A Novel Lightweight Directory Architecture for
Scalable Shared-Memory Multiprocessors

Alberto Ros, Manuel E. Acacio and José M. Garcia

Departamento de Ingenieria y Tecnologia de Computadores
Universidad de Murcia. 30071 Murcia (Spain)
{a.ros,meacacio, jmgarcia}@ditec.um.es

Abstract. There are two important hurdles that restrict the scalability
of directory-based shared-memory multiprocessors: the directory mem-
ory overhead and the long 1.2 miss latencies due to the indirection intro-
duced by the accesses to directory information, usually stored in main
memory. This work presents a lightweight directory architecture aimed
at facing these two important problems. Our proposal takes advantage
of the temporal locality exhibited by the accesses to the directory in-
formation and on-chip integration to design a directory protocol with
the best characteristics of snoopy protocols. The lightweight directory
architecture removes the directory structure from main memory and it
stores directory information in the L2 cache avoiding in most cases the
access to main memory. The proposed architecture is evaluated based on
extensive execution-driven simulations of a 32-node cc-NUMA multipro-
cessor. Results demonstrate that the lightweight directory architecture
achieves better performance than a non-scalable full-map directory, with
a very significant reduction on directory memory overhead.

1 Introduction

Particular implementations of cache coherence protocols are quite different de-
pending on the total number of processors of a shared-memory multiprocessor.
In systems with few processors, an interconnection network with a completely
ordered message delivery (such as a bus) can be used. Cache coherence in these
cases is ensured by making all processors snoop the bus to obtain information re-
garding the blocks that are being accessed (read or written) by the other proces-
sors. This implementation of the coherence protocol is known as snooping-based
protocol whereas the term Symmetric Multiprocessors (SMP) is frequently used
to designate the architecture of the multiprocessor [1].

On the other hand, systems with greater number of processors are organized
around a scalable point-to-point interconnection network; besides, main mem-
ory in these machines is physically distributed to ensure that memory bandwidth
also scales with the number of processors. Now a directory-based cache coher-
ence protocol is used to ensure coherence [1]. Each node of the machine (which
includes the processor and a fraction of the total main memory) has a directory
structure which stores coherence information for the memory blocks that are

Accessed blocks (normalized)

@ Conven(\ona\ .
-] L\ghlwe\ghl .

Barnes Ocean Radix Unstruct Water-NSQ

Fig. 1. Worst-case overhead introduced by the lightweight directory architecture.

allocated on it (the home node). In this way, L2 cache misses are sent to the cor-
responding home node, which acts as an ordering point and performs the actions
needed to ensure coherence. Unfortunately, the accesses to the directory cause
long L2 miss latencies since this structure is usually stored in main memory [2].
Additionally, the amount of extra memory required for storing directory infor-
mation (directory memory overhead) could become prohibitive for a large-scale
configuration of the multiprocessor if care is not taken [3]. In general, these mul-
tiprocessors have been called cc-NUMA (cache-coherent Non-Uniform Memory
Access) and the best known example is the SGI Origin 2000,/3000 [4].

In this paper, we propose the lightweight directory architecture, a novel ar-
chitecture that takes advantage of on-chip integration to design a large scale cc-
NUMA architecture with the best characteristics of SMP multiprocessors. Unlike
conventional directories, which associate directory entries to memory blocks, our
proposal moves directory information to the cache level where the coherence of
the memory block is managed (the L2 cache in our particular case). In this way,
directory information is removed from main memory. Our proposal is motivated
by the observation that only a small fraction of the memory blocks are stored in
the L2 caches at a particular time (temporal locality), and that in most cases,
when a request for a memory block from a remote node arrives at the corre-
sponding home node either the home node has recently accessed the block and
it resides in the L2 cache, or the home node will request the block in a near
future.

As in a conventional directory protocol, L2 cache misses are sent to the
corresponding home node which is in charge of satisfying the miss (for example,
by providing the memory block in case of a load miss). On the first reference to
a memory block, however, the home node books an entry in the local L2 cache
which is used to store directory information for the block and occasionally the
own block. Subsequent L2 cache misses to the same block will find directory
information and in some cases data in the L2 cache of the home node.

However, storing directory information in the L2 cache for each block re-
quested by any remote node could result in a significant increase in the number
of blocks being stored in the L2 cache of the corresponding home directory, and
consequently, in its total number of replacements. Fortunately, the observation
that motivates our proposal points out that it is not the case. We performed a
preliminary study about the extra number of memory blocks in the worst case

that would be stored in the L2 cache when lightweight directories are used. This
study has been carried out running several applications on top of the RSIM
simulator assuming infinite caches. Figure 1 shows that in the worst case the in-
crease in the number of blocks that are brought to the L2 cache does not exceed
34% and that in general good results could be expected.

Our proposal, therefore, brings two important benefits. First of all, since the
total number of memory blocks is much larger than the total number of L2 cache
entries, directory memory overhead is drastically reduced by a ratio of 1024 (or
more) compared to conventional directory architectures. Second, since directory
entries are stored in the L2 cache of the home node, and both the L2 cache and
the directory controller are integrated into the processor chip (which is common
in recent processors [5] [6]), the time needed to access the directory is significantly
reduced, which translates into important reductions in the latency of L2 cache
misses, and therefore, improvements of up to 26% in total execution time are
obtained. Moreover, we develop a coherence protocol suited to the particularities
of the new directory architecture.

The rest of the paper is organized as follows. In section 2 we present a review
of the related work. In sections 3 and 4 we describe the lightweight directory
architecture and the coherence protocol required by it, respectively. Section 5
introduces the methodology employed in the evaluation. In section 6 we show
some performance results for our proposal. And finally, section 7 concludes the
paper and points out some future work.

2 Related Work

In SMP multiprocessors a shared bus is typically employed to interconnect all
the processors. In this way, every processor snoops all requests to memory in
the order in which they appear on the bus. Unfortunately, the bus becomes
a bottleneck when the number of processors increases. Martin et al. proposes
timestamp snooping to avoid this bottleneck [7]. Timestamp snooping allows that
a snoopy protocol is implemented on top of a scalable point-to-point interconnect
network by using timestamp and reordering requests at the interconnect end
points.

Bandwidth Adaptive Snooping Hybrid (BASH) [8] is a hybrid coherence pro-
tocol that dynamically decides whether to act like snooping protocols (broadcast)
or directory protocols (unicast) depending on the available bandwidth.

Token coherence protocols [9] avoid both the need of a totally ordered net-
work and the indirection caused by the directory by using IV tokens per memory
block. In this way, a node can read a block if it has at least one token and can
update the block if it has all the tokens of that block.

On the other hand, cc-NUMA multiprocessors use a scalable point-to-point
interconnection network and need a directory structure to guarantee ordered
memory accesses. However, directory implies memory overhead and long L2 miss
latencies. Directory caches can be used to reduce the latency of L2 misses by
obtaining directory information from a much faster structure than main memory

Node 0 Node N-1

{ Processor’s Core } { Processor’s Core }

Main
Memory

Main
Memory

Dir ‘ L2 cache

Processor’s chip

Processor’s chip

| Scalable point-to—point interconnection network |

Fig. 2. The lightweight directory architecture.

[2]. Finally, several techniques have been proposed to reduce directory memory
overhead. Usually, they are based on compressed sharing codes, such as coarse
vector [10], which is currently employed in the SGI Origin 2000/3000 multipro-
cessor, gray-tristate [11] or binary tree with subtrees [3].

3 The Lightweight Directory Architecture

The lightweight directory architecture proposed in this paper removes directory
information from main memory and stores it in the L2 caches to reduce its
access time. Of course, this reduction would not be so effective if the directory
controller were outside the processor chip. Fortunately, current integration scale
allows the inclusion of some key components of the system such as the memory
controller, the coherence hardware and the network interface and router inside
the processor chip (see Compaq Alpha 21364 EV7 [5] or AMD Hammer [6]).
Hence, we assume in this work that the directory controller and the L2 cache
with directory information are on-chip.

Figure 2 shows the proposed architecture for a N-node multiprocessor. The
nodes are connected using a scalable point-to-point interconnection network
through the network interface (NI). The memory and directory controller (MC/
DC) handles all inter-node memory references going into or out of the node. In
this way, the L2 cache misses are sent to the memory controller of the corre-
sponding home node, which looks for the block’s directory information stored in
the L2 cache tags structure speculatively in parallel with the access to the L2’s
structure where data is stored!. If the block is found in the L2 cache, directory
information is obtained without going to main memory. On the other hand, if
the block is not present at cache, the block is not cached by any node and it is
necessary to accede to main memory.

Each cache block contains four main fields aside from the data of the block:
the tag itself, used to identify the block, the cache state, the directory state, and
the sharing code. The latter two fields are added by the lightweight directory
structure proposed in this paper. The cache state field can take one of the four
values (2 bits) used by the MESI protocol. Nevertheless, the invalid state has

! In this paper, we assume that the L2 cache is split into tags and data structures, as
is commonly found in current designs.

two meanings: one of them is the same that in MESI protocol, and the other one
means that this block has a valid directory information, and it takes place when
there is some presence bit in the directory information. The directory state field
can take two values (one bit):

— S (Shared): The memory block is shared in several caches, each one of them
with a up-to-date copy. When needed, the L2 cache of the home node will
provide the block to the requesters, since this cache has always a valid copy
even if it has not used it.

— O (Owned): The memory block is in just one cache and could have been
modified. The single valid copy of the block is held in the L2 cache of the
home node, when its cache state is modified or exclusive, or alternatively, in
one of the L2 cache of the remote nodes. In the latter case, the cache state
for the memory block in the L2 cache of the home is invalid, and the identity
of the owner is stored in the sharing code field.

Note that an additional directory state is implicit. The U state (Uncached)
takes place when the memory block is not held by any cache and its only copy
resides in main memory. This is the case of those memory blocks that have not
been accessed by any node yet, or those that were evicted in all the caches.

The sharing code field keeps the identity of the L2 caches that hold a copy
of the corresponding block. Although our lightweight directory architecture is
compatible with any of the sharing codes proposed in the literature, for simplicity
we have used the full-map sharing code in this paper. The election for this
paper of the full-map sharing code instead of a compressed sharing code is to
concentrate on the impact that lightweight directories have on performance,
removing any interference caused by unnecessary coherence messages.

4 Coherence Protocol for Lightweight Directory

The proposed architecture requires a cache coherence protocol similar to MEST
[1] with some minor modifications. These modifications are performed to ensure
that for all memory blocks held in one or more L2 caches, directory information
is present in the L2 cache of the home node. Moreover, when a memory block
is evicted from the home cache, all the copies of this block must be previously
invalidated. Next, we detail the modifications that are required.

We use the term local misses to refer to the L2 cache misses that take place
in the home node. On the other hand, remote misses imply that the home node
is not where the miss occurs. For local misses, the directory controller obtains
directory information stored in cache tags, and then, the miss proceeds as usual.

On the other hand, remote misses are sent to the home node, where the
directory controller checks the tags part of the L2 cache. If directory information
is not in the home cache, the memory block is not cached by any node (the
implicit uncached state mentioned above). Hence, the memory controller brings
the block from main memory and stores an entry for it at the home cache in
invalid state, just to hold directory information. Moreover, the directory state

Directory States
Uncached| Shared Owned
. Dir. Inf.| Memory Memory Memory
Conventional Data Memory Memory |Owner Cache
Lichtweicht Dir. Inf. - Home Cache| Home Cache
g g Data Memory |Home Cache|Owner Cache

Table 1. Where directory information and data are found when a L2 miss takes place
in both conventional and lightweight directory protocols.

is set to owned because only one node will hold the copy of the block. Finally,
the home node sends the block to the requester. If the directory information is
in the home cache is not necessary to access to main memory. Moreover, if the
directory state is shared, the home node has a valid copy and it can provide the
block immediately if the request is a read one.

When a particular block in shared state is evicted from the L2 cache of its
home node, the rest of the copies must first be invalidated to maintain coher-
ence. In this way, the directory controller sends multiple invalidation requests to
the sharers. Finally, the replacement proceeds once the home node has all the
confirmations of the invalidations. If the evicted block has its directory state as
owned, and the home node is not the owner, another node has the only valid
copy of the block. Then, the directory controller requests the block to the owner.
When the home node receives the block, it updates main memory.

The rest of cases are handled as in a conventional directory coherence proto-
col. Table 1 summarizes the advantages of our proposal. The lightweight direc-
tory avoids going to main memory when the directory state is shared, since the
home node provides the block. Moreover, directory accesses in cache-to-cache
transfers (owned state) are faster than in conventional architectures since the
corresponding directory entry is stored in the L2 cache of the home node. Fi-
nally, we do not need directory information for uncached blocks, reducing the
amount of extra memory that is required.

5 Simulation Environment

We have used a modified version of RSIM [12], a detailed execution-driven simu-
lator, that our group has ported to the x86 architecture [13]. We have simulated
a cc-NUMA system with 32 uniprocessor nodes that implements the lightweight
directory protocol. Table 2 shows the parameters used to evaluate the lightweight
directory architecture. We model the contention on tags and data cache accesses
for the remote requests. In this way, those remote requests that try to access
the tags at the same time that another request (local or remote) is in progress,
will be delayed. Simulations have been performed using an optimized version of
the sequential consistency model with speculative load execution following the
guidelines given by Hill [14].

The benchmarks used in our simulations cover a variety of computation and
communication patterns. Barnes (8192 bodies, 4 time steps), FFT (256K complex

32-Node System - Lightweight Directory Protocol
ILP Processor Parameters Memory Parameters
Max. fetch/retire rate 4 Memory access time 80 cycles
Instruction window 128 Memory interleaving 4-way
Branch predictor 2 bit agree, 2048 count Internal Bus Parameters
Cache Parameters Bus width 8 bytes
Cache block size 64 bytes Bus cycles 1 cycle
Split L1 I & D caches 16 KB, direct mapped Network Parameters
2 hit cycles Topology 2-dimensional mesh
Unified L2 cache 64 KB, 4-way Flit size 8 bytes
15 hit cycles (6 + 9) |Non-data message size 2 flits
Directory Parameters Router speed 250 MHz
Directory controller cycle[I cycle (on-chip) Router’s internal bus width |64 bits
Directory access time 6 cycles (L2 cache tag) |Arbitration delay 4 router cycles
Message creation time 4 cycles first, 2 next Channel bandwidth 2 GB/s

Table 2. Base system parameters.

doubles), Ocean (258x258 ocean), Radix (1M keys, 1024 radix), and Water-NSQ
(512 molecules, 4 time steps) are from the SPLASH-2 benchmark suite [15] and
Unstructured (Mesh.2K, 5 time steps) [16] is a computational fluid dynamics
application. All experimental results reported in this work correspond to the
parallel phase of these benchmarks. Input sizes have been also chosen commen-
surate to the total number of processors that are used, and cache sizes have been
chosen so that the working set of the applications is greater than their capacity.

6 Simulation Results and Analysis

In this section, we evaluate the performance of lightweight directories in terms
of total execution time as well as we analyze the effect that they have on the
L2 caches, particularly whether the total number of replacements is increased or
instead kept unchanged. We compare our proposal with a conventional directory
based cache coherent multiprocessor, similar to the SGI Origin 2000/3000 [4],
that uses full-map as the sharing code. Moreover, it is important to know the
performance that can offer our proposal in ideal conditions. We called ideal case
when the blocks used by a node are not affected by the allocation of remote
blocks. That it is, we suppose an infinite cache size for those blocks allocated in
the home node due to a request of a remote node, and a normal cache size for
its local blocks 2.

Figure 3 shows the execution time for a conventional directory architecture
and the ideal and realistic implementation of the lightweight directory archi-
tecture. As it can be observed, improvements in performance with the ideal
implementation range from 6% to 29%. On the other hand, with the realistic
64KB L2 caches for all the blocks, reductions in terms of execution time are ob-
tained for all the benchmarks except for Radix. Particularly, Ocean and Barnes
obtain the most important reductions (20% and 19% respectively) whereas for
the other benchmarks the reduction ranges from 4% to 11%. Only for Radix
application execution time is increased and a degradation of 14% is observed.

Table 3 helps to understand the differences between the ideal and the realistic
implementation. Overall, our proposal do not affect cache misses, since due to

2 The size of the L2 cache for this paper is 64K B

i

lo.s20.04

[conventional
I 1deal lightweight
[Real lightweight

Normalized execution time

T T
Barnes FFT Ocean Radix Unstruct Water-NSQ

Fig. 3. Normalized execution time for conventional, ideal lightweight and real
lightweight architectures.

the temporal locality exhibited by the references to memory it does not cause a
significant increment in the L2 cache replacements.

Unstructured is the nearest benchmark to the ideal case. This is because
it solves almost all the cache misses without accessing to main memory. FFT
has a small number of replacements in conventional case, so the ideal case only
has an improvement of 6% respect to conventional case. Moreover, FFT solves
half of the misses in home cache and, therefore, the real case is 2% worse that
the ideal one. Barnes solves almost all the L2 misses in home cache and also
obtains a good performance very near to the ideal case. On the other hand, the
performance of Ocean is a 7% worse than the ideal case because most misses
are solved in main memory (75%). In addition, Ocean maintains constant the
L2 miss rate and, therefore, the number of replacements, which is translated in
a considerable improvement in performance (20%) respect to the conventional
case. Water-NSQ cannot get a very high performance improvement because this
benchmark spends just a short time to solve cache misses. Finally, the bench-
mark Radix increases its L2 miss rate and most the misses must often go to
main memory to obtain the directory information. This causes that the real case
obtains much worse performance than the ideal case. Moreover, the accesses for
the directory information to main memory in lightweight directory architecture
are greater than in the conventional architecture. Hence, the performance is a
14% worse than conventional case. In the section 1, we demonstrate that the to-
tal number of memory blocks that are brought to the L2 cache for a lightweight
directory architecture is the same as for the conventional one (figure 1). The

L2 Miss rate L2 Replacements

Conv. Lightweight Conv. Lightweight [Ratio
Benchmark [| Total |Total[Cache[Memory|[|Repl / Node| Repl / Node | %
Barnes 0.16 | 0.17] 0.15 0.02 26579 29471 1.11
FFT 0.04 |0.04] 0.02 0.02 6956 7514 1.08
Ocean 0.16 | 0.16 | 0.04 0.12 115957 116911 1.01
Radix 0.11 [0.13 | 0.01 0.12 38575 56190 1.46
Unstruct 0.38 | 0.39 | 0.38 0.01 42116 43851 1.04
Water-NSQ[| 0.20 | 0.20 | 0.08 0.12 13348 13509 1.01

Table 3. L2 cache miss rate and replacement for conventional and lightweight ar-
chitecture. In a lightweight architecture miss rate is separated into misses that found
directory information in home cache or in home main memory.

only difference is in the order in which the blocks are allocated in L2 caches, so
this case can be improved using other cache allocation policies.

Regarding the directory memory overhead, our proposal improves the scal-
ability of the directory size by reducing the number of directory entries in a R
ratio, where R is defined as the quotient between the main memory size and L2
cache size. According to current multiprocessors such as SGI Origin 2000,/3000
[4] and AlphaServer GS320 [17], R can take a typical value of 1024, hence the
memory reduction is very considerable.

7 Conclusions and Future Work

In this paper we have introduced the lightweight directory architecture, a scal-
able directory protocol that tries to achieve the best characteristics both of the
snooping and of the directory-based protocols. Our proposal is based on current
technology improvements to put the directory controller and directory informa-
tion inside the processor chip. In this way, we remove the directory structure
from main memory and we associate directory information to the L2 cache.
Then, cache misses are satisfied by home node cache without accessing main
memory, ever when some node has a valid copy of the block.

We have described the resulting architecture and a coherence protocol suited
to the particularities of the architecture. In order to demonstrate the bene-
fits derived from our proposal in terms of execution time, we have run several
scientific parallel applications on top of a RSIM version that implements the
lightweight directory protocol. The lightweight directory architecture presented
in this paper obtains improvements of up to 20% in execution time compared to
conventional architectures. Moreover, directory memory overhead is reduced by
a R ratio respect to conventional directory architectures, where R is computed
as the quotient between main memory size and L2 cache size. This means that
our proposal drastically reduces the directory memory overhead, and in most
cases improves performance.

As part of our future work, we plan to design a cache allocation algorithm,
which only stores in cache some remote blocks for reducing the memory overhead
caused by these blocks. Another area of interest is to study the impact of a victim
cache for blocks whose replacements cause coherence actions. These blocks are
those that maintain directory information in the home node cache and they
have a copy in some remote node. In this way, it would not be necessary to
performance coherence actions. Finally, in order to reduce even more directory
memory overhead, we would like to evaluate the effect of limited pointers or
compressed sharing codes.

Acknowledgments

This work has been supported by the Spanish Ministry of Ciencia y Tecnologia
and the European Union (Feder Funds) under grant TIC2003-08154-C06-03.

10

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Culler, D., Singh, J., Gupta, A.: “Parallel Computer Architecture: A Hard-
ware/Software Approach”. Morgan Kaufmann Publishers, Inc. (1999)

Acacio, M., Gonzilez, J., Garcia, J., Duato, J.: “An Architecture for High-
Performance Scalable Shared-Memory Multiprocessors Exploiting On-chip Inte-
gration”. IEEE Transactions on Parallel and Distributed Systems 15 (2004) 755—
768

Acacio, M., Gonzélez, J., Garcia, J., Duato, J.: “A Two-Level Directory Archi-
tecture for Highly Scalable cc-NUMA Multiprocessors”. IEEE Transactions on
Parallel and Distributed Systems 16 (2005) 67-79

Laudon, J., Lenosky, D.: “The SGI Origin: A cc-NUMA Highly Scalable Server”.
Proc. of the 24th Int’l Symposium on Computer Architecture (ISCA’97) (1997)
241-251

Gwennap, L.: “Alpha 21364 to Ease Memory Bottleneck”. Microprocessor Report
12 (1998) 12-15

Ahmed, A., Conway, P., Hughes, B., Weber, F.: “AMD Opteron™ Shared Memory
MP Systems”. Proc. 14th HotChips Symposium (2002)

Martin, M., Sorin, D., Ailamaki, A., Alameldeen, A., Dickson, R., Mauer, C.,
Moore, K., Plakal, M., Hill, M., Wood, D.: “Timestamp Snooping: An Approach
for Extending SMPS”. Proc. of the 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IX) (2000) 25-36
Martin, M., Sorin, D., Hill, M., Wood, D.: “Bandwidth Adaptive Snooping”. Proc.
of the 8th Int’l Symposium on High Performance Computer Architecture (HPCA-
8) (2002) 251-262

Martin, M., Hill, M., Wood, D.: “Token Coherence: Decoupling Performance
and Correctness”. Proc. of the 30th Int’l Symposium on Computer Architecture
(ISCA’03) (2003) 182-193

Gupta, A., Weber, W., Mowry, T.: “Reducing Memory Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes”. Proc. Int’l Conference on
Parallel Processing (ICPP’90) (1990) 312-321

Mukherjee, S., Hill, M.: “An Evaluation of Directory Protocols for Medium-Scale
Shared-Memory Multiprocessors”. Proc. of the 8th Int’]l Conference on Supercom-
puting (ICS’94) (1994) 64-74

Hughes, C., Pai, V., Ranganathan, P., Adve, S.: “RSIM: Simulating Shared-
Memory Multiprocessors with ILP Processors”. IEEE Computer 35 (2002)
Fernandez, R., Garcia, J.: “RSIMx86: A Cost Effective Performance Simulator”.
Proc. of the High Performance Computing & Simulation (HPC&S) Conference
(2005)

Hill, M.: “Multiprocessors Should Support Simple Memory-Consistency Models”.
IEEE Computer 31 (1998) 28-34

Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: “The SPLASH-2 Programs:
Characterization and Methodological Considerations”. Proc. of the 22nd Int’l Sym-
posium on Computer Architecture (ISCA’95) (1995) 24-36

Mukherjee, S., Sharma, S., Hill, M., Larus, J., Rogers, A., Saltz, J.: “Efficient Sup-
port for Irregular Applications on Distributed-Memory Machines”. Proc. of the 5th
Int’l Symposium on Principles & Practice of Parallel Programming (PPOPP’95)
(1995) 68-79

Gharachorloo, K., Sharma, M., Steely, S., Doren, S.V.: “Architecture and Design
of AlphaServer GS320”. Proc. of the 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IX) (2000) 13-24

