Radix to 5% for Water-NSQ and Water-SP. Water-NSQ and Water-SP do
not obtain great improvements in execution time in spite of having important
reductions in the miss latencies because they spend little time solving cache
misses.

Finally, we can see that for most applications Direct Coherence obtains exe-
cution times that are very close to those of the oracle configuration. This implies
that the accuracy of the EOI pointers is very high. The exception is Unstruc-
tured in which in most cases the requesting caches find an obsolete identity for
the owner node. In Barnes, the oracle configuration obtains worse performance
due to the growth in the cache miss rate that results as a consequence that
Direct Coherence do not replace owner blocks in busy state (see Section 4.1).

5 Related Work

Snoopy protocols do not introduce indirection because they are based on a
totally-ordered interconnection network. Unfortunately, these interconnection
networks are not scalable. Some proposals have focused on using snoopy pro-
tocols with arbitrary network topologies. Martin. et al. [10] present a technique
that allows SMPs to utilize unordered networks (with some modifications to
support snooping). Bandwidth Adaptive Snooping Hybrid (BASH) [11] is an
hybrid coherence protocol that dynamically decides whether to act like snoopy
protocols (broadcast) or directory protocols (unicast) depending on the avail-
able bandwidth. TokenB coherence protocol [9] avoids both the need of a totally
ordered network and the indirection caused by the directory by assigning N to-
kens to every memory block. In this way, a node can read a block if it has at
least one token and can update the block if it has all the tokens. Subsequently,
TokenM [8] was proposed to reduce the demand of interconnect bandwidth by
using destination-set prediction. However, TokenB and TokenM increase network
traffic becoming a bottleneck for large-scale systems. In contrast, our proposal
keeps network traffic low by sending only one message per cache miss.

Acacio et al. propose to avoid the indirection for cache-to-cache transfer
misses [1] and upgrade misses [2] separately by predicting the current holders of
every cache block. In contrast, our protocol avoids the indirection for cache-to-
cache transfer misses by using recent information about the node that must solve
the miss, and for upgrade misses by removing the directory information from the
home node and by storing it in the node that issues the upgrade request. In this
way, our proposal does not need extra hardware to predict neither the owner nor
the sharers of the block.

Recently, Cheng et al. have proposed converting 3-hop read misses into 2-hop
read misses for memory blocks following the producer-consumer sharing pattern
[4]. They need extra hardware to detect when a block is accessed according to

this pattern. In contrast, our proposal obtains 2-hops misses for read, write and
upgrade misses without taking into account sharing patterns.

Finally, directory caches (originally proposed in [6] for cutting down directory
memory overhead) can be also used for reducing the latency of cache misses by
obtaining directory information from a much faster structure than main memory
[12]. In [13], we evaluated the impact that completely removing the directory
structure from main memory and storing directory information at the last-level
caches has in terms of cache miss rate and performance. In this proposal, the
directory information is only stored in the home node, but in Direct Coherence
this information is stored in the owner node for avoiding indirection.

6 Conclusions

In this work we have presented Direct Coherence, a novel cache coherence pro-
tocol that avoids the indirection introduced by the directory-based protocols.
Direct Coherence moves the role of storing up-to-date sharing information (and
ensuring totally ordered accesses) from the home node to the owner node. In this
way, indirection is avoided by directly sending the requests to the owner node.

Direct Coherence offers both the performance advantage of snoopy-based
protocols, as coherence messages are directly sent from the requesting caches to
those that must observe them, and the scalability of directory-based ones, as our
proposal is not based on broadcasting or any other brute-force method.

We have described the implementation of Direct Coherence and we have
evaluated it using the RSIM simulator. Simulation results show that our proposal
can increase the number of misses without indirection. The reduction in the
number of hops translate into an average reduction in the latency of the L2
misses of 20.7%, which finally leads to improvements in applications’ execution
time up to 30% (8% on average) when compared with a MOEST directory-based
protocol. In this way, Direct Coherence is revealed as a promising alternative to
current cache coherence protocols, bringing together performance and scalability.

Acknowledgments The authors would like to thank the anonymous reviewers
for their helpful insights. This work has been jointly supported by the Spanish
MEC and European Comission FEDER funds under grants “Consolider Ingenio-
2010 CSD2006-00046” and “TIN2006-15516-C04-03”. A. Ros is supported by a
research grant from the Spanish MEC under the FPU national plan (AP2004-
3735).

References

1. M. E. Acacio, J. Gonzélez, J. M. Garcia, and J. Duato. Owner prediction for ac-
celerating cache-to-cache transfer misses in cc-NUMA multiprocessors. In SC2002
High Performance Networking and Computing, November 2002.

10.

11.

12.

13.

14.

15.

16.

M. E. Acacio, J. Gonzélez, J. M. Garcia, and J. Duato. The use of prediction for
accelerating upgrade misses in cc-NUMA multiprocessors. In 11th Int’l Conference
on Parallel Architectures and Compilation Techniques (PACT 2002), pages 155—
164, September 2002.

J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In 33th
Int’l Symp. on Computer Architecture (ISCA’06), pages 264-276, June 2006.

L. Cheng, J. B. Carter, and D. Dai. An adaptive cache coherence protocol opti-
mized for producer-consumer sharing. In 13th Int’l Symp. on High Performance
Computer Architecture (HPCA-13), pages 328-339, Feb. 2007.

D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, Inc., 1999.

A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing memory traffic require-
ments for scalable directory-based cache coherence schemes. In Int’l Conference
on Parallel Processing (ICPP’90), pages 312-321, August 1990.

C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: Simulating
shared-memory multiprocessors with ILP processors. IEEE Computer, 35(2):40—
49, Feb. 2002.

. M. M. Martin. Token Coherence. PhD thesis, University of Wisconsin-Madison,

December 2003.

M. M. Martin, M. D. Hill, and D. A. Wood. Token coherence: Decoupling perfor-
mance and correctness. In 30th Int’l Symp. on Computer Architecture (ISCA’03),
pages 182-193, June 2003.

M. M. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M. Dickson, C. J.
Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A. Wood. Timestamp snooping:
An approach for extending SMPs. In 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IX), pages 2536,
November 2000.

M. M. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Bandwidth adaptive
snooping. In 8th Int’l Symp. on High-Performance Computer Architecture (HPCA-
8), pages 251-262, January 2002.

A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph. High-throughput
coherence controllers. In 6th Int’l Symp. on High-Performance Computer Archi-
tecture (HPCA-6), pages 145-155, January 2000.

A. Ros, M. E. Acacio, and J. M. Garcia. A novel lightweight directory architecture
for scalable shared-memory multiprocessors. In 11th Int’l Euro-Par Conference,
volume 3648, pages 582591, Aug. 2005.

A. Ros, M. E. Acacio, and J. M. Garcfa. An efficient cache design for scalable
glueless shared-memory multiprocessors. In ACM Int’l Conference on Computing
Frontiers, pages 321-330, May 2006.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
programs: Characterization and methodological considerations. In 22nd Int’l Symp.
on Computer Architecture (ISCA’95), pages 24-36, June 1995.

W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, 23(1):20-24, March 1995.

