
An Efficient Cache Design for Scalable Glueless
Shared-Memory Multiprocessors

Alberto Ros
a.ros@ditec.um.es

Manuel E. Acacio
meacacio@ditec.um.es

José M. Garcı́a
jmgarcia@ditec.um.es

Departamento de Ingenierı́a y Tecnologı́a de Computadores
Universidad de Murcia
30080 Murcia (Spain)

ABSTRACT
Traditionally, cache coherence in large-scale shared-memory
multiprocessors has been ensured by means of a distributed
directory structure stored in main memory. In this way,
the access to main memory to recover the sharing status of
the block is generally put in the critical path of every cache
miss, increasing its latency. Considering the ever-increasing
distance to memory, these cache coherence protocols are far
from being optimal from the perspective of performance. On
the other hand, shared-memory multiprocessors formed by
connecting chips that integrate the processor, caches, coher-
ence logic, switch and memory controller through a low-cost,
low-latency point-to-point network (glueless shared-memory
multiprocessors) are a reality.

In this work, we propose a novel design for the L2 cache
level, at which coherence has to be maintained, aimed at
being used in glueless shared-memory multiprocessors. Our
proposal splits the cache structure into two different parts:
one for storing data and directory information for the blocks
requested by the local processor, and another one for stor-
ing only directory information for blocks accessed by remote
processors. Using this cache scheme we remove the directory
from main memory. Besides saving memory space, our pro-
posal brings very significant reductions in terms of latency of
the cache misses (speed-ups of 3.0 on average), which trans-
late into reductions in applications’ execution time of 31%
on average.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Parallel Ar-
chitectures—distributed architectures

General Terms
Performance, design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’06, May 3–5, 2006, Ischia, Italy.
Copyright 2006 ACM 1-59593-302-6/06/0005 ...$5.00.

Keywords
Glueless shared-memory multiprocessors, cache coherence,
L2 cache, directory structure, memory wall

1. INTRODUCTION
Workload and technology trends point toward highly in-

tegrated “glueless” designs [12]. These designs integrate
the processor’s core, caches, network interface and coher-
ence hardware onto a single die. It allows to directly con-
nect these highly integrated nodes using a high-bandwidth
low-latency point-to-point network leading to glueless multi-
processors. Taking advantage of ever faster interconnection
network, more research efforts must be carried out in low-
latency cache coherence protocols for tolerating the increas-
ingly wider “memory gap” that will be suffered in future
scalable glueless shared-memory multiprocessors.

Cache coherence in this kind of architecture has tradition-
ally been orchestrated on the basis of a distributed directory
stored in the portion of the main memory included in every
system node [20]. In these designs, whenever a cache miss
takes place, it is necessary to access the directory structure
placed in the home node to recover the sharing status of
the block, and subsequently, perform the actions required
to ensure coherence and consistency.

Hence, this kind of cache coherence protocol achieves scal-
ability at the cost of putting the access to main memory in
the critical path of the lower-level cache misses1, which dras-
tically increases the latency of cache misses when compared
to snoopy-based cache coherence protocols. As an exam-
ple, Figure 1 presents the execution times that are obtained
for a traditional directory-based shared-memory multipro-
cessor as main memory latency increases from 80 cycles to
1000 cycles. Additionally, it is also shown the execution
times that would be obtained in the ideal case, that is to
say, when directory information is stored in the L2 caches
and main memory is accessed just for those memory blocks
that are not found in any of the caches (blocks in uncached
state). These results are for a 32-node architecture and sev-
eral SPLASH-2 benchmarks (see section 4.1 for details).

As observed, as memory latency grows applications’ ex-
ecution time becomes significantly greater for a traditional
directory-based cache coherence protocol. On the contrary,
the impact of memory latency is much lower in the ideal

1By lower-level cache we mean the cache level where coher-
ence is maintained (the L2 caches in this paper).

321

Figure 1: The effect of memory latency on execution
time.

case. This is due to for most of the L2 cache misses ei-
ther the home node just uses directory information but not
the memory block or the memory block can be provided by
the L2 cache of one of the sharers. The first observation
is not new as cache-to-cache transfer misses and upgrade
misses have been previously shown to represent a significant
fraction of the total miss rate [2]. The second observation
constitutes one of the reasons why the proposed scheme em-
ploys a cache coherence protocol derived from the MOESI
protocol, which has been used extensively in SMP systems
but not in cc-NUMAs.

One of the solutions that have been proposed for allevi-
ating in part the ever increasing distance to memory is the
addition of directory caches to each one of the nodes of the
multiprocessor [2, 20]. These extra cache structures, not
desirable in future glueless shared-memory multiprocessors,
are aimed at keeping directory information for the most re-
cently referenced memory blocks. In this work, however, we
re-consider the design of the L2 caches that will be used
in future cc-NUMA architectures and propose a new struc-
ture that reduces the L2 cache miss latencies by avoiding
unnecessary accesses to main memory. In particular, our
proposal removes completely the directory information from
main memory and stores it in the L2 caches, which are split
into two structures: the data and directory information (or
DDI) and the only directory information (or ODI) struc-
tures. The first one stores data and directory information
for the blocks requested by the local processor. The second
one stores only directory information for those blocks that
other nodes have requested but that the home node is not
currently using.

The key contribution of this paper is the proposal of a new
L2 cache design for scalable glueless shared-memory multi-
processors that includes all the information needed to main-
tain cache coherence, thus eliminating the need of a direc-
tory structure in main memory. This scheme allows faster L2
cache misses by removing main memory accesses for most L2
cache misses (from 65.95% to 99.98%). We have evaluated
our proposal, obtaining improvements of 31% on average in
total execution time with respect to a traditional directory-
based architecture. Moreover, we have studied how the miss

latency is reduced for each type of cache miss, obtaining im-
portant reductions in each case. Additionally, we compare
our proposal against a system that uses directory caches in
each node, achieving reductions in execution time of 15% on
average.

The rest of the paper is organized as follows. A review
of the related work is presented in section 2. Subsequently,
section 3 shows the design for the L2 cache proposed in
this paper, as well as the coherence protocol required by it.
Section 4 discusses the evaluation methodology and presents
a detailed performance evaluation of the proposal. Finally,
Section 5 concludes the paper and points out some future
ways.

2. RELATED WORK
Directory caches (originally proposed in [6] for cutting

down directory memory overhead) can be also used for re-
ducing the latency of L2 misses by obtaining directory in-
formation from a much faster structure than main memory.
For example, in [17] the integration of directory caches in-
side the coherence controllers was proposed to minimize di-
rectory access time. In addition, remote data caches (RDCs)
have also been used in several designs (as [10, 11]) to accel-
erate the access to remote data. In [9], the remote memory
access latency is reduced by placing caches in the crossbar
switches of the interconnection network to capture and store
shared data as they flow from the memory module to the
requesting processor. Finally, in [2] a 3-level directory orga-
nization was proposed, including a directory cache on chip
and a compressed directory structure in main memory. Dif-
ferently from these proposals, we present a novel design for
the L2 cache used in shared-memory multiprocessors that
takes into account coherence from the beginning. As far
as we know, this is the first time that a specific cache de-
sign for directory-based shared-memory multiprocessors has
been proposed.

Other proposals to reduce L2 cache miss latency in cc-
NUMAs have focused on using snooping protocols with un-
ordered networks. In [13], Martin. et al. propose a tech-
nique that allows SMPs to utilize unordered networks (with
some modifications to support snooping). Bandwidth Adap-
tive Snooping Hybrid (BASH) [14] is an hybrid coherence
protocol that dynamically decides whether to act like snoop-
ing protocols (broadcast) or directory protocols (unicast)
depending on the available bandwidth. Token coherence
protocols [12] avoid both the need of a totally ordered net-
work and the indirection caused by the directory by using
N tokens per memory block. In this way, a node can read a
block if it has at least one token and can update the block
if it has all the tokens of that block.

Regionscout [15] is a technique that detects memory re-
gions in which only one cache accesses the blocks of these
regions. In this way, regionscout reduces the bandwidth and
latency for some requests in SMP multiprocessors. Our pro-
posal, on the contrary, reduces the latency of L2 cache misses
by minimizing the number of times that main memory has
to be accessed.

Finally, the lightweight directory architecture proposed
in [18] adds directory information to the L2 caches, thus
removing the directory structure from main memory. How-
ever, this organization increases the number of cache misses
as a result of the premature invalidations that arise when
a particular memory block is replaced from the L2 cache of

322

Convert
Logic

State
Function

Tag V Sharing CodeSt Data

Tag V Sharing CodeSt Data

Tag V Sharing CodeSt Data

V Owner

V Owner

V Owner

���������������������������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

...

Shared

Tag

Tag

Tag Sharing Code

Sharing Code

Sharing Code

...

VTag

VTag

VTag

Owner

Owner

Owner

Private

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Sharing Code

Tag

/

/
N

N

/
N

/
N

/

//

1

11

1/

2
/
(U, P, S)

Data

State

ODI Structure

DDI Structure

...

M
/

Figure 2: The L2 cache structure proposed in this paper.

the corresponding home node. In the work presented in this
paper, however, we avoid these premature invalidations by
splitting the L2 cache design into two parts: one for storing
data requested by the local processor and the other for con-
taining directory information for the blocks that the remote
processors have referenced.

3. PROPOSED CACHE DESIGN
In this section, we present the organization for the lower

cache level, as well as the coherence protocol required by
the proposal. As cache coherence in our system is kept at
the level of the L2 cache, from now on we will focus on
this cache level. An additional benefit of our proposal is
that we completely remove directory information from main
memory, saving memory space. This directory information
represents an overhead in the memory size from the 3% in
the SGI Altix 3000 [20] to 12% in other systems, and could
even reach 100% [3] depending of both the sharing code and
the number of nodes used.

3.1 L2 Cache Structure
Besides keeping a copy of the memory blocks that have

been recently referenced by the local processor, we propose
a L2 cache structure that also stores directory information
for the blocks assigned to it, that is, this is the home node
for these blocks. In this way, we avoid accessing main mem-
ory for recovering directory information, which is now stored
“closer” to the directory controller (note that glueless mul-
tiprocessors are constructed from microprocessors that in-
cludes, among other things, coherence hardware on-chip [7,
4]).

The design for the L2 cache that we propose and evaluate
in this paper consist of two structures:

1. The Data and Directory Information (DDI) structure
that maintains both data and directory information for
blocks requested by the local processor. This structure

is organized as a traditional L2 cache plus two extra
fields used for storing directory information. The first
field maintains the directory state and could take ei-
ther the private or the shared state (1 bit). The sec-
ond one keeps track of the sharers (sharing code). In
this work, directory information is only used for those
memory blocks for which the local node is the home
node. For the rest of the blocks, the two fields used to
keep directory information are empty. Note, however,
that these fields could be employed for storing direc-
tory information in a prediction-based cache coherence
protocol, saving extra structures [1].

2. The Only Directory Information (ODI) structure that
stores only directory information for the local blocks
requested by remote nodes and not being used by the
local node. This structure (like an on-chip directory
cache) has three main fields: the tag of the block,
the valid bit and the directory information. The ODI
structure is split into two separate small structures:
the private and the shared portions. The first one
stores directory information for the blocks that are in
private state and it only needs one pointer per entry to
keep the identity of the node. The second one stores di-
rectory information for blocks in shared state and uses
both a precise sharing code for locating all the copies
of every block, and a pointer that identifies the node
that has to provide the block when needed (the owner
node). We explicitly keep the owner identity to allow
silent evictions for the other blocks in shared state.
The directory state field is implicit in both structures.

Figure 2 shows the proposed cache structure. The direc-
tory state for a block is uncached if a valid entry for it is not
found in any structure. In other case, the state is derived
from the structure in which the entry is stored (tag match
in ODI) or by the state field (tag match in DDI).

323

Table 1: Summary of how L2 cache misses are solved

Conventional L2 cache proposed

Uncached Private Shared Uncached Private Shared

Read Mem $-to-$ Mem Mem $-to-$ $-to-$ (or Mem)

Upgrade - - Inv - - Inv

Write Mem $-to-$ Inv+Mem Mem $-to-$ Inv+Cache (or Inv+Mem)

3.2 Cache Coherence Protocol
The L2 cache proposed in this paper requires also to de-

sign a cache coherence protocol that takes into consideration
the particularities of the new cache structure. Our protocol
has two main challenges: To avoid main memory accesses
by taking advantage of the current fast interconnection net-
works that make the access to another cache less expensive
than the access to main memory, and to handle the direc-
tory information efficiently since we do not have directory
information in main memory.

3.2.1 How L2 cache misses are satisfied
Each time an L2 cache miss for a block reaches the direc-

tory controller of the home node, the directory information
of the block is looked for in each one of the structures that
compose the L2 cache to obtain the directory state.

If the directory information is not found in the L2 cache
of the home node, the block is not present in any cache
(uncached state). Therefore, the block must be obtained
from main memory. Subsequently, a new entry must be
allocated in the L2 cache of the home node for keeping the
directory information of that block. Finally, the block is
sent to the requester node.

If the directory state is private, the block must be provided
by the cache that holds the block. If this cache is the home
node’s one the miss is solved in two hops. In other case, the
identity of this node is given by the owner field in the ODI
structure, and the miss is solved in three hops by means of
a cache-to-cache transfer.

Traditional cc-NUMA multiprocessors obtain the block
from main memory when the directory state is shared. This
is reasonable when the directory information is stored in
main memory. But in our L2 cache design this information
is stored at the L2 cache level. Therefore, it is a better op-
tion to bring the block from another cache that shares the
block. We name the node whose cache must provide the
block as owner node of this block. When the home node
shares the block, it is always the owner node2. In other
case, the home node always knows the identity of the owner
node. This owner node is the first node that requested the
block or the last one that wrote it. In this way, when the
home node receives a miss for a block in shared state sends
the miss to the owner node (cache-to-cache transfer), in-
stead of main memory. Only in the case in which the block
had been evicted from the owner node, it would be obtained
from main memory and the requesting node must provide it
in future misses (it becomes the owner node).

As observed, main memory is only accessed in our pro-
posal firstly, when no node has a valid copy of it, and a

2In this case, the miss will be solved in only two hops if inval-
idations are not needed. We have found that this situation
appears frequently in most parallel applications [18].

few times (approximately 3% of the mem misses) when the
owner node has evicted the block from the cache.

We assume a taxonomy of the L2 cache misses that take
place in a cc-NUMA multiprocessor as the one described in
[2], which classifies L2 cache misses in four categories, but
we have adapted it to our L2 cache architecture:

• $-to-$ misses: Cache-to-cache transfer misses occur
when the requested block is provided by any L2 cache
(the L2 cache of the home node or any of the L2 caches
of the remote nodes).

• Inv misses: Invalidation misses, also known as upgrade
misses, take place when a node sends a write request
for a block in shared state. In this case, invalidation
messages are required to satisfy the miss.

• Mem misses: Memory misses appear when either the
block is obtained from main memory, it is to say, the
block is uncached, or a read access finds that the block
has been evicted from the owner node.

• Inv+Mem misses: Invalidation and access to memory
misses are caused by a write request, when the block is
in shared state but the requesting node is not one of the
sharers of the block. Note that in our protocol some
Inv+Mem misses are solved as Inv+Cache misses by
obtaining the block from the owner cache, reducing so
the latency of these misses.

Table 1 summarizes how L2 cache misses are solved using
both the conventional and the new coherence protocol. This
table shows the cases in which memory misses are converted
to cache-to-cache transfer misses.

3.2.2 How directory information is managed
When a miss for a block reaches the home node and the

directory information for that block is not found in the L2
cache (uncached state), a new entry must be allocated in the
L2 cache of the home node for keeping the directory infor-
mation. If the miss is from the home node of the block (local
miss), the directory information is allocated along with data
in the DDI structure. In other case, the identity of the owner
is allocated in the private part of the ODI structure, and the
block is sent to the requester node which stores it in the DDI
structure.

If the entry is found in the DDI structure, the sharing code
is updated (the miss is solved by obtaining the block from
this structure). If the miss is caused by a write instruction
in a remote node, the entry is moved to the private part
of the ODI structure pointing to the new owner node, after
invalidating the other copies.

If the entry is found in the private part of the ODI struc-
ture, for local misses, the directory information is moved to

324

Table 2: Summary of the actions performed by the directory controller
Directory Information found in

Miss type Not in L2 cache DDI P-ODI S-ODI

Local
Read Allocate an entry in

DDI (dir. inf + data)
Hit Move entry to DDI

and store data in it
Move entry to DDI and
store data in it

Write Allocate an entry in If (state = private) Hit. Move entry to DDI Move entry to DDI and

DDI (dir. inf + data) If (state = shared) Invali-
date remote copies and up-
date entry

and store data in it store data in it

Remote
Read Allocate an entry in

P-ODI
Update entry Move entry to S-

ODI
Update entry

Write Allocate an entry in
P-ODI

Move entry to P-ODI and
invalidate the copies

Update entry Move entry to P-ODI
and invalidate the copies

the DDI structure and the data obtained from the owner
node are also stored in this structure. Remote misses cause
that the entry is moved to the shared part of the ODI struc-
ture (read operation), or it is updated with the new owner
node (write operation).

Finally, if the entry is found in the shared part of the
ODI structure, the pointer field stored in the entry of this
structure gives the identity of the node that must provide
the block, except if the block had been evicted from the
owner node. In a local miss, the entry is moved to the DDI
structure. In a remote miss, it is either updated, when the
remote miss is caused by a read instruction, or moved to the
private part of the ODI structure, when the remote miss is
caused by a write instruction.

Table 2 summarizes how the directory information is man-
aged between the L2 cache structures. In particular, it shows
the actions performed for Local/Remote misses, caused by
Read/Write instructions for which directory information is
not found in the L2 cache, it is found in the DDI structure,
in the private part of the ODI structure (P-ODI), or in the
shared part of the ODI structure (S-ODI).

3.2.3 How replacements are managed
As all the directory information has been removed from

main memory, if a directory entry is evicted from the L2
cache of the home node, cache coherence for that block can-
not be maintained. To cope with this problem, it is nec-
essary to invalidate first all the copies of the block and to
update main memory when needed3. Although these inval-
idations are not in the critical path of the cache miss that
caused the replacement, it is important to keep these kinds
of replacements low, since they can result into an increase in
the L2 miss rate with respect to conventional architectures.

When a block is evicted from the DDI structure, the ODI
structure is used as a victim cache for the directory informa-
tion of this block. This avoids premature invalidations as a
consequence of replacements. Obviously, if the home node is
the only sharer of the replaced block, after the replacement
directory information for the block is no longer needed (so
that an entry in the ODI structure is not allocated in this
case) and main memory can be updated (if needed) without
coherence actions.

3These invalidations do not introduce additional deadlock
problems, as they are already considered in the original co-
herence protocol. The interconnection network uses two vir-
tual networks (one for requests and another one for replies),
and this is enough to cope with the new deadlock issues that
appear in our new protocol.

If a directory entry is evicted from the ODI structure (ei-
ther from the private or the shared portions of it) the remote
copies of the corresponding block must be also invalidated.
When all the invalidations have been performed, the main
memory is updated and the state of the block becomes un-
cached.

On the other hand, the replacements that take place in
the remote nodes only cause coherence actions when the
block is in the owner state. In this case, the replacement
is sent to the home node and the owner pointer is disabled.
A subsequent miss for this block will have to reach main
memory.

3.3 Implementation Issues
We assume that the DDI structure has pipelined access

to the part of the tags and the part of data. Both the
private and shared portions of the ODI structure have the
same latency as the tags’ part of the DDI structure. The
three structures are accessed in parallel to find directory
information.

In this work, we have used a precise sharing code (par-
ticularly full-map) for both the DDI and the shared por-
tion of the ODI structure. Of course, alternative sharing
codes could be used (as compressed sharing codes or limited
pointer ones) but the use of full-map allows us to concen-
trate on the impact that our proposal has on performance,
removing any interference caused by unnecessary coherence
messages.

For the particular implementation of this paper (a 32-node
system with 512KB L2 caches in every node), the number of
bits required for storing the full-map sharing code is 32 (4
bytes), whereas for storing a single pointer is log232 = 5 bits
(≈ 1 byte). The total amount of extra memory introduced
in the cache structure represents only a 7.13% of the data
part size. Table 3 shows how this percentage is distributed
among the three structures previously described.

On the other hand, having two separated structures in the
L2 cache makes easier the design of an appropriate replace-
ment algorithm for each one. The DDI structure uses a LRU
replacement policy. However, the home node of a block has
no information about whether a block is frequently accessed
by a remote node. It only obtains information when a new
node requests the block. Therefore, the ODI structure per-
form replacements based on the following heuristic: if the
sharing code for a particular block is not modified, then that
block is a good candidate for replacement due to the lack of
activity. This is not necessary true because, for example, a

325

Table 3: Memory overhead introduced by the directory information
Data Directory Information (+7.13%)

DDI DDI P-ODI S-ODI

Bytes per entry 64 (data) 4 (full-map) 1 (pointer) 5 (full-map+pointer)

Number of entries 8192 8192 2048 512

Total size 512KB 32KB 2KB 2.5KB

Overhead - +6.25% +0.39% +0.49%

block could be accessed by only one remote node for a long
time. Our experiments, however, demonstrate that this is
not the normal case. Therefore, we replace first the entries
with less recent activity.

4. EVALUATION RESULTS AND
ANALYSIS

In this section, we present and analyze the simulation re-
sults that have been obtained using the L2 cache architec-
ture presented in this paper. The resulting multiprocessor is
compared against two configurations of a 32-node multipro-
cessor. Both of them use a MESI protocol. The first con-
figuration, named conventional, is a glueless shared-memory
multiprocessor configured from processors similar to the Al-
pha EV7 [7] with all the directory information stored in main
memory (300 cycles). The second configuration, named di-
rectory cache, includes a directory cache on every processor
chip for accelerating the access to the directory information,
resulting a configuration similar to the SGI Altix 3000 [20].
The size of the directory cache used in each node is simi-
lar to the amount of memory used for storing the directory
information in our proposal (32KB, 8192 entries). Other
characteristics of the directory cache are 6 hit cycles and
4-way associative. Note that for this configuration direc-
tory information is also kept in main memory. This avoids
having to invalidate the copies of a block when its directory
information is evicted from the directory cache. Full-map is
used as the sharing code for the directory information used
in these configurations, avoiding again the negative interfer-
ences that the presence of unnecessary coherence messages
could have on final performance.

4.1 Simulation Environment
We have used a modified version of RSIM, a detailed

execution-driven simulator. We have simulated a cc-NUMA
system with 32 uniprocessor nodes that implements our L2
cache design. Table 4 shows the base system parameters
used to evaluate our proposal. We model the contention
on tags and data cache accesses for the remote requests.
In this way, those remote requests that try to access the
tags at the same time that another request (local or re-
mote) is in progress will be delayed. Simulations have been
performed using an optimized version of the sequential con-
sistency model with speculative load execution following the
guidelines given by Hill [8].

Table 5 shows the nine benchmarks used to evaluate our
L2 cache design, and its input sizes. These benchmarks
cover a variety of computation and communications pat-
terns. Barnes, Cholesky, FFT, Ocean, Radix, Water-NSQ,
and Water-SP are from the SPLASH-2 benchmark suite [19].
Unstructured is a computational fluid dynamics application
[16]. Finally, EM3D is a shared memory implementation

Table 4: Base system parameters
32-Node System

ILP Processor Parameters
Processor speed 5 GHz
Max. fetch/retire rate 4
Instruction window 128
Branch predictor 2 bit agree, 2048 count

Cache Parameters
Cache block size 64 bytes
L1 cache: write-through

Size, associativity 32 KB, direct mapped
Hit time 2 cycles
Request ports 2

L2 cache: write-back
DDI (data) 512 KB, 4-way, 9 cycles
DDI (dir. inf) 32 KB, 4-way, 6 cycles
Private ODI 2 KB, 4-way, 6 cycles
Shared ODI 2.5 KB, 4-way, 6 cycles
Request ports 1

Directory Parameters
Directory controller cycle 1 cycle (on-chip)
Directory access time 6 cycles (L2 tag)
Message creation time:

First coherence message 4 cycles
Next coherence messages 2 cycles

Memory Parameters
Memory access time 300 cycles
Memory interleaving 4-way

Internal Bus Parameters
Bus width 8 bytes
Bus cycles 1 cycle

Network Parameters
Topology 2-dimensional mesh
Flit size 8 bytes
Non-data message size 2 flits
Channel bandwidth 4 GB/s

Table 5: Benchmarks and input sizes used in the
simulations

Benchmark Input Size

Barnes 8192 bodies, 4 time steps
Cholesky tk15.O
Em3d 38400 nodes, 15% remotes, 25 time steps
FFT 256K complex doubles
Ocean 258 × 258 ocean
Radix 1M keys, 1024 radix
Unstructured Mesh.2K, 5 time steps
Water-NSQ 512 molecules, 4 time steps
Water-SP 512 molecules, 4 time steps

326

Table 6: Percentage of L2 cache misses found in the applications used in this paper for each one of the
categories of the taxonomy

Benchmark
Conventional Proposed L2 cache architecture

$-to-$ Inv Mem
Inv+

$-to-$ Inv Mem
Inv+

Mem Mem

Barnes 30.47% 23.44% 44.87% 1.22% 75.41% 21.26% 0.44% 2.89%
Cholesky 18.62% 5.53% 75.58% 0.27% 74.02% 7.18% 18.31% 0.49%
EM3D 33.77% 33.77% 32.46% 0.00% 66.12% 33.79% 0.09% 0.00%
FFT 54.24% 44.61% 0.49% 0.66% 54.43% 44.61% 0.30% 0.66%
Ocean 31.84% 27.54% 39.67% 0.95% 42.38% 26.96% 29.66% 1.00%
Radix 47.73% 12.21% 38.57% 1.48% 56.78% 6.32% 36.05% 0.85%
Unstructured 62.33% 28.29% 9.26% 0.12% 71.66% 28.08% 0.10% 0.16%
Water-NSQ 37.55% 29.71% 32.62% 0.13% 70.85% 28.99% 0.02% 0.15%
Water-SP 8.94% 4.97% 85.53% 0.56% 94.15% 4.87% 0.05% 0.93%

Mean 36.17% 23.34% 39.89% 0.60% 67.31% 22.45% 9.45% 0.79%

of the Split-C benchmark [5]. All experimental results re-
ported in this work correspond to the parallel phase of these
benchmarks. Input sizes have been chosen commensurate to
the total number of processors that have been used in this
paper (32).

4.2 Impact on L2 cache miss latencies
This subsection analyzes how our proposal can signifi-

cantly reduce the latency of L2 cache misses. In particular,
we assume the taxonomy for the L2 cache misses described
in section 3.2.1. Table 6 shows the percentage of the L2
cache misses that fall into each category of the taxonomy.

Comparing the results obtained in both cases (the con-
ventional multiprocessor and the one that uses the proposal
of this work), we can see that in most cases, a significant
fraction of the memory misses that appear in cc-NUMA ar-
chitectures and that require accessing main memory are con-
verted into $-to-$ misses, which can obtain data faster from
another cache. The exception is the FFT application. In
this case, memory misses account for a very small fraction
of the total misses in the conventional case, so that they are
not significantly reduced when our proposal is employed. Fi-
nally, a fraction of the memory misses in Cholesky, Ocean
and Radix applications can not be solved by means of a
cache-to-cache transfer, even when the novel L2 cache archi-
tecture is used. This is due to two factors: the cold misses
(77%, 27% and 76% of the mem misses, respectively) and
the misses that occur when the block is only present in main
memory as a result of replacements in the L2 caches.

Figure 3 illustrates the average latency for each miss type
for the conventional architecture and for the one that uses
the L2 cache architecture presented in this paper. These
figures do not consider the overlapping of the misses, and
average latencies are calculated considering each miss indi-
viduality.

Figure 3(a) presents the average latencies for cache-to-
cache transfer misses. As observed, the average latency of
this kind of misses differs greatly from one application to
another when a conventional cc-NUMA multiprocessor is
considered. In this way, applications could be classified into
two groups. The first group is constituted by those appli-
cations that show average miss latencies that are close to
main memory access time. These applications are Cholesky,
EM3D, FFT, Radix and Unstructured. In this case, the
average miss latency is dominated by the time needed to

access main memory to find the identity of the owner of
the memory line. The second group would be constituted
by Barnes, Ocean, Water-NSQ and Water-SP, that are the
applications that exhibit high average miss latencies, sig-
nificantly greater than main memory access time. What
dominates now the average miss latency are the cycles that
cache-to-cache transfer misses spend at the corresponding
coherence controller waiting until other misses for the same
block are solved. When the proposed L2 cache architec-
ture presented in this work is used, the latency of cache-to-
cache transfer misses is significantly reduced in all the cases
(speed-ups ranging from 2.39 for Unstructured and 8.13 for
Water-SP –3.4 on average– are found), and cache-to-cache
transfer misses present more uniform miss latencies among
the applications.

For invalidation misses, important reductions on average
latency are also observed for our proposal, as Figure 3(b)
plots. In this case, speed-ups ranging from 2.2 for Water-
NSQ and 3.4 for Ocean –2.8 on average– are gained. Now,
the invalidation process is accelerated by having directory
information at the level of the L2 cache, which allows coher-
ence controllers to quickly find the identity of the sharers of
the block (the nodes that have to be invalidated).

Figure 3(c) shows the average latencies for memory misses.
Latency reductions in this case come as a consequence of the
reduction of waiting times when the L2 cache architecture
proposed in this work is employed. It is important to stress
that even for our proposal, memory misses need to obtain
the memory block from the main memory of the home node.
Otherwise, they would fall into the cache-to-cache transfer
category. In this way, important reductions are obtained for
those applications that exhibit high waiting times (i.e., av-
erage miss latencies in the base case are considerably higher
than memory access time) such as Barnes (speed-up of 5.1)
and Water-SP (speed-up of 6.3). On the other hand, modest
reductions on average miss latency are found for the rest of
the applications and an average speed-up of 2.7 is obtained
for this kind of misses.

Finally, Figure 3(d) presents how misses belonging to the
invalidation and access to memory category are accelerated.
Again, our proposal reduces waiting times for these misses,
as well as saves the access to main memory in most of the
cases. In this way, speed-ups ranging from 1.1 for FFT to
6.6 for Water-SP are observed. This type of misses are not
found in the EM3D application.

327

Figure 3: Average L2 miss latency for each miss type.

Figure 4: Normalized execution times.

4.3 Impact on execution time
The improvements shown in Section 4.2 finally translate

into reductions on applications’ execution time. The ex-
tent of these reductions depends on the speed-ups previously
shown on average miss latency for the different types of L2
cache misses, the percentage of the L2 cache misses belong-
ing to each category, and the weight that L2 cache misses
have on execution time.

For the applications used in this paper, Figure 4 plots
the execution times that are obtained for both the conven-
tional configuration, the directory cache configuration and
the one using the novel L2 cache structure. Results in terms
of execution times have been normalized with respect to the
base case (the conventional cc-NUMA architecture). In gen-
eral, the proposal presented in this paper has been shown
able to reduce the miss latencies, especially for cache-to-

cache transfer and invalidation misses, which constitute the
most important fraction of the L2 cache miss rate. More-
over, the number of memory misses, and consequently of
accesses to main memory, has been reduced considerably in
several applications. As a consequence, very important re-
ductions in terms of execution time are obtained for Barnes
(42%), EM3D (47%), Ocean (43%), Unstructured (49%) and
Water-SP (29%). In these cases, important speed-ups have
been shown for each one of the categories of the L2 cache
misses, and a significant fraction of the execution time of
these applications is spent in the L2 cache misses. For the
rest of applications, reductions ranging from 10% for Water-
NSQ to 23% for Radix are found.

With respect to the directory cache configuration, our
proposal obtains improvements in execution time ranging
from 0.5% for FFT to 31% for Water-SP (15% on aver-
age). These improvements are more important in applica-
tions that present a significant number of memory misses,
as Cholesky and Water-SP. In these cases, our proposal con-
verts most of these mem misses into cache-to-cache trans-
fers, which avoids having to access main memory. Appli-
cations in which cache-to-cache transfer misses are major-
ity, as FFT, Radix and Unstructured, the directory cache
configuration obtains execution times close to those of our
proposal.

4.4 Sensitivity analysis for the two portions of
the ODI structure

Additionally, we have performed a sensitivity analysis of
how the size of the two portions of the ODI structure (pri-
vate and shared) of the L2 cache design that we propose
affects applications’ execution time. Table 7 shows the oc-

328

(a) Unlimited S-ODI structure and 4-way P-ODI struc-
ture.

(b) Unlimited P-ODI structure and 4-way S-ODI struc-
ture.

Figure 5: How the size of the two portions of the ODI structure impacts performance.

Table 7: Occupancy for the P-ODI and S-ODI struc-
tures

Benchmark P-ODI S-ODI

Barnes 2.6% 7.4%
Cholesky 9.9% 90.6%
Em3d 0.0% 0.2%
FFT 0.0% 6.6%
Ocean 40.2% 100.0%
Radix 96.3% 30.1%
Unstructured 0.0% 0.0%
Water-NSQ 0.0% 0.2%
Water-SP 0.0% 0.2%

cupancy of these two portions for the configuration used
to evaluate our proposal (2048 entries for the P-ODI struc-
ture and 512 for the S-ODI structure). We can observe that
only a few applications (Ocean, Radix and Cholesky) require
more than 50% of the size of these structures.

For these applications we have varied the sizes of the pri-
vate and shared parts of the ODI structure individually,
from 4096 entries to 64 entries. Figure 5 shows that, in
the worst case, we have found a degradation of 6.5% in the
improvements in execution time reported before, when the
size of private part of the ODI structure is 64 entries (very
little if we consider the important reductions obtained for
2048 entries). On the other hand, going to 64 entries for the
shared part of the ODI structure results in a degradation
of less than 1% in the worst case. We can observe that in
some cases reducing the size of the S-ODI structure, the ex-
ecution time is reduced too. This is because when an entry
in the S-ODI structure is replaced, the other sharer must
invalidate their copies, and this action causes a profitable
invalidation effect. When a node wants to write this block,
no invalidations are necessary.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we take advantage of current technology

trends and propose a new design for the L2 cache (lower-
level caches in general) aimed at being used in future glue-
less scalable shared-memory multiprocessors. The proposal
presented in this work avoids unnecessary accesses to main
memory by storing all the directory information in several
structures inside the L2 cache. Additionally, our proposal
does not need to store directory information in main mem-
ory, saving from 3% to 12% of storage in current designs
[20].

In particular, our proposal splits the L2 cache into two
structures: the data and directory information (or DDI) and
the only directory information (or ODI) structures. The
first one stores data and directory information for the blocks
requested by the local processor. The second one stores only
directory information for those blocks that other nodes have
requested but that the home node is not currently using.
In this way, our L2 cache allows faster L2 cache misses by
removing main memory accesses for most L2 cache misses
(from 65.95% to 99.98%).

In order to demonstrate the benefits derived from our pro-
posal in terms of execution time, we have run several scien-
tific parallel applications. We have studied the miss latencies
for each category of the L2 cache misses found in these ap-
plications to better understand the reasons for performance
improvement. On average, the architecture presented in this
paper obtains improvements of 31% in execution time when
compared to a conventional glueless shared-memory multi-
processor consisting of several Alpha EV7-like processors [7],
and 15% when a directory cache is added to each one of the
nodes of the multiprocessor. In this way, we think that the
simplicity and the good results of our proposal make it com-
petitive for future small and medium-scale shared-memory
multiprocessors (16 to 256 processors).

329

As part of our future work, we plan to use limited point-
ers to reduce the extra memory needed when the number
of system nodes is significantly increased. Additionally, we
plan to design a prediction-based cache coherence protocol
based on the new architecture for the L2 caches proposed in
this work. Finally, all these proposals will be evaluated in
the context of CMP architectures.

6. ACKNOWLEDGMENTS
This work has been supported by the Spanish Ministry of

Ciencia y Tecnoloǵıa and the European Union (Feder Funds)
under grant TIC2003-08154-C06-03. A. Ros is supported
by a research grant from the Spanish MEC under the FPU
national plan (AP2004-3735).

7. REFERENCES
[1] M. Acacio, J. González, J. Garćıa, and J. Duato. The

Use of Prediction for Accelerating Upgrade Misses in
cc-NUMA Multiprocessors. In 11th Int’l Conference
on Parallel Architectures and Compilation Techniques
(PACT 2002), pages 155–164, September 2002. IEEE
Computer Society Press.

[2] M. Acacio, J. González, J. Garćıa, and J. Duato. An
Architecture for High-Performance Scalable
Shared-Memory Multiprocessors Exploiting On-chip
Integration. IEEE Transactions on Parallel and
Distributed Systems, 15(8):755–768, August 2004.

[3] M. Acacio, J. González, J. Garćıa, and J. Duato. A
Two-Level Directory Architecture for Highly Scalable
cc-NUMA Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 16(1):67–79,
January 2005.

[4] A. Ahmed, P. Conway, B. Hughes, and F. Weber.
AMD OpteronTM Shared-Memory MP Systems. In
14th HotChips Symposium, August 2002.

[5] D. Culler, A. Dusseau, S. Goldstein,
A. Krishnamurthy, S. Lumetta, S. Luna, T. von
Eicken, and K. Yelick. Parallel Programming in
Split-c. In Int’l SC1993 High Performance Networking
and Computing, pages 262–273, November 1993.

[6] A. Gupta, W. Weber, and T. Mowry. Reducing
Memory Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes. In Int’l
Conference on Parallel Processing (ICPP’90), pages
312–321, August 1990.

[7] L. Gwennap. Alpha 21364 to Ease Memory
Bottleneck. Microprocessor Report, 12(14):12–15,
October 1998.

[8] M. Hill. Multiprocessors Should Support Simple
Memory-Consistency Models. IEEE Computer,
31(8):28–34, August 1998.

[9] R. Iyer and L. Bhuyan. Switch Cache: A Framework
for Improving the Remote Memory Access Latency of
CC-NUMA Multiprocessors. In 5th Int’l Symposium
on High-Performance Computer Architecture
(HPCA-5), pages 152–160, January 1999.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.
Weber, A. Gupta, J. Henessy, M. Horowitz, , and
M. Lam. The Stanford DASH Multiprocessor. IEEE
Computer, 25(3):63–79, March 1992.

[11] T. Lovett and R. Clapp. STiNG: A cc-NUMA
Computer System for the Commercial Marketplace. In
23rd Annual Int’l Symposium on Computer
Architecture (ISCA’96), pages 308–317, June 1996.

[12] M. Martin, M. Hill, and D. Wood. Token Coherence:
Decoupling Performance and Correctness. In 30th Int’l
Symposium on Computer Architecture (ISCA’03),
pages 182–193, June 2003.

[13] M. Martin, D. Sorin, A. Ailamaki, A. Alameldeen,
R. Dickson, C. Mauer, K. Moore, M. Plakal, M. Hill,
and D. Wood. Timestamp Snooping: An Approach for
Extending SMPS. In 9th Int’l Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS IX), pages 25–36,
November 2000.

[14] M. Martin, D. Sorin, M. Hill, and D. Wood.
Bandwidth Adaptive Snooping. In 8th Int’l
Symposium on High Performance Computer
Architecture (HPCA-8), pages 251–262, January 2002.

[15] A. Moshovos. RegionScout: Exploiting Coarse Grain
Sharing in Snoop-Based Coherence. In 32th Int’l
Symposium on Computer Architecture (ISCA’05),
June 2005.

[16] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers,
and J. Saltz. Efficient Support for Irregular
Applications on Distributed-Memory Machines. In 5th
Int’l Symposium on Principles & Practice of Parallel
Programming (PPOPP’95), pages 68–79, July 1995.

[17] A. Nanda, A. Nguyen, M. Michael, and D. Joseph.
High-Throughput Coherence Controllers. In 6th Int’l
Symposium on High-Performance Computer
Architecture (HPCA-6), pages 145–155, January 2000.

[18] A. Ros, M. E. Acacio, and J. M. Garćıa. A Novel
Lightweight Directory Architecture for Scalable
Shared-Memory Multiprocessors. In 11th Int’l
Euro-Par Conference, pages 582–591, August 2005.

[19] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In 22nd Int’l
Symposium on Computer Architecture (ISCA’95),
pages 24–36, June 1995.

[20] M. Woodacre, D. Robb, D. Roe, and K. Feind. The
SGI AltixTM 3000 global shared-memory architecture.
Technical Whitepaper, Silicon Graphics, Inc., 2003.

330

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

